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From certain triangle functors, called nonnegative functors, between the bounded derived categories of abelian
categories with enough projective objects, we introduce their stable functors which are certain additive functors
between the stable categories of the abelian categories. The construction generalizes a previous work by Hu and
Xi. We show that the stable functors of nonnegative functors have nice exactness property and are compatible
with composition of functors. This allows us to compare conveniently the homological properties of objects
linked by the stable functors. In particular, we prove that the stable functor of a derived equivalence between two
arbitrary rings provides an explicit triangle equivalence between the stable categories of Gorenstein projective
modules. This generalizes a result of Y. Kato. Our results can also be applied to provide shorter proofs of some
known results on homological conjectures.
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1 Introduction

Derived equivalences were introduced by Grothendieck and Verdier in 1960s, and play an important role nowadays
in many branches of mathematics and physics, especially in representation theory and in algebraic geometry. A
derived equivalence is a triangle equivalence between the derived categories of complexes over certain abelian
categories such as the module category of a ring or the category of coherent sheaves over some variety. For derived
equivalent abelian categories, it is very hard to directly compare the objects in the given abelian categories, since
a derived equivalence typically takes objects in one abelian category to complexes over the other.

For an arbitrary derived equivalence F between two Artin algebras, a functor F̄ between the stable module
categories were introduced in [5], called the stable functor of F . This functor allows us to compare the modules over
one algebra with the modules over the other. Another nice property of this functor is that F̄ is a stable equivalence
of Morita type in case that F is an almost ν-stable standard derived equivalence. This generalizes a classic result
[13] of Rickard which says that a derived equivalence between two selfinjective algebras always induces a stable
equivalence of Morita type. However, in [5], many basic questions on the stable functor remain. For instance, we
even don’t know whether the stable functor is uniquely determined by the given derived equivalence, and whether
the definition of the stable functor is compatible with composition of derived equivalences.

In this paper, we shall look for a more general and systematical definition of stable functors, and generalize the
notion of stable functors in two directions. One direction is that, instead of module categories of Artin algebras, we
consider arbitrary abelian categories with enough projective objects. The other direction is that, instead of derived
equivalences, we consider certain triangle functors, called nonnegative functors, between the derived categories.
Note that this condition is not restrictive: all derived equivalences between rings are nonnegative up to shifts. We
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shall prove, in this general framework, that the stable functor is uniquely determined by the given nonnegative
functor (Proposition 4.10) and is compatible with the composition of nonnegative functors (Theorem 4.11).

Our theory of stable functors can be applied to study stable categories of Gorenstein projective modules of
derived equivalent rings, namely, the stable functor of a derived equivalence between two arbitrary rings provides
an explicit triangle equivalence between their stable categories of Gorenstein projective modules (Corollary
5.4). Gorenstein projective modules go back to a work of Auslander and Bridger [1]. Since then they have
attracted increasingly more attention and have also nice applications in commutative algebra, algebraic geometry,
singularity theory and relative homological algebra. In general, the size and homological complexity of the stable
category of Gorenstein projective modules measure how far the ring is from being Gorenstein. A nice feature
of the stable category of Gorenstein projective modules is that it is a triangulated category, and admits a full
triangulated embedding into the singularity category in Orlov’s sense, which is an equivalence if and only if the
ring is Gorenstein.

This paper is organized as follows. In Section 2 we recall some basic definitions and facts required in proofs.
Section 3 is devoted to studying for which complexes the localization functor from the homotopy category to
the derived category preserves homomorphism spaces. The theory of stable functors will be given in Section 4,
and will be applied to study stable category of Gorenstein projective modules in Section 5. An example is given
in Section 6 to illustrate how we can compute the Gorenstein projective modules over an algebra via the stable
functor. Finally, we stress in Section 7 that our results can be used to give shorter proofs of some known results
on homological conjectures.

2 Preliminaries

In this section, we recall some basic definitions and collect some basic facts for later use.
Throughout this paper, unless specified otherwise, all categories are additive categories, and all functors are

additive functors. The composite of two morphisms f : X → Y and g : Y → Z in a category C will be denoted
by f g. If f : X → Y is a map between two sets, then the image of an element x ∈ X will be denoted by (x) f .
However, we will deal with functors in a different manner. The composite of two functors F : C → D and
G : D → E will be denoted by G F . For each object X in C, we write F(X) for the corresponding object in D, and
for each morphism f : X → Y in C we write F( f ) for the corresponding morphism in D from F(X) to F(Y ).
For an object M in an additive category C, we use add(M) to denote the full subcategory of C consisting of direct
summands of finite direct sums of copies of M .

Let A be an additive category. A complex X• over A is a sequences di
X between objects Xi in A:

· · · −→ Xi−1 di−1
X−→ Xi di

X−→ Xi+1 di+1
X−→ · · · such that di

X di+1
X = 0 for all i ∈ Z. The category of complexes over A,

in which morphisms are chain maps, is denoted by C (A), and the corresponding homotopy category is denoted
by K (A). When A is an abelian category, we write D(A) for the derived category of A. We also write K b(A),
K −(A) and K +(A) for the full subcategories of K (A) consisting of complexes isomorphic to bounded
complexes, complexes bounded above, and complexes bounded below, respectively. Similarly, for ∗ ∈ {b,−,+},
we have D∗(A). Moreover, for integers m ≤ n and for a collection of objects X , we write D [m,n](X ) for the full
subcategory of D(A) consisting of complexes X• isomorphic in D(A) to complexes with terms in X of the form

0 −→ Xm −→ · · · −→ Xn −→ 0.

For each complex X• over A, its i th cohomology is denoted by Hi (X•).
The homotopy category of an additive category, and the derived category of an abelian category are both

triangulated categories. For basic facts on triangulated categories, we refer to Neeman’s book [9]. However, the
shift functor of a triangulated category will be denoted by [1] in this paper. In the homotopy category, or the
derived category of an abelian category, the shift functor acts on a complex by moving the complex to the left by
one degree, and changing the sign of the differentials.

Suppose that A is an abelian category. There is a full embedding A ↪→ D(A) by viewing an object in A as
a stalk complex in D(A) concentrated in degree zero. Let X be a collection of objects in D(A) and let n be an
integer. We define a full subcategory of D(A):
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⊥>n X := {
Z• ∈ D(A) | HomD(A)(Z•, X•[i ]) = 0 for all i > n and for all X• ∈ X

}
,

For simplicity, we write ⊥X for ⊥>0X .
Suppose that A is an abelian category with enough projective objects. Let PA be the full subcategory of A

consisting of all projective objects. The stable category of A, denoted by A, is defined to be the additive quotient
A/PA, where the objects are the same as those in A and the morphism space HomA(X, Y ) is the quotient space of
HomA(X, Y ) modulo all morphisms factorizing through projective objects. Two objects X and Y are isomorphic
in A if and only if there are projective objects P and Q such that X ⊕ Q 	 Y ⊕ P in A. This seems not so
obvious. Indeed, first of all, it is easy to check that the injection X → X ⊕ Q is an isomorphism in A. So,
if X ⊕ Q 	 Y ⊕ P in A with P, Q projective, then X and Y are isomorphic in A. Conversely, suppose that
f : X → Y is a morphism in A such that its image f : X → Y in HomA(X, Y ) is an isomorphism. Then there
is a morphism g : Y → X such that 1X − f g factorizes through some projective object P . Namely, there exist
morphisms α : X → P and β : P → X such that 1X = f g + αβ. Then we can form a split exact sequence

0 −→ X
[ f,α]−→ Y ⊕ P

[ u
v ]−→ Q −→ 0.

It follows that f u = −αv factorizes through the projective object P . This implies that f u = 0. However, the
morphism f is an isomorphism. Hence u = 0, and therefore u factorizes through a projective object P ′, say, u = ab

for some morphisms a : Y → P ′ and b : P ′ → Q. Thus
[ u

v

]
factorizes through the morphism P ′ ⊕ P

[ b
v ]−→ Q.

The above split exact sequence indicates that 1Q factorizes through
[ u

v

]
, and consequently factorizes through[ b

v

]
. Hence Q is isomorphic to a direct summand of P ′ ⊕ P and has to be projective. This establishes that

X ⊕ Q 	 Y ⊕ P with P, Q projective.
Let A be an arbitrary ring with identity. The category A-Mod of unitary left A-modules is an abelian category

with enough projective objects. We use A-mod to denote the full subcategory of A-Mod consisting of finitely
presented A-modules, that is, A-modules X admitting a projective presentation P1 → P0 −→ X → 0 with Pi

finitely generated projective for i = 0, 1. The category A-mod is abelian when A is left coherent. The full
subcategory of A-Mod consisting of all projective modules is denoted by A-Proj, and the category of finitely
generated projective A-modules is written as A-proj. Note that A-proj are precisely those projective modules in
A-mod. The stable category of A-Mod is denoted by A-Mod, in which morphism space is denoted by HomA(X, Y )
for each pair of A-modules X and Y . For a full subcategory X of A-Mod, we denote by X the full subcategory of
A-Mod consisting of all modules in X . However, the full subcategory of A-Mod consisting of finitely presented
modules is denoted by A-mod

Two rings A and B are said to be derived equivalent if the following equivalent conditions are satisfied.

(1). D (A-Mod) and D (B-Mod) are equivalent as triangulated categories.
(2). Db (A-Mod) and Db (B-Mod) are equivalent as triangulated categories.
(3). K b (A-Proj) and K b (B-Proj) are equivalent as triangulated categories.
(4). K b (A-proj) and K b (B-proj) are equivalent as triangulated categories.
(5). There is a complex T • in K b (A-proj) satisfying the conditions:

(a). HomK b( A-proj)(T •, T •[n]) = 0 for all n �= 0,
(b). add(T •) generates K b (A-proj) as a triangulated category, such that the endomorphism algebra of

T • in K b (A-proj) is isomorphic to B.

For the proof that the above conditions are indeed equivalent, we refer to [7], [12]. If the algebras A and B are
left coherent, then the above equivalent conditions are further equivalent to the following condition.

(6). Db (A-mod) and Db (B-mod) are equivalent as triangulated categories.

A complex T • satisfying the conditions (a) and (b) above is called a tilting complex. A triangle equivalence functor
F : Db (A-Mod) → Db (B-Mod) is called a derived equivalence. In this case, the image F(A) is isomorphic in
Db (B-Mod) to a tilting complex, and there is a tilting complex T • over A such that F(T •) is isomorphic to B in
Db (B-Mod). The complex T • is called an associated tilting complex of F . The following is an easy lemma for
the associated tilting complexes. For the convenience of the reader, we provide a proof.
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Lemma 2.1 Let A and B be two rings, and let F : Db (A-Mod) −→ Db (B-Mod) be a derived equivalence.
Then F(A) is isomorphic in Db (B-mod) to a complex T̄ • ∈ K b (B-proj) of the form

0 −→ T̄ 0 −→ T̄ 1 −→ · · · −→ T̄ n −→ 0

for some n ≥ 0 if and only if F−1(B) is isomorphic in Db (A-Mod) to a complex T • ∈ K b (A-proj) of the form

0 −→ T −n −→ · · · −→ T −1 −→ T 0 −→ 0.

P r o o f . We prove the necessity, the proof of the sufficiency is similar. Suppose that F(A) is isomorphic to
a complex T̄ • in K b (B-proj) of the form

0 −→ T̄ 0 −→ T̄ 1 −→ · · · −→ T̄ n −→ 0,

and T • is a complex in K b (A-proj) such that F(T •) 	 B. Then

HomDb( A-Mod)(A, T •[i ]) 	 HomDb(B-Mod)
(
T̄ •, B[i ]

) = 0

for all i > 0. Hence T • has zero homology in all positive degrees. Since all the terms of T • are projective, the
complex T • is split in all positive degrees, and is isomorphic in K b (A-proj) to a complex with zero terms in all
positive degrees. Thus, we can assume that T i = 0 for all i > 0. To prove that T • is isomorphic to a complex in
K b (A-proj) with zero terms in all degrees < −n, it suffices to show that HomDb( A-Mod)(T •, P[i ]) = 0 for all
i > n and for all finitely generated projective A-module P . Actually, since F(P) is in add(T̄ •), we can deduce
that

HomDb( A-Mod)(T •, P[i ]) 	 HomDb(B-Mod)(B, F(P)[i ]) = 0

for all i > n. �

3 Homomorphism spaces invariant from K (A) to D (A)

Let A be an abelian category, let q : K (A) −→ D (A) be the localization functor. The morphisms in the derived
category are “complicated”, while the morphisms in the homotopy category are relatively “simple”: they can be
presented by chain maps. It is very natural to ask the following question:

For which complexes X• and Y •, the induced map

q(X•,Y •) : HomK (A)(X•, Y •) −→ HomD(A)(X•, Y •)

is an isomorphism?
It is known that this is true in case that X• is an above-bounded complex of projective objects, or Y • is a below-
bounded complex of injective objects. In this section, we shall prove the following very useful proposition, which
allows us to get morphisms between objects from morphisms between complexes in the derived category. It seems
that this has not appeared elsewhere in the literature.

Proposition 3.1 Let A be an abelian category, and let X• and Y • be above-bounded and below-bounded
complexes of objects in A, respectively. Suppose that Xi ∈ ⊥Y j for all integers j < i . Then the induced map

q(X•,Y •[n]) : HomK (A)(X•, Y •[n]) −→ HomD(A)(X•, Y •[n])

is an isomorphism for all n ≤ 0, and is a monomorphism for n = 1.

This proposition generalizes [5, Lemma 2.2], and its proof will be given after several lemmas.
Let F : T −→ S be a triangle functor between two triangulated categories, and let M ∈ T be an object. We

define U F
M to be the full subcategory of T consisting of objects X satisfying the following two conditions.

(1) F(X,M [i ]) : HomT (X, M [i ]) −→ HomS(F(X), F(M)[i ]) is an isomorphism for all i ≤ 0.
(2) F(X,M [1]) : HomT (X, M [1]) −→ HomS(F(X), F(M)[1]) is monic.

Let T be a triangulated category, and let X and Y be full subcategories of T . We define

X ∗ Y := {Z ∈ T | There is a triangle X → Z → Y → X [1] with X ∈ X and Y ∈ Y }.
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It is well known that “∗” is associative, that is, (X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z ) for any full subcategories X ,Y
and Z of T . So, for full subcategories X1, . . . ,Xn of T , we can simply write X1 ∗ · · · ∗ Xn .

Lemma 3.2 Let F : T → S be a triangle functor between triangulated categories T and S. Then we have
the following.

(1). Suppose that M ∈ T , and Xi ⊆ U F
M for i = 1, . . . , n. Then X1 ∗ · · · ∗ Xn ⊆ U F

M .
(2). Suppose that Mi ∈ T , and X ∈ U F

Mi
for i = 1, . . . , n. Then X ∈ U F

M for all M ∈ {M1} ∗ · · · ∗ {Mn}.

P r o o f . (1). Clearly, we only need to prove the case that n = 2. Let X be an object in X1 ∗ X2. There
is a triangle X1 → X → X2 → X1[1] in T with Xi ∈ Xi for i = 1, 2. For simplicity, we write T (−,−) for
HomT (−,−). Then, for each integer i , we can form a commutative diagram with exact rows.

If i ≤ 0, then, by assumption, the maps F(X1,M [i−1]), F(X2,M [i ]), F(X1,M [i ]) are isomorphisms and F(X2,M [i+1]) is
monic. By Five Lemma, the map F(X,M [i ]) is an isomorphism in this case. Our assumption also indicates that
F(X2,M [1]) and F(X1,M [1]) are monic, and F(X1,M) is an isomorphism. By Five Lemma again, the map F(X,M [1]) is
monic. Hence X ∈ U F

M . The proof of (2) is similar to that of (1). We leave it to the reader. �
Let X and Y be two objects in an abelian category A, and let q : K (A) → D(A) be the localization

functor. Then it is straightforward to check that X [i ] ∈ U q
Y [ j ] for all i ≥ j . If Y ∈ X⊥, then X [i ] ∈ U q

Y [ j ] for all
integers i and j , since q(X,Y [m]) : HomK (A)(X, Y [m]) → HomD(A)(X, Y [m]) is an isomorphism for all integers
m in this case. If Y • is a complex with Y i = 0 for all i < n, then X [i ] ∈ U q

Y • for all i ≥ −n + 2. In this case
HomK (A)(X [i ], Y •[m]) = HomD(A)(X [i ], Y •[m]) = 0 for all m ≤ 1. Keeping these basic facts in mind helps us
to prove the following lemma.

Lemma 3.3 Let A be an abelian category, X be an object in A, and let Y • be a below-bounded complex over
A. Suppose that m ∈ Z and that Y i ∈ X⊥ for all i < m. Then X [i ] ∈ U q

Y • for all i ≥ −m.

P r o o f . For i ≥ m, we have −m ≥ −i , and X [−m] ∈ U q
Y i [−i ] . For each i < m, since Y i ∈ X⊥, we have

X [−m] ∈ U q
Y i [−i ] . It follows that X [−m] ∈ U q

Y i [−i ] for all i ∈ Z. Note that there is some integer n < m such that

Y i = 0 for all i < n, since Y • is bounded below. Then σ≤m+1Y • is in
{
Y m+1[−m − 1]

} ∗ · · · ∗ {
Y n[−n]

}
. By

Lemma 3.2 (2), we get that X [−m] ∈ U q
σ≤m+1Y • . Now it is clear that

HomK (A)
(
X [−m], (σ>m+1Y •)[i ]

) = 0 = HomD(A)
(
X [−m], (σ>m+1Y •)[i ]

)
for all i ≤ 1. Hence q(X [−m],(σ>m+1Y •)[i ]) is an isomorphism for all i ≤ 1. This establishes X [−m] ∈ U q

σ>m+1Y • . Since
Y • is in {σ>m+1Y •} ∗ {σ≤m+1Y •}, we deduce that X [−m] ∈ U q

Y • by Lemma 3.2 (2). Finally, by definition, we have
U q

Y • [1] ⊆ U q
Y • . Hence X [i ] ∈ U q

Y • for all i ≥ −m. �
With the above lemmas, we can give a proof of Proposition 3.1.

P r o o f o f P r o p o s i t i o n 3.1 What we need to prove is exactly X• ∈ U q
Y • . By Lemma 3.3, we have

Xi [−i ] ∈ U q
Y • for all i ∈ Z. Note that there is an integer n such that Xi = 0 for all i > n, since X• is above-

bounded. Thus for each integer m < n, the complex σ≥m X• belongs to
{

Xn[−n]
} ∗ · · · ∗ {

Xm [−m]
}
, and is

consequently in U q
Y • by Lemma 3.2 (1). Taking m to be sufficiently small such that Y j = 0 for all j < m + 1. Then

for each integer i ≤ 1, both HomK (A)(σ<m X•, Y •[i ]) and HomD(A)(σ<m X•, Y •[i ]) vanish. Hence q(σ<m X•,Y •[i ])
is an isomorphism for all i ≤ 1, and consequently σ<m X• ∈ U q

Y • . Note that X• ∈ {σ≥m X•} ∗ {σ<m X•}. It follows,
by Lemma 3.2 (1) again, that X• ∈ U q

Y • . �
Proposition 3.1 has the following useful corollary.

Corollary 3.4 Let A be an abelian category, and let f : X → Y be a homomorphism in A. Suppose that Z•

is a bounded complex over A such that Z i ∈ X⊥ for all i < 0 and that Zi ∈ ⊥Y for all i > 0. If f factorizes
through Z• in Db(A), then f factorizes through Z0 in A.
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P r o o f . Suppose that f = gh for g ∈ HomDb(A)(X, Z•) and h ∈ HomDb(A)(Z•, Y ). By Proposition 3.1, both
g and h can be presented by a chain map. Namely, g = g• and h = h• in Db(A) for some chain maps g• : X → Z•

and h• : Z• → Y . Hence f = g•h• = g0h0 in Db(A), and consequently f = g0h0 since A ↪→ Db(A) is a fully
faithful embedding. �

4 The stable functor of a nonnegative functor

The stable functor of a derived equivalence between Artin algebras was introduced in [5]. In this section, we
greatly generalize this notion. Namely, we consider “nonnegative functors” between derived categories of abelian
categories with enough projective objects, and develop a theory of their stable functors.

Throughout this section, we assume that A and B are abelian categories with enough projective objects. The
full subcategories of projective objects are denoted by PA and PB, respectively. The corresponding stable categories
are denoted by A and B, respectively.

4.1 Nonnegative functors

Definition 4.1 A triangle functor F : Db(A) → Db (B) is called uniformly bounded if there are integers r < s
such that F(X) ∈ D [r,s] (B) for all X ∈ A, and is called nonnegative if F satisfies the following conditions:

(1) F(X) is isomorphic to a complex with zero homology in all negative degrees for all X ∈ A.
(2) F(P) is isomorphic to a complex in K b (PB) with zero terms in all negative degrees for all P ∈ PA.

Remark. The condition (1) is equivalent to saying that F sends objects in the part D≥0(A) of the canon-
ical t-structure

(
D≤0(A) ,D≥0(A)

)
of Db(A) to objects in the part D≥0 (B) of the canonical t-structure(

D≤0 (B) ,D≥0 (B)
)

of Db (B). The condition (2) indicates that F sends complexes in K b (PA) to complexes in
K b (PB).

For derived equivalences between module categories of rings, we have the following lemma.

Lemma 4.2 Let F : Db (A-Mod) → Db (B-Mod) be a derived equivalence between two rings A and B. Then

(1) F is uniformly bounded.
(2) F is nonnegative if and only if the tilting complex associated to F is isomorphic in K b (A-proj) to a

complex with zero terms in all positive degrees. In particular, F [i ] is nonnegative for sufficiently small i .

P r o o f . Let T • be a tilting complex associated to F , that is, F(T •) 	 B. Since T • is a bounded complex,
there are integers r < s such that T i = 0 for all i < r and for all i > s. Let X be an A-module. There is an
isomorphism

Hi (F(X)) = HomDb(B-Mod)(B, F(X)[i ]) 	 HomDb( A-Mod)(T •, X [i ])

for each integer i . It follows that Hi (F(X)) = 0 for all i > −r and for all i < −s, that is, F(X) ∈
D [−s,−r ] (B-Mod). This proves that F is uniformly bounded.

By [12, Proposition 6.2], the derived equivalence F induces a triangle equivalence functor between
K b (A-Proj) and K b (B-Proj). Suppose that the tilting complex T • associated to F has T i = 0 for all i > 0.
By Lemma 2.1, the image F(A) is isomorphic to a complex T̄ • ∈ K [0,n] (B-proj) for some nonnegative in-
teger n. As an equivalence, the functor F preserves coproducts. Hence F(

∐
A) ∈ K [0,n] (B-Proj), and con-

sequently F(A-Proj) ⊆ K [0,n] (B-Proj). Finally, for each A-module X , we have HomDb(B-Mod)(B, F(X)[i ]) 	
HomDb( A-Mod)(T •, X [i ]) = 0 for all i < 0. This implies that Hi (F(X)) = 0 for all i < 0 and thus F(X) ∈
D≥0 (B-Mod). Hence F is a nonnegative functor.

Conversely, suppose that F is a nonnegative derived equivalence. Then F(A) is isomorphic to a bounded
complex Q• in K ≥0 (B-Proj). Let T • be a tilting complex associated to F , that is, F(T •) 	 B. Then

HomDb( A-Mod)(A, T •[i ]) 	 HomDb(B-Mod)(F(A), B[i ]) = 0
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for all positive i . Hence T • has zero homology in all positive degrees. This shows that T • is split in all positive
degrees and thus isomorphic to a complex in K b (A-proj) with zero terms in all positive degrees. �

In general, both statements in Lemma 4.2 may fail for a triangle functor F : Db(A) → Db (B) between the
derived categories of abelian categories A and B, even if F is a derived equivalence. For instance, let A and B be
the categories of finitely generated graded modules over the polynomial algebra k[x0, x1, . . . , xn] and the exterior
algebra

∧
k(e0, e1, . . . , en), respectively. Then there is a triangle equivalence F : Db(A) → Db (B), known as

Koszul duality, such that F(X〈i〉) 	 F(X)〈−i〉[i ] for all X ∈ Db(A) and for all i ∈ Z, where 〈i〉 is the degree
shifting functor of graded modules. The functor F is not uniformly bounded and F [i ] cannot be nonnegative for
any i ∈ Z. Also the two notions in Definition 4.1 are independent. Clearly, a uniformly bounded triangle functor F
needs not to be nonnegative. The following example gives a nonnegative functor which is not uniformly bounded.

Example 4.3 Let k be a field, and let Q be the infinite quiver

A representation of Q over k is a collection of vector spaces Vi for each vertex i together with linear maps
fαi : Vi → Vi−1 for all i . Let A be the category of all finite dimensional representations (Vi , fαi +1)i≥0 of Q
satisfying fαi fαi−1 = 0 for all i > 0. Let P0 be the representation k ←− 0 ←− 0 ←− · · · , and, for each i > 0, let Pi

be the representation 0 ←− · · · ←− k
1←− k ←− 0 ←− · · · , where the two k’s correspond to the vertices i − 1, i .

Then A is an abelian category with enough projective objects and Pi , i ≥ 0, are precisely those indecomposable
projective objects in A. Consider the following complexes over A:

T •
i : 0 −→ P0 −→ · · · −→ Pi−1 −→ Pi −→ 0, i ≥ 0.

It is easy to check that
{
T •

i | i ≥ 0
}

is a tilting subcategory of Db(A), that is, the following two conditions are
satisfied.

a) HomDb(A)
(
T •

i , T •
j [l]

) = 0 for all i, j ∈ N and l �= 0;
b) thick

{
T •

i | i ≥ 0
} = Db(A).

The tilting subcategory
{
T •

i | i ≥ 0
}

is equivalent as a category to the quiver QT :

For each i ≥ 0, let P∗
i be the representation 0 −→ · · · −→ 0 −→ k

1−→ k
1−→ k −→ · · · , where the first k

corresponds to the vertex i . Let B be the category of finitely generated representations of QT over k. Then B is an
abelian category with enough projective objects, and the indecomposable projective objects are P∗

i , i ∈ N. Note
that gl.dimB = 1 and Db (B) = K b (PB). By [8, Theorem 3.6], there is a triangle equivalence F : Db (B) −→
Db(A) sending P∗

i to T •
i for all i ∈ N. This functor is nonnegative, but not uniformly bounded.

Lemma 4.4 Let A and B be abelian categories with enough projective objects, and let F : Db(A) → Db (B)
be a uniformly bounded, nonnegative triangle functor. Suppose that n > 0 is such that F(A) ⊆ D [0,n] (B). Then

(1) If F admits a right adjoint G, then G is uniformly bounded and G(B) ⊆ D [−n,0](A).
(2) If F admits a left adjoint E, then E(PB) ⊆ K [−n,0] (PA).
(3) If G is both a left adjoint and a right adjoint of F, then G[−n] is uniformly bounded and nonnegative.

P r o o f . (1) Let X be an object in B and P be a projective object in A. Then HomDb(A)(P, G(X)[i ]) 	
HomDb(B)(F(P), X [i ]) vanishes for all i �∈ [−n, 0], since our assumption indicates that F(P) is isomorphic to a
complex in K [0,n] (PB). It follows that G(X) ∈ D [−n,0](A) for all X ∈ B.

(2) Let Q ∈ PB and let X be an object in A. Then HomDb(A)(E(Q), X [i ]) 	 HomDb(B)(Q, F(X)[i ]) vanishes
for all i �∈ [0, n]. This implies that E(Q) ∈ K [−n,0] (PA).

(3) This follows from (1) and (2) immediately. �
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For the rest of this section, we assume that

F : Db(A) −→ Db (B)

is a nonnegative triangle functor. The following lemma describes the images of objects in A under F .

Lemma 4.5 For each X ∈ A, there is a triangle

U •
X

iX−→ F(X)
πX−→ MX

μX−→ U •
X [1]

in Db (B) with MX ∈ B and U •
X ∈ D [1,nX ] (PB) for some nX > 0.

P r o o f . By definition, F(X) has no homology in negative degrees. Take a projective resolution of F(X)
and then do good truncation at degree zero. The lemma follows. �

Lemma 4.6 Suppose that U •
i

αi−→ X•
i

βi−→ Mi
γi−→ U •

i [1], i = 1, 2, are triangles in Db (B) such that M1, M2

are objects in B and U •
1 , U •

2 ∈ D [1,n] (PB). Then, for each morphism f : X•
1 −→ X•

2 in Db (B), there is morphism
b : M1 → M2 in B and a morphism a : U •

1 → U •
2 in Db (B) such that the diagram

is commutative. Moreover, if f is an isomorphism in Db (B), then b is an isomorphism in B.

P r o o f . The morphisms a and b exist because α1 fβ2 must be zero, since

HomDb(B)(U •
1 , M2) 	 HomK b(B)(U •

1 , M2) = 0.

Now assume that f is an isomorphism in Db (B). Namely, there is a morphism g : X•
2 → X•

1 in Db (B) such that
f g = 1X•

1
and g f = 1X•

2
. By the above discussion, there is a morphism c : M2 → M1 such that β2c = gβ1. Then

β1 − β1bc = β1 − fβ2c = β1 − f gβ1 = 0,

and 1M1 − bc factorizes through U •
1 [1]. It follows that 1M1 − bc factorizes through the projective object U 1

1 by
Corollary 3.4. Hence bc = 1M1 is the identity map of M1 in B. Similarly we have cb = 1M2 , and therefore
b : M1 → M2 is an isomorphism in B. �

4.2 The definition of the stable functor

Keeping the notation above, we can define a functor F̄ : A −→ B as follows. For each X ∈ A, we fix a triangle

ξX : U •
X

iX−→ F(X)
πX−→ MX

μX−→ U •
X [1]

in Db(B) with MX ∈ B, and U •
X a complex in D [1,nX ] (PB) for some nX > 0. The existence is guaranteed by

Lemma 4.5. For each morphism f : X → Y in A, by Lemma 4.6, we can form a commutative diagram in Db(B):

If b′
f is another morphism such that πX b′

f = F( f )πY , then πX (b f − b′
f ) = 0, and b f − b′

f factorizes through
U •

X [1]. By Corollary 3.4, the map b f − b′
f factorizes through U 1

X which is projective. Hence the morphism
b f ∈ B(MX , MY ) is uniquely determined by f . Moreover, suppose that f factorizes through a projective object P
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in A, say f = gh for g : X → P and h : P → Y . Then πX (b f − bgbh) = F( f )πY − F(g)πP bh = F( f )πY −
F(g)F(h)πY = 0. Hence b f − bgbh factorizes through U •

X [1], and factorizes through U 1
X by Corollary 3.4. Thus

b f factorizes through P ⊕ U 1
X which is projective. Hence b f = 0. Thus, we get a well-defined map

φ : HomA(X, Y ) −→ HomB(MX , MY ), f �−→ b f .

It is easy to say that φ is functorial in X and Y . Defining F̄(X) := MX for each X ∈ A and F̄( f ) := φ( f ) for
each morphism f in A, we get a functor

F̄ : A −→ B
which is called the stable functor of F .

Example 4.7 (a). If k is a field, and if F = �• L⊗A − is a standard derived equivalence given by a two-sided
tilting complex �• of B-A-bimodules. Assume that �• has no homology in negative degrees. Take a projective
resolution of �• and do a good truncation at degree zero. Then �• is isomorphic in Db (B ⊗k Aop) to a complex
of the form

0 −→ M −→ P1 −→ · · · −→ Pn −→ 0

with Pi projective for all i > 0. By [13, Proposition 3.1], this complex is a one-sided tilting complex on both
sides. It follows that B MA is projective as one-sided modules, and F(X) is isomorphic to 0 −→ M ⊗A X −→
P1 ⊗A X −→ · · · −→ Pn ⊗A X −→ 0 with Pi ⊗A X projective for all i > 0. In this case, the stable functor F̄
of F is induced by the exact functor B M ⊗A − : A-Mod −→ B-Mod.

(b). Let A be an abelian category with enough projective objects, and let n be a nonnegative integer. The nth
syzygy functor �n

A : A −→ A is a stable functor of the derived equivalence [−n] : Db(A) −→ Db(A).

Proposition 4.8 The following diagram is commutative up to isomorphism.

P r o o f . In the proof, the canonical functors “can” in Proposition 4.8 will be denoted by L . For each
X ∈ A, the morphism πX : F(X) → F̄(X) in Db(B) can be viewed as a morphism πX : F ◦ L(X) → L ◦ F̄(X)
in Db(B) /K b (PB). We claim that this gives a natural isomorphism from F ◦ L to L ◦ F̄ . Since U •

X in the
triangle ξX is a complex in K b (PB), the morphism πX is an isomorphism in Db(B) /K b (PB). Moreover, for each
morphism f : X → Y in A, one can check from the definition of F̄ that there is a commutative diagram

This finishes the proof. �

4.3 Uniqueness of the stable functor

From the definition of the stable functor, it is unclear that whether the stable functor is independent of the choices
of the triangles ξX . In this subsection, we shall solve this problem. Actually, we will show that isomorphic
nonnegative functors have isomorphic stable functors.

We keep the notations in the previous subsection. For each object X ∈ A, suppose that we choose and fix
another triangle

ξ ′
X : U ′

X
• i ′

X−→ F(X)
π ′

X→ M ′
X

μ′
X−→ U ′

X
•[1]
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in Db(B) with M ′
X ∈ B and U ′

X
• a complex in D [1,n′

X ] (PB) for some n′
X > 0. Let F̄ ′ : A −→ B be the functor

defined by using the triangles ξ ′
X ’s. That is, F̄ ′(X) = M ′

X for each X ∈ A, and F̄ ′( f ) = b′
f for momorphism

f : X → Y in A, where b′
f : M ′

X → M ′
Y is a morphism in B such that π ′

X b′
f = F( f )π ′

Y .

Theorem 4.9 The functors F̄ and F̄ ′ are isomorphic.

P r o o f . For each X ∈ A, by Lemma 4.6, we can form a commutative diagram

in Db(B) such that ηX is an isomorphism in B. Now, for each morphism f : X → Y in A, we have

πX b f ηY = F( f )πY ηY

= F( f )π ′
Y

= π ′
X b′

f

= πXηX b′
f .

Hence πX
(
ηX b′

f − b f ηY
) = 0, and ηX b′

f − b f ηY factorizes through U •
X [1]. It follows that ηX b′

f − b f ηY factorizes
through the projective object U 1

X by Corollarly 3.4. This shows that ηX b′
f − b f ηY = 0, that is,

ηX F̄ ′( f ) = F̄( f )ηY .

Thus, we get a natural transformation η : F̄ → F̄ ′ with η
X

:= ηX for all X ∈ A. Since we have shown that ηX is
an isomorphism for all X ∈ A, it follows that η : F̄ −→ F̄ ′ is an isomorphism of functors. �

The above theorem shows that, up to isomorphism, the stable functor F̄ is independent of the choices of the
triangles ξX ’s, and is uniquely determined by F . Actually, we can further prove the following proposition.

Proposition 4.10 Let F1, F2 : Db(A) −→ Db(B) be two isomorphic nonnegative triangle functors. Then their
stable functors F̄1 and F̄2 are isomorphic.

P r o o f . The proof is almost identical to that of Theorem 4.9. In fact, let ε : F1 → F2 be an isomorphism.
Then, for each X ∈ A, the isomorphism εX : F1(X) → F2(X) induces an isomorphism ηX : F̄1(X) → F̄2(X) in
B by Lemma 4.6. As we have done in the proof of Theorem 4.9, one can check that ηX is functorial in X and
gives rise to an isomorphism between F̄1 and F̄2. �

4.4 The composition of stable functors

Suppose that A,B and C are abelian categories with enough projective objects. Let F : Db(A) → Db(B) and
G : Db(B) → Db (C) be nonnegative triangle functors. It is easy to see that G F is also nonnegative. The
relationship among the stable functors of F, G and G F is the following theorem.

Theorem 4.11 The functors Ḡ ◦ F̄ and G F are isomorphic.

P r o o f . For each X ∈ A, there are two triangles

U •
X

iX−→ F(X)
πX−→ F̄(X)

μX−→ U •
X [1],

V •
X

jX−→ G(F̄(X))
pX−→ Ḡ F̄(X)

ωX−→ V •
X [1]
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with U •
X ∈ D [1,nX ] (PB) and V •

X ∈ D [1,m X ] (PC). By the octahedral axiom, we can form a commutative diagram

with all rows and columns being triangles in Db (C). Since U •
X is a complex in D [1,nX ] (PB), and G(U i

X ) is
isomorphic to a complex D [0,ti ] (PC) for all i = 1, . . . , nX , it follows, by [4, Lemma 2.1] for example, that G(U •

X )
is isomorphic in Db (C) to a complex in D [1,aX ] (PC) for some aX > 0. Recall that V •

X is a complex in D [1,m X ] (PC).
As a result, the complex W •

X [1], which is the mapping cone of εX , is isomorphic to a complex in D [0,m X +aX −1] (PC).
Hence we can assume that W •

X is a complex in D [1,m X +aX ] (PC). Thus the stable functor of G F can be defined by
fixing, for each X ∈ A, the triangle

W •
X

αX−→ G F(X)
βX−→ Ḡ F̄(X)

γX−→ W •
X [1].

Therefore, for each X ∈ A, we have G F(X) = Ḡ F̄(X).
Let f : X → Y be a morphism in A. By the construction of stable functor, there is a morphism b f : F̄(X) →

F̄(Y ) in B such that πX b f = F( f )πY , and F̄( f ) = b f , and there is a morphism

c f : Ḡ F̄(X) −→ Ḡ F̄(Y )

in C such that βX c f = G F( f )βY and G F( f ) = c f . Also there is a morphism

c′
f : Ḡ F̄(X) −→ Ḡ F̄(Y )

in C such that pX c′
f = G(b f )pY and Ḡ(b f ) = c′

f . Now we have the following

βX
(
c f − c′

f

) = G F( f )βY − G(πX )pX c′
f

= G F( f )βY − G(πX )G(b f )pY

= G F( f )βY − G(πX b f )pY

= G F( f )βY − G(F( f )πY )pY

= G F( f )βY − G F( f )G(πY )pY

= G F( f )βY − G F( f )βY = 0.

Hence c f − c′
f factorizes through W •

X [1], and consequently c f − c′
f factorizes through the projective object W 1

X
by Corollary 3.4. Therefore we have c f = c′

f , and

G F( f ) = c f = c′
f = Ḡ(b f ) = Ḡ F̄( f ).

This shows that, by choosing the triangles carefully, we get Ḡ ◦ F̄ = G F . Since the stable functor is unique up to
isomorphism, we are done. �

An immediate consequence is the following.

Corollary 4.12 Keep the notations above. The functors F̄ ◦ �A 	 �B ◦ F̄ .

P r o o f . Since F ◦ [−1] 	 [−1] ◦ F , the corollary follows from Proposition 4.10 and Theorem 4.11. �
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4.5 Exactness of the stable functor

Although it is hard to say whether the stable functor F̄ is an exact functor or not, the following proposition shows
that the stable functor does have certain “exactness” property.

Proposition 4.13 Keep the notations above. Suppose that 0 → X
f→ Y

g→ Z → 0 is an exact sequence in A.
Then there is an exact sequence

0 −→ F̄(X)
[a,b]−→ F̄(Y ) ⊕ P

[ u
s

v

t ]−→ F̄(Z) ⊕ Q −→ 0

in B for some projective objects P and Q such that F̄( f ) = a and F̄(g) = u.

P r o o f . For each X ∈ A, since F is a nonnegative functor, we may assume that F(X) is a complex
P•

X ∈ D [0,nX ](B) with P0
X = F̄(X) and Pi

X ∈ PB for all i > 0.

From the exact sequence 0 → X
f→ Y

g→ Z → 0 in A, we get a triangle in Db(A):

X
f−→ Y

g−→ Z
h−→ X [1].

Applying the functor F results in a triangle in Db(B):

P•
X

F( f )−→ P•
Y

F(g)−→ P•
Z

F(h)−→ P•
X [1].

By Proposition 3.1, the morphisms F( f ) and F(g) are induced by chain maps p• and q•, respectively. That is,
F( f ) = p• and F(g) = q•. There is a commutative diagram in Db(B):

for some isomorphism r , where π• = (π i ) with π i : Pi
Y ⊕ Pi−1

Z → Pi
Y the canonical projection for each integer

i . By Proposition 3.1, the morphism r is induced by a chain map r•. Then cone(r•) is of the form

where r1 = [x, y] : P1
X → P1

Y ⊕ P0
Z and Pi

X , Pi
Y and Pi

Z are projective for i ≥ 1. Since r = r• is an isomorphism
in Db(A), the mapping cone con(r•) is an acyclic complex. Thus dropping the split direct summands of con(r•),
we get an exact sequence

where Q = P2
X ⊕ P1

Y and V is a projective object in B. Let [ε, χ ] : V −→ Q ⊕ P0
Z be such that [ε, χ ]

[
δ

η

]
= 1V .

We claim that the sequence

is exact. It suffices to prove that the sequence is exact at the middle term. Clearly
[
0,−d, r0

][ ε χ

α β

γ q0

]
= 0.

If [x1, x2, x3] is a morphism from an object U to V ⊕ P1
X ⊕ P0

Y such that [x1, x2, x3]
[

ε χ

α β

γ q0

]
= 0, then

x1 = [x1, x2, x3]
[

ε χ

α β

γ q0

] [
δ

η

]
= 0, and consequently [x2, x3]

[
α

γ

β

q0

]
= 0. Thus [x2, x3] factorizes uniquely through
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[ − d, r0
]

by exactness, and [x1, x2, x3] = [0, x2, x3] factorizes through
[
0,−d, r0

]
. Setting P = V ⊕ P1

X , a =
r0, b = [0,−d], u = q0, v = γ, s = [

χ

β

]
and t = [

ε

α

]
, we get the desired exact seuqence. �

5 Gorenstein projective objects under the stable functor

Let A be an abelian category with enough projective objects, and let PA be the full subcategory of A consisting of
all projective objects. An object X ∈ A is called Gorenstein projective if there is an exact sequence P•:

· · · −→ P−1 d−1−→ P0 d0−→ P1 d1−→ · · ·
in C (PA) such that Hom•

A(P•, Q) is exact for all Q ∈ PA and X 	 Im d0. We denote by A-GP the full subcategory
consisting of all Gorenstein projective objects. Then A-GP is a Frobenius category with projective (=injective)
objects being the projective objects inA. The stable category A-GP is a triangulated category with shifting functor
�−1

A . The following lemma is an alternative description of Gorenstein projective objects.

Lemma 5.1 Let A be an abelian category with enough projective objects. Then an object X ∈ A is Gorenstein
projective if and only if there are short exact sequences

0 −→ Xi −→ Pi+1 −→ Xi+1 −→ 0

in A with Pi projective and Xi ∈ ⊥PA for i ∈ Z such that X0 = X.

The following proposition shows that the stable functor of certain nonnegative functor preserves Gorenstein
projective modules.

Proposition 5.2 Let A and B be two abelian categories with enough projective objects. Suppose that F :
Db(A) −→ Db(B) is a nonnegative triangle functor admitting a right adjoint G with G(Q) ∈ K b (PA) for all
Q ∈ PB. Let m be a nonnegative integer. Then we have the following.

(1). If X ∈ ⊥>mPA, then F̄(X) ∈ ⊥>mPB.
(2). If X ∈ A-GP, then F̄(X) ∈ B-GP.

P r o o f . For each Q ∈ PB, by assumption G(Q) ∈ K b (PA). We claim that G(Q) is isomorphic to a complex
in K b (PA) with zero terms in all positive degrees. This is equivalent to saying that HomDb(A)(P, G(Q)[i ]) = 0
for all P ∈ PA and all i > 0. However, this follows from the isomorphism

HomDb(A)(P, G(Q)[i ]) 	 HomDb(B)(F(P), Q[i ])

and the assumption that F is nonnegative.
(1). Suppose that X ∈ ⊥>mPA. Then PA ⊆ X⊥>m . It is clear that X⊥>m is closed under the shift functor [1] and

extensions. It follows that each bounded complex in K b (PA), which has zero terms in all positive degrees, are in
X⊥>m . In particular, G(Q) ∈ X⊥>m for all Q ∈ PB. By the definition of the stable functor F̄ , there is a triangle

U •
X

iX−→ F(X)
πX−→ F̄(X)

μX−→ U •
X [1]

in Db(B) with U •
X ∈ D [1,n] (PB) for some n > 0. Let Q ∈ PB, and let i be a positive integer. We have

HomDb(B) (U •
X [1], Q[i ]) = 0 = HomDb(B) (U •

X , Q[i ]) .

Applying HomDb(B)(−, Q[i ]) to the above triangle results in an isomorphism

HomDb(B)
(
F̄(X), Q[i ]

) 	 HomDb(B)(F(X), Q[i ]).

The latter is further isomorphic to HomDb(A)(X, G(Q)[i ]), which vanishes for i > m. Hence F̄(X) ∈ ⊥>mPB.
(2). Suppose that X is Gorenstein projective. By Lemma 5.1, there are short exact sequences

0 −→ Xi−1 −→ Pi −→ Xi −→ 0, i ∈ Z,

with Pi projective and Xi ∈ ⊥PA for all i such that X0 = X . It follows from Proposition 4.13 that there exist short
exact sequences

0 −→ F̄(Xi−1) −→ Qi −→ F̄(Xi ) −→ 0, i ∈ Z,

C© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mn-journal.com



Math. Nachr. 290, No. 10 (2017) / www.mn-journal.com 1525

in B with Qi projective for all i . Moreover, the objects F̄(Xi ), i ∈ Z, are all in ⊥PB by (1). Hence, by Lemma 5.1,
the object F̄(X) is Gorenstein projective. �

It is well-known that, for an abelian category A with enough projective objects, there is a triangle embedding
A-GP ↪→ Db(A) /K b (PA) induced by the canonical embedding A ↪→ Db(A). One may ask whether the stable
functor is compatible with this embedding. The following theorem provides an affirmative answer.

Theorem 5.3 Let A and B be abelian categories with enough projective objects, and let F : Db(A) → Db(B)
be a triangle functor. Then we have the following.

(1). If F is nonnegative and admits a right adjoint G with G(Q) ∈ K b (PA) for all Q ∈ PB, then there is a
commutative diagram (up to natural isomorphism) of triangle functors.

(2) If F is a uniformly bounded nonnegative equivalence, then the functor F̄ : A-GP −→ B-GP in the above
diagram is a triangle equivalence.

P r o o f . The commutative diagram follows from Proposition 4.8 and Proposition 5.2. It follows from
Corollary 4.12 and Proposition 4.13 that F̄ : A-GP −→ B-GP is a triangle functor.

(2) Let G be a quasi-inverse of F . Then G is both a left adjoint and a right adjoint of F . By Lemma 4.4, there
exists some integer n > 0 such that G[−n] is nonnegative. Note that F [n] is a right adjoint of G[−n], and sends
projective objects in A to complexes in K b (PB). By (1), the stable functor G[−n] of G[−n] induces a triangle
functor from B-GP to A-GP . Thus, by Proposition 4.10 and Theorem 4.11, we have isomorphisms of functors

F̄ ◦ G[−n] 	 F ◦ G[−n] 	 [−n] 	 �n
B and G[−n] ◦ F̄ 	 G[−n] ◦ F 	 [−n] 	 �n

A.

Note that �A and �B induce auto-equivalences of A-GP and B-GP , respectively. It follows that F̄ : A-GP →
B-GP is an equivalence. �

As an immediate consequence of Theorem 5.3, derived equivalences between left Noetherian rings preserve
the Gorenstein defect categories which is defined, for each left Noetherian ring R, to be the Verdier quotient of
the singularity category Db (R-mod) /K b (R-proj) with respect to the subcategory R-fGP (see [2]).

Let F : Db (A-Mod) → Db (B-Mod) be a derived equivalence between two rings such that the tilting complex
associated to F has zero terms in all positive degrees. By Lemma 4.2, the functor F satisfies the assumption of
Theorem 5.3 (2). Thus, we have the following corollary.

Corollary 5.4 Let A and B be rings, and let F : Db (A-Mod) −→ Db (B-Mod) be a nonnegative derived
equivalence. Then F̄ : A-GP −→ B-GP is a triangle equivalence.

For a given derived equivalence functor F between two rings, by Lemma 4.2, F [m] is nonnegative when m is
sufficiently small. The following corollary is then clear.

Corollary 5.5 Let A and B be derived equivalent rings. Then A-GP and B-GP are triangle equivalent.

Recall that a ring A is called left coherent provided that the category A-mod of left finitely presented A-modules
is an abelian category. In this case, the finitely generated Gorenstein projective A-modules coincide with those
Gorenstein projective modules in A-mod. By A-fGP we denote the category of finitely generated Gorenstein
projective A-modules, and by A-fGP we denote its stable category.

By Rickard’s result in [12]. For left coherent rings A and B,Db (A-mod) and Db (B-mod) are triangle
equivalent if and only if Db (A-Mod) and Db (B-Mod) are triangle equivalent, and every triangle equivalence
between Db (A-Mod) and Db (B-Mod) restricts to a triangle equivalence between Db (A-mod) and Db (B-mod).
Thus, we obtain the following corollary.

Corollary 5.6 Let A and B be left coherent rings, and let F : Db (A-mod) → Db (B-mod) be a nonnegative
derived equivalence. Then F̄ : A-fGP → B-fGP are triangle equivalence. Particularly, the stable categories
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of finitely generated Gorenstein projective modules of two derived equivalent coherent rings are triangle
equivalent.

Remark 5.7 This generalizes a result of Kato [6], where it was proved that standard derived equivalences
between two left and right coherent rings induce triangle equivalences between stable categories of finitely
generated Gorenstein projective modules. The approach of Kato uses extensively the property of two-sided tilting
complexes, while the approach here is very different: we do not assume that the derived equivalences are standard,
and our approach works for all left (not necessarily right) coherent rings, and we get an explicit triangle equivalence
functor between the stable categories of Gorenstein projective modules.

We can also apply Theorem 5.3 to singular equivalences of Morita type (see [17] for the definition).

Corollary 5.8 Let A and B be finite dimensional indecomposable algebras. Suppose that A and B are
not of finite projective dimension as bimodules and suppose that A/ rad(A) and B/ rad(B) are separable. Let
(A MB, B NA) be a pair of bimodules inducing a singular equivalence of Morita type between A and B. Then
B N ⊗A − and A M ⊗B − induce mutually inverse equivalences between A-fGP and B-fGP.

P r o o f . By definition M and N are projective as one-sided modules, and by [17, Theorem 3.1] the
exact functors B N ⊗A − and A M ⊗B − are left and right adjoint functors to each other. Thus, the functor
B N ⊗A − : Db (A-mod) → Db (B-mod) is clearly a nonnegative functor with right adjoint A M ⊗B −, which
sends projective B-modules to projective A-modules. It follows from Theorem 5.3 (1) that B N ⊗A − induces a
triangle functor TN from A-fGP to B-fGP. Similarly, the functor A M ⊗B − induces a triangle functor TM from
B-fGP to A-fGP. Since A M ⊗B NA 	 A ⊕ U for some A-A-bimodule U of finite projective dimension, and since
AU ⊗A − induces zero functor from A-fGP to itself. It follows that TM ◦ TN 	 id. Dually, we have TN ◦ TM 	 id

�

Finally, let us remark that for singular equivalences of Morita type with level introduced in [15], applying
Theorem 5.3(1) also gives an easy proof of the result [15, Proposition 4.5], which states that a singular equivalence
of Morita type with level given by a pair of bimodules (A MB, B NA) induces a triangle equivalence between
A-fGP and B-fGP provided that HomA(A MB, A) and HomB(B NA, B) are of finite projective dimension as a left
B-module and a left A-module respectively. Note that a singular equivalence of Morita type with level is not a
singular equivalence of Morita type in general!

6 An example

For a finite dimensional algebra �, in general, it is very hard to find all the indecomposable Gorenstein projective
modules in �-fGP. However, if � is derived equivalent to another algebra � for which the Gorenstein projective
modules are known, then the stable functor will be helpful to describe the Gorenstein projective modules in
�-fGP.

Let k be a field, and let k[ε] be the algebra of dual numbers, that is, the quotient algebra of the polynomial
algebra k[x ] modulo the ideal generated by x2. Let A be the k-algebra given by the quiver

with all possible relations βα = 0. Then A is a tilted algebra, and is derived equivalent to the path algebra, denoted
by B, of the following quiver.
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Let � := k[ε] ⊗k A and let � := k[ε] ⊗k B. Then � and � are also derived equivalent. The Gorenstein projective
modules over � have been described by Ringel and Zhang in [14]. They also proved that �-fGP is equivalent to the
orbit category Db (B) /[1]. This means that the indecomposable non-projective Gorenstein projective �-modules
are one-to-one correspondent to the indecomposable B-modules. Then correspondence reads as follows. Let S be
the unique simple k[ε]-module, and let Qi be the indecomposable projective B-module corresponding to the vertex
i for all i . For each i ∈ {0, 1, . . . , 2n + 1}, and 1 ≤ l ≤ 2n + 2 − i , we denote by X(i, l) the indecomposable
B-module with top vertex i and length l. We write M(i, l) for the corresponding Gorenstein projective �-module.
If X(i, l) is projective, that is, i + l = 2n + 2, then M(i, l) = S ⊗ Qi . If X(i, l) is not projective, then there is an
short exact sequence

0 −→ S ⊗ Qi+l −→ M(i, l) −→ S ⊗ Qi −→ 0. (*)

Here we shall use the stable functor of the derived equivalence between � and � to get all the indecomposable
Gorenstein projective modules over �.

For each i ∈ {0, 1, . . . , 2n + 1}, we denote by Pi the indecomposable projective A-module corresponding to
the vertex i . The derived equivalence between A and B is given by the tilting module

n⊕
i=0

(
P2i+1 ⊕ τ−1S2i

)
,

where S2i is the simple A-module corresponding to the vertex 2i . Note that τ−1S2i has a projective resolution

0 −→ P2i −→ P2i+1 −→ τ−1S2i −→ 0.

Thus, we get a derived equivalence F : Db (B) −→ Db (A) such that F(Q2i+1) 	 P2i+1[−1] and F(Q2i ) is

0 −→ P2i −→ P2i+1 −→ 0

with P2i in degree zero for all 0 ≤ i ≤ n. By [13], there is a derived equivalence F ′ : Db (�) → Db (�), which
sends k[ε] ⊗ Q2i+1 to k[ε] ⊗ P2i+1[−1], and sends k[ε] ⊗ Q2i to the complex

0 −→ k[ε] ⊗ P2i −→ k[ε] ⊗ P2i+1 −→ 0

for all 0 ≤ i ≤ n.
For each i ∈ {0, 1, . . . , 2n + 1}, and for each 1 ≤ l ≤ 2n + 2 − i , let N(i, l) be the image of M(i, l) under the

stable functor of F ′. Then it is easy to see that the image N(2i + 1, 2n − 2i + 1) of M(2i + 1, 2n − 2i + 1)(=
S ⊗ Q2i+1) is �(S ⊗ P2i+1), which is isomorphic to S ⊗ P2i+1. The module N(2i, 2n − 2i + 2) fits into the
following pullback diagram

and can be diagrammatically presented as follows

Each vertex of the above diagram corresponds to a basis vector of the module, and the arrow from 2i to 2i
corresponds to the action of ε. The other arrow corresponds to the action of the corresponding arrow in the quiver
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of A. Since the stable functor is a triangle equivalence, we can use the short exact sequence (∗) to get N(i, l) for
1 ≤ l < 2n + 2 − i . The result can be listed as the following table.

In case that n = 1, the algebra A is given by the quiver

The Auslander–Reiten quiver of �-fGP can be drawn as follows.

The modules in the two dashed frames are identified correspondingly.

7 Concluding remarks

Our results can be applied to abelian categories with enough injective objects (e.g. Grothendieck categories). One
just need to consider their opposite categories, which are abelian categories with enough projective objects. Our
results can also be used to give shorter proofs of some known results on homological conjectures, as we shall
explain below.
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In the following, we assume that A and B are derived equivalent left coherent rings, and F : Db (A-mod) →
Db (B-mod) is a derived equivalence. Without loss of generality, we can assume that F is nonnegative and the
tilting complex associated to F has terms only in degrees 0, . . . ,−n. Let G be a quasi-inverse of F . Then G[−n]
is also nonnegative.

Finitistic dimension. The finitistic dimension of a left coherent ring is the supremum of projective dimensions
of finitely presented modules with finite projective dimensions. The finiteness of finitistic dimension is proved to
be preserved under derived equivalences in [11]. With the stable functor, the proof will be very easy. We claim
that |fin.dim(A) − fin.dim(B)| ≤ n, where fin.dim stands for the finitistic dimension. To prove this, it is sufficient
to prove that, for each A-module X , there are inequalities between the projective dimensions of X and F̄(X):

proj. dim B F̄(X) ≤ proj. dim A X ≤ proj. dim B F̄(X) + n.

We first prove the first inequality. Suppose that proj. dim A X = m. Then �m
A(X) 	 0 in A-mod, and consequently

�m
B ◦ F̄(X) 	 F̄ ◦ �m

A(X) 	 0 in B-mod, where the first isomorphism follows from Corollary 4.12. Hence

proj. dim B F̄(X) ≤ m = proj. dim A X.

The proof of the second inequality goes as follows. Suppose that proj. dim B F̄(X) = m. Then we have the
following isomorphisms in A-mod:

�m+n
A (X) 	 [−n − m](X) 	 G[−n] ◦ [−m] ◦ F(X) 	 G[−n] ◦ �m

B ◦ F̄(X) 	 0,

where the third isomorphism follows from Theorem 4.11. This implies that

proj. dim A X ≤ m + n = proj. dim B F̄(X) + n.

Syzygy finiteness. A left coherent ring � is called �m-finite provided that add
(
�m

�(�-mod)
)

contains only
finitely many isomorphism classes of indecomposable �-modules, and is called syzygy-finite if A is �m-finite for
some m. Clearly, a syzygy-finite algebra always has finite finitistic dimension. With the help of the stable functor,
we can prove that:

If A is �m-finite, then B is �m+n-finite. In particular A is syzygy-finite if and only if so is B.

The proof of the above statement is almost trivial. Let X be a B-module. By assumption, there is an A-module M
such that �m

A F̄(X) ∈ add(M). Applying the stable functor of G[−n], we see that �m+n
B (X), which is isomorphic

to G ◦ [−n] ◦ �m
A ◦ F̄(X) in B-mod, is in add(B ⊕ G[−n](M)), showing that B is �m+n-finite.

Generalized Auslander–Reiten conjecture. This conjecture says that a module X over an Artin algebra �

satisfying Exti�(X, X ⊕ �) = 0 for all i > m ≥ 0 has projective dimension ≤ m. Via the stable functor, the
second author proved in [10] that A satisfies the generalized Auslander–Reiten conjecture if and only so does B.
This was also proved by Wei [16] and by Diveris and Purin [3] independently.
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