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Abstract

In this paper, by characterizing iterated almost v-stable derived equivalences, we give several sufficient
conditions for a derived equivalence between general finite-dimensional algebras to induce a stable equiva-
lence of Morita type. In particular, we prove the following: Let A and B be two finite-dimensional algebras
over a field. Suppose that there is a derived equivalence between A and B induced by a tilting complex 7°°
over A. If each indecomposable projective A-module P without the property VixP is projective for all i > 0”
occurs only in the 0-degree term 7° of T* with multiplicity 1, then A and B are stably equivalent of Morita

type.

1 Introduction

This is a continuation of the study on the relationship between derived equivalences and stable equivalences for
general finite-dimensional algebras. In [7], we introduced a class of derived equivalences called almost v-stable
derived equivalences. The crucial property [7, Theorem 5.3] is that an almost v-stable derived equivalence al-
ways induces a stable equivalence of Morita type, which generalizes a classical result of Rickard ([13, Corollary
5.5]): Derived equivalent self-injective algebras are stably equivalent of Morita type. The result [7, Theorem
5.3] also gives a sufficient condition for a derived equivalence between general finite-dimensional algebras to
induce a stable equivalence of Morita type. Note that many homological dimensions, such as global dimension,
finitistic dimension, and representation dimension, are not invariant under derived equivalences in general. But
they are all preserved by stable equivalences of Morita type. So, this also helps us to compare the homological
dimensions of derived equivalent algebras. For more information about stable equivalences of Morita type, we
refer to the papers [3, 9, 10, 7].

Let us first recall the definition of almost v-stable derived equivalences. Let F : 2°(A) — 2°(B) be a
derived equivalence between two finite-dimensional algebras A and B over a field k, where 2°(A) and 2°(B)
stand for the derived categories of bounded complexes over A and B, respectively. We use F~! to denote a
quasi-inverse of F. The functor F is called an almost v-stable derived equivalence if the following hold:

(1) The tilting complex T® associated to F has the following form:
0—T"—...—T ' —7°—0
In this case, the tilting 7* associated to F~! has the following form (see [7, Lemma 2.1]):
0—T' T —... —T"—0

(2) add(@", T~") = add(P, vaT ) and add(P!_, T?) = add(@_, vT"), where Vv is the Nakayama
functor.
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In general, the quasi-inverse of an almost v-stable derived equivalence is not almost v-stable. This motivates
us to look for a more “balanced” notion. If a derived equivalence F is a composition FiF;---F,, with F; or
F;! being an almost v-stable derived equivalence for all i, then F is called an iterated almost v-stable derived
equivalence. By definition, the class of iterated almost v-stable derived equivalences properly contains the class
of almost v-stable derived equivalences, and is closed under taking compositions and quasi-inverses. Clearly, an
iterated almost v-stable derived equivalence always induces a stable equivalence of Morita type, and therefore
the involved algebras have many common homological dimensions. But the problem is:

Question: Given a derived equivalence F, how to determine whether F is iterated almost v-stable or not?

A satisfactory answer to the above question will give us some new sufficient conditions for a derived equiv-
alence between general finite-dimensional algebras to induce a stable equivalence of Morita type. In this paper,
we give a complete answer to the above question. Let A be an algebra. We use v4-Stp to denote the full sub-
category of A-mod consisting of all the projective A-modules P with the property that Vi\P is projective for all
i > 0. For an A-module X, we write top(X) for the maximal semi-simple quotient module of X. For a complex
X* over A, we denote by X* the module Dis0X !, Our main result is the following theorem.

Theorem 1.1. Let F : 2°(A) — 2°(B) be a derived equivalence between two finite-dimensional algebras A
and B over a field k, and let T* and T* be tilting complexes associated to F and F~', respectively. Then the
following are equivalent:
(1) The functor F is an iterated almost v-stable derived equivalence.
(2) add(voT*) = add(4T*) and add(vpT*) = add(pT).
(3) T+ e V4-Stp and T+ e vg-Stp.
(4) For each indecomposable projective A-module P & v4-Stp, the image F (top(P)) is isomorphic in 2°(B)
to a simple B-module.
(5) For each indecomposable projective A-module P & v4-Stp, the following conditions are satisfied:
(a) P & add(4T™);
(b) The multiplicity of P as a direct summand of b(T*)° is 1, where the complex b(T*) is a direct sum of
all non-isomorphic indecomposable direct summands of T*®.

Moreover, if one of the above equivalent conditions is satisfied, then the algebras A and B are stably equivalent
of Morita type.

Theorem 1.1 tells us that, by checking the terms of tilting complexes, we can determine whether a derived
equivalence is iterated almost v-stable or not. If a derived equivalence F between two algebras A and B satisfies
one of the equivalent conditions in Theorem 1.1, then F induces a stable equivalence of Morita type between
A and B. Thus, one can use Theorem 1.1 to get stable equivalences of Morita type from derived equivalences.
Comparing with [7, Theorem 5.3], here we only need to check the terms of the tilting complex T* associated
to the given derived equivalence F, while in [7, Theorem 5.3] one needs to consider both the tilting complex
associated to F and that associated to F~'.

Let us remark that the condition (4) arises naturally from a property of stable equivalences of Morita type.
Suppose that the algebras A and B are indecomposable finite-dimensional algebras over a perfect field k. Let
& : A-mod — B-mod be a stable equivalence of Morita type. Then it can be deduced from [4, Proposition 3.4]
that ®(top(P)) is isomorphic in B-mod to a simple B-module for all indecomposable projective A-modules P
not in v4-Stp.

This paper is organized as follows. In Section 2, we shall fix some notations and recall some basic facts
needed in our proofs. Theorem 1.1 will be proved in Section 3 after several lemmas. In Section 3, we also give
a method to construct tilting complexes which induce iterated almost v-stable derived equivalences.



2 Preliminaries

In this section, we shall recall some basic definitions and facts needed in our later proofs.

Throughout this paper, all algebras are finite-dimensional algebras over a fixed field k. All modules are
finitely generated unitary left modules. For an algebra A, the category of A-modules is denoted by A-mod; the
full subcategory of A-mod consisting of projective (respectively, injective) modules is denoted by A-proj (respec-
tively, A-inj). The stable module category, denoted by A-mod, is the quotient category of A-mod modulo the ideal
generated by morphisms factorizing through projective modules. We denote by v4 the usual Nakayama functor
DHomy (—,A), where D = Homy(—, k) is the usual duality. Note that v4 : A-proj — A-inj is an equivalence.

Let C be an additive category. The composition of two morphisms f: X — Y and g: Y — Z in C will be
denoted by fg. For two functors F' : C — D and G : D — ‘E of categories, their composition is denoted by GF.
For an object X in C, add(X) is the full subcategory of C consisting of all direct summands of finite direct sums
of copies of X.

A complex X*® over C is a sequence --- — X'~ il>X" i>X"+1 &H) .-+ in C such that d)"(af;;rl =0 for all
integers i. The category of complexes over C is denoted by €’ (C). The homotopy category of complexes over
C is denoted by .# (C). When ( is an abelian category, the derived category of complexes over C is denoted by
2(C). The full subcategory of .# (C) and 2(C) consisting of bounded complexes over  is denoted by .# ()
and 9°((C), respectively. As usual, for a given algebra A, we simply write .#°(A) and 2°(A) for .#®(A-mod)
and 2°(A-mod), respectively.

It is well-known that, for an algebra A, .#®(A) and 2°(A) are triangulated categories. Moreover, it is known
that if X* € #°(A-proj) or Y* € #°(A-inj), then Hom o4y (X*,Y*) ~ Homgpn4)(X®,Y*®). For basic results
on triangulated categories, we refer to Happel’s book [5]. Throughout this paper, we use X*[n| to denote the
complex obtained by shifting X* to the left by n degrees.

Let A be an algebra. A homomorphism f : X — Y of A-modules is called a radical map if, for any module
Z and homomorphisms /: Z — X and g : Y — Z, the composition /2 f g is not an isomorphism. A complex over
A-mod is called a radical complex if all its differential maps are radical maps. Every complex over A-mod is
isomorphic in the homotopy category % (A) to a radical complex. It is easy to see that if two radical complexes
X* and Y* are isomorphic in .# (A), then X*® and Y* are isomorphic in €'(A).

Two algebras A and B are said to be derived equivalent if their derived categories Z°(A) and Z°(B) are
equivalent as triangulated categories. In [12], Rickard proved that two algebras are derived equivalent if and
only if there is a complex 7 in .#"®(A-proj) satisfying
A-pI‘Oj)(T.’ T*[n]) =0 for all n # 0, and
(2) add(T*) generates .# ®(A-proj) as a triangulated category

(1) Hom%b(

such that B~ End(7*). A complex in #°(A-proj) satisfying the above two conditions is called a tilting complex
over A. It is known that, given a derived equivalence F between A and B, there is a unique (up to isomorphism)
tilting complex 7® over A such that F(7*) ~ B. If T* is aradical complex, it is called a tilting complex associated
to F. Note that, for an object X* in Z°(A), the image F(X*) is isomorphic in Z°(B) to a B-module if and
only if Hom@b<A)(T’,X *[i]) = 0 for all i # 0. By definition, a tilting complex associated to F is unique up to
isomorphism in € (A).

The following lemma is useful in our later proof. For the convenience of the reader, we provide a proof.

Lemma 2.1. Let C and D be two additive categories, and let F : #°(C) — (D) be a triangle functor.
Let X* be a complex in #°(C). For each term X', let Y* be a complex isomorphic to F(X'). Then F(X*®) is

isomorphic to a complex Z* withZ" = @, j_, Yij forallm € Z.

Proof. We use induction on the number of non-zero terms of X°®. If X*® has only one non-zero term, then it is
obvious. Assume that X* has more than one non-zero terms. Without loss of generality, we suppose that X* is



the following complex
0—X' —X'—...—X"—0

with X' #£ 0 for all i = 0,1,--- ,n. Let 65;X* be the complex 0 — X' — ... — X" — 0. Then there is a
distinguished triangle in .#°(C):

X[~1] — 651 X* — X* — X°.
Applying F, we get a distinguished triangle in £ °(D):
F(X°[—1]) — F(651X®) — F(X*) — F(X°).

By induction, F(6>1X*) is isomorphic to a complex U*® with U™ = &) Yij . Thus, F(X*) is isomorphic
1<i<n,i+j=m
to the mapping cone Z* of the map from ¥;[—1] to U*®. Thus, by definition, we have

"= @ Y=Y

0<ign,i+j=m i+j=m
This finishes the proof. O

Remark: Let F : 9°(A) — 2°(B) be a derived equivalence between two algebras A and B. F induces an
equivalence F : % ®(A-proj) — .#®(B-proj). So, for a bounded complex of projective A-modules, we can use
the above lemma to calculate its image under F.

3 Characterizations of iterated almost v-stable derived equivalences

In this section, we shall give a proof of our main result Theorem 1.1, which characterizes iterated almost v-stable
derived equivalences. For this purpose, we need some lemmas.

Let A be an algebra, and let v4-Stp be the full subcategory of A-mod consisting of all projective A-modules
P with the property “Vi, P is projective for all i > 0”. Note that the property “Vi,P is projective for all i > 0” is
equivalent to “vi, P is projective-injective for all i > 0. So, all the modules in v4-Stp are projective-injective. If
AQ is a projective A-module such that add(, Q) = add(v4Q), then clearly 4O € v4-Stp. Recall that for a bounded
complex X*® over A, we use X* to denote the A-module Di0X i

Lemma 3.1. Let T* be a tilting complex associated to a derived equivalence F : Z°(A) — 9°(B) between two
algebras. Then the following two conditions are equivalent.

(1) add(vaT*) = add (4 T*);

(2) ATi € v4-Stp.

Proof. (1) = (2). This is clear.

(2) = (1). Let Q1 = @;-(T'. Using the same method in the proof of [7, Lemma 3.1], one can show that
F~!(B) is isomorphic in Z°(A) to a complex X* with X’ € add(v4Q1) for all i < 0. Thus, 7* ~ X*, and there is
a quasi-isomorphism f* : T* — X*, which induces a quasi-isomorphism

42
ve: .. 72— —> 71 il Imd;1 —0
‘sz ifl \Lfo‘lmdfl
42
ve.: ... X2 ——x! = Imdgl —0.

We claim that the canonical epimorphism 7ty : T~! — Im dr !is still a radical map. Otherwise, let h:Y — T~
and g : Imd; ' ¥ be such that hm;g = 1y. Then Y is isomorphic to a direct summand of 7!, and therefore

4



Y is an injective module. Thus, g factors through the inclusion A : Imd, ' — 79 say g = Au. Consequently
ly = hnphu = hd; '4. This means that dr 71— 70 is not radical, which is a contradiction. Since T
and X' are injective for all i < 0, by [7, Lemma 2.2], U*® and V* are isomorphic in .#®(A). Thus, T’ is a
direct summand of X* for all i < 0, and consequently Q1 = €, T e add(v4Q). Since Q; and v4Q; have
the same number of non-isomorphic indecomposable direct summands, we have add(4Q;) = add(vaQ;). Let
07 := @;-oT'. Similarly, we have add(4Q;) = add(v4Q,). Consequently, add(47*) = add(4 Q1 © 402) =
add(v4Q1 ®VaQ2) = add(vaT*). O

In the following, we shall use Lemma 3.1 freely. For instance, in the definition of an almost v-stable equiv-
alence, the condition add("_; 77) = add(@?_,vaT ') is equivalent to the condition T~ € v4-Stp for all
i=1,---,n.

Lemma 3.2. Let F : 2°(A) — 9°(B) be a derived equivalence between two algebras A and B, and let T* and
T* be the tilting complexes associated to F and F~', respectively. If add(4T*) = add(vaT™) and add(3T*) =
add(vgT™), then F induces an equivalence between % °(v4-Stp) and #°(vp-Stp).

Proof. Let oE (respectively, gE) be a basic additive generator of v4-Stp (respectively, vg-Stp). Thatis, add(4E) =
v4-Stp. Then V4E is also a basic additive generator of v4-Stp. Hence V4E ~ 4E. The complex F(4E) is isomor-
phic to a complex 7} in add(7T*). Since V4E ~ 4E, we have V3T ~ T in 9°(B). Hence there is a chain map
M from T} to vT;® such that the mapping cone con(1) is acyclic. By our assumption, all 7} and v} withi # 0
are projective-injective since they are all in vg-Stp. Hence con(1) splits, and therefore v BTIO D0 ~ Tlo @ Q, for
some Q1,0 € vp-Stp. Hence, VT, € add(T @ gE). It follows that Vi, T € add(7 @ E) for all i > 0. Hence
T € vp-Stp, and consequently 7,° is in .#°(vp-Stp). Similarly, one can show that F~!(3E) is isomorphic to a
complex in .#®(v4-Stp) and the lemma is proved. O

The following lemma is useful in the proof of Theorem 1.1.

Lemma 3.3. Let F : 2°(A) — 2°(B) and G : 2°(B) — 9°(C) be derived equivalences, and let P*, P*, (0",
0°, T, and T* be the tilting complexes associated to F, F *I,G, G !, GF, and F~'G™! respectively. If the
following hold:

(1) APi € v4-Stp and Bpi € vp-Stp;

(2) BQi € vp-Stp and CQ_i € vce-Stp,
then AT ¢ V4-Stp and CTi € ve-Stp.

Proof. We only need to show that 7+ € v¢-Stp, the other statement follows by symmetry. By definition, 7°* is
isomorphic to GF(A) ~ G(P*). Since P' € v-Stp for all i # 0, by Lemma 3.2, G(P') is isomorphic to a complex
Y?* in #®(vc-Stp) for all i # 0. For i = 0, the complex G(P) is isomorphic to a complex Y3 in add(Q®). By
Lemma 2.1, the complex G(P*) is isomorphic to a complex Z* with Z" = €p;, j=m Y,.j . Since all Yij ,except Y, are
in vc-Stp, we have ZF € ve-Stp. Note that T® and Z* are complexes in .# ®(C-proj), which are both isomorphic
in 2°(C) to G(P*). Hence T* and Z* are isomorphic in .#®(C-proj). Furthermore, since the complex T* is a
radical complex, it follows that 7' is a direct summand of Z’ for integers i, and consequently 7+ € v¢-Stp. [

Finally, we have the following lemma.

Lemma 3.4. Let F : 9°(A) — 2°(B) be a derived equivalence between two algebras A and B, and let T*® be
tilting complex associated to F. If \T* € v4-Stp, then there is an almost V-stable equivalence G : 2°(C) —
7% (A) such that the tilting complex P® associated to FG satisfies that P' € vc-Stp for all i < 0 and P' = 0 for
alli>0.



Proof. Let oE be an additive generator of v4-Stp. That is, v4-Stp = add(4E). Suppose m is the maximal integer
such that 7" # 0. By a dual statement of [6, Proposition 3.2], there is a tilting complex Q° := R®* @ 4E[—m]| over
A, where R® is of the form: R®* :0 — A — R! — ... — R" — QO with R’ € va-Stp for all i > 0. Let C be
the endomorphism algebra of Q°, and let H : 2°(A) — 2°(C) be a derived equivalence induced by the tilting
complex Q°. It is easy to see that H(4E) ~ ¢P[m] for some ¢P € v¢-Stp, and H(A) is isomorphic to a complex
§°0— 85" — ... — 851 589 5 0with S € ve-Stp for all i < 0. Let G is a quasi-inverse of H. Then
S* is a tilting complex associated to G. By Lemma 3.1, we see that G is almost v-stable.

Now let ¥;* := H(T') for each integer i. Since T* € v4-Stp, for each integer i # 0, we have Y,* ~ P;[m] for
some P; € V¢-Stp. Moreover, ¥;* = 0 for all i > m since 7° = 0 for all i > m. The complex Y has the property
that ¥§ = 0 for all i > 0 and ¥} € v¢-Stp for all i < 0. By Lemma 2.1, the complex H(T*) is isomorphic to
a complex Z* with Z' = @, ;_, Y,] It follows that Z' = 0 for all 7 > 0 and Z" € v¢-Stp for all # < 0. Since
FG(H(T*)) ~ F(T*) ~ B ~ FG(P*) in 2°(B), the complex Z* is isomorphic in Z°(C) to the tilting complex
P* associated to FG. It follows that Z* and P* are isomorphic in .#°(C-proj). Since P* is a radical complex,
the term P' is a direct summand of Z' for all i, and consequently P* has the desired property. Ul

We are now in the position to give a proof of our main result.

Proof of Theorem 1.1. (1) = (2). Note that the condition (2) clearly holds for almost v-stable derived equiv-
alences and their quasi-inverses. Thus, (1) = (2) follows immediately from Lemma 3.3.

(2) < (3). This follows from Lemma 3.1.

(3) = (1). By Lemma 3.4, there is an almost v-stable derived equivalence G : 2°(C) — 2°(A) such
that the tilting complex P* associated to FG has the property that P/ = 0 for all i > 0 and P’ € v¢-Stp for all
i < 0. Let P* be the tilting complex associated to G~'F~!. It follows from Lemma 3.3 that 3P* € vp-Stp.
Since P! = 0 for all i > 0, by [7, Lemma 2.1], one get P' = 0 for all i < 0. Using Lemma 3.1, we see that
add(@, P') = add(,oVcP') and add(P;- o P') = add(®,~oVsP'). This implies that FG is an almost V-
stable derived equivalence. Thus, F ~ (FG)G~! is an iterated almost v-stable derived equivalence.

(4) = (5). For each indecomposable projective A-module P not in v4-Stp, since F'(top(P)) is isomorphic in
9*(B) to a simple B-module, we have Hom o) (T*,top(P)[i]) = 0 for all i # 0. This implies that P is not a
direct summand of 7=, This proves (a) of condition (5). It follows from the definition of b(7*) that F (b(T*))
is isomorphic to a basic projective generator M of B. Since F (top(P)) is a simple B-module, we deduce that

Homy (b(7°)° top(P)) =~ Hom%b(A_
~ HOITI@b(A) (b(
~ Homg(M, F(top(P)))
~ Endp(F (top(P))) ~ End4 (top(P))

is one-dimensional over the division ring End, (top(P)). It follows that the multiplicity of P as a direct summand
of b(T*)is 1.

(5) = (4). By condition (a), we see that Homgs4)(T*,top(P)[i]) = 0 for all i # 0. Hence F(top(P)) is
isomorphic to a B-module X. By condition (b), up to isomorphism, there is only one indecomposable direct
summand 75 of 7* such that Homgy 4 (75, top(P)) # 0. Equivalently, up to isomorphism, there is only one
indecomposable projective B-module P such that Hompg(P,X) # 0. This means that X only contains top(P) as
composition factors. If X is not a simple B-module, then there is a nonzero map X — soc(X) — X in Endg(X)
which is not an isomorphism. This contradicts to the fact that Endg (X ) ~ Enda (top(P)) is a division ring. Hence
X ~ F(top(P)) is a simple B-module.

(3) = (4). Let oE and gE be additive generators of v4-Stp and Vp-Stp, respectively. That is, add(4E) =
va-Stp and add(gE) = vp-Stp. Let P be an indecomposable projective A-module not in V4-Stp. Then it is clear
that Homgp 4y (T, top(P)[i]) = 0 for all i # 0 since T+ € v4-Stp, and consequently F(top(P)) is isomorphic



in 2°(B) to a B-module X. By Lemma 3.2, the complex F~!(3E) is isomorphic in 2°(A) to a complex E*® in
2 ®(v4-Stp). Hence

Homg(E,X) ~ Homgps (s (F ' (3E), top(P)) ~ Hom (4 (E*, top(P)) = 0.

If X is not simple, then there is a short exact sequence 0 — U — X — V — 0 in B-mod with U,V non-zero.
Applying Homg(pE, —), we get that Homg(gE,U) = 0 = Homg(gE, V), and consequently Homgn ) (T*,U[i]) =
0 = Homg ) (T*,V[i]) for all i # 0 since T* € vp-Stp. Hence F~'(U) and F~!(V) are isomorphic to some
A-modules U and V, respectively. Thus, we get a distinguished triangle

U — top(P) — V — U|[l]

in 2°(A) by applying F~! to the distinguished triangle U — X — V — U[1]. Applying Hom » ()(A,—) to
the above triangle, we get an exact sequence 0 — U — top(P) — V — 0 with non-zero A-modules U and
V. This contradicts to the fact that top(P) is a simple A-module. Hence F (top(P)) ~ X is a simple B-module.

(4) = (3). For each indecomposable projective A-module P not in v4-Stp, since F (top(P)) is isomorphic in
2 (B) to a simple B-module, we have

HomA(Ti,top(P)) ~ Hom%b(A_proj)(T.atop(P)[ii]) ~0

for all i # 0. This implies that 7% € v4-Stp for all i # 0, that is, TT € v4-Stp. It remains to show that 7+ €
vp-Stp. Let 4O be a direct sum of all non-isomorphic indecomposable projective A-modules not in v4-Stp. Then
F(top(Q)) is isomorphic in 2°(B) to a semi-simple B-module. Let 30 be a projective cover of F(top(Q)). That
is, F(top(Q)) ~ top(Q). Now we set W to be a direct sum of all non-isomorphic indecomposable projective
B-modules not in add(zQ). Then Q W is a basic projective generator of B. There are isomorphisms

Homs(7",t0p(Q)) = Hom, () (T*,top(Q)[i])
=~ Hom s p) (T*,top(Q)[—i])
:Hom@b(A (AA top( )[ l])

for all i # 0. This means that none of the indecomposable direct summands of 7= are in add(3Q), or equivalently,
T+ € add(gW). It remains to show gW € vp-Stp. Note that

Homg (s (F ' (W), top(Q)[i]) ~ Homg(sW, top(Q)[i]) = 0

for all integers i. It follows that F~!(3W) is isomorphic in Z°(A) to a radical complex in #°(v4-Stp). Using
the same method in the proof [1, Theorem 2.1], one can show that ViW is a projective B-module for all i > 0.
Hence W € vp-Stp. This finishes the proof. UJ

Remark: (1) The condition (5) in Theorem 1.1 provides a convenient way to check whether a given derived
equivalence is iterated almost v-stable or not.

(2) Let P be a projective A-module. The condition add(4P) = add(v4P) is equivalent to saying that P is
projective-injective and add(top(P)) = add(soc(P)).

(3) It is interesting to know whether Theorem 1.1 holds for general Artin algebras. Note that the only
problem is the step “(4) = (3)”, where the method in the proof of [1, Theorem 2.1] does not work for general
Artin algebras. In particular, for general Artin algebras, the conditions (1), (2) and (3) in Theorem 1.1 are still
equivalent.

As a consequence of Theorem 1.1, together with [7, Theorem 5.3, and Corollary 1.2], we have a corollary.



Corollary 3.5. Let F : 2°(A) — 9°(B) be a derived equivalence between two finite-dimensional algebras
over a field. If one of the equivalent conditions in Theorem 1.1 is satisfied, then the algebras A and B are stably
equivalent of Morita type. Moreover, the algebras A and B have the same finitistic dimension, global dimension,
representation dimension and dominant dimension.

In the rest of this section, we give a method to construct tilting complexes which induce iterated almost
v-stable derived equivalences.

Let us recall from [2] the definition of approximations. Let C be a category, and let D be a full subcategory
of C, and X an object in C. A morphism f : D — X in ( is called a right ‘D-approximation of X if D € D and
the induced map Homq (D', f): Homq(D',D) — Hom(D',X) is surjective for every object D' € D. Dually,
one can define left D-approximations.

Let A be an algebra, and let P, Q be two projective A-modules satisfying the following two conditions:

(1) add(4P) = add(v4P), add(, Q) = add(v4Q);
(2) Homy (P, Q) = 0.

For each positive integer r, we can form the following complex:
0Pty sprit o ptSa o,

where fi : P71 — A is a right add(4P)-approximation of A, and f;y; : P! — P~ is a right add(4P)-
approximation of Ker(f;) fori =1,--- ,r— 1. Similarly, we can form a complex

0—ASo — ... T2 0r 0,

where g; is a left add(4Q)-approximation of A, and g;;; is a left add(4Q)-approximation of Coker(g;) for
i=1,2,---,5s— 1. Since Homy (P, Q) = 0, gluing the two complexes together, we get a complex

0P —s.—spt a0l Lo 0,
where A is in degree zero. We denote this complex by 7, and let T7* := Ty, & P[r] & Q[—s].

Proposition 3.6. Keeping the notations above, the complex T*® is a tilting complex that induces an iterated
almost v-stable derived equivalence between the algebras A and End .+ A-proj)(T.)'

Proof. By the construction of 7°, we have

(PP, i=-r; i

P, —r<i<0; f0~’ l—r<z,<0.

[ A l:O' . —I> — )
l: ’, ’ i _ . < ) - .
! 0, 0<i<s; A %{j}l’ ?_\sl<1s. 1;

’ =5, 0l —o 4

oo ; 0 otherwise.

0 otherwise.

We first show that Hom ., (A-proj) (T*,T*[i]) = 0 for all i # 0. Assume that i is a positive integer. Let u® be

a morphism in Hom%b( A-proj) (T*,T*[i]). Then we have the following commutative diagram

doi-! di doitl 1 & dl
[ B R B AT ) 1.4 0o_T 1
T T T T T T
\Luil lui luﬂrl iu] \LMO \Lul
dy! d? d} di! d: dit!
T71 r TO r Tl r Tifl r Ti r Ti+l T4>




Since Homyu (P, Q) = 0, we have u* = 0 for all —i < k < 0. By definition, 7~ € add(4P). Since dT_1 =flisa
right add (4 P)-approximation, there is a map 2~ : T~/ — T~! such that u=" = h_idfl. Thus,

(u—i—l _d;i—lh—i)d;1 — d;i—lu—i —d;i_lh_id;I — d;i—lu—i —d;i_lu_i —0.

Since d;? is a right add(4 P)-approximation of Ker(d; '), there is amap A=~ : T7="~! — T2 such that u ="~ —
d;i_lh_i = h_i_ld;Z, thatisu='~! = d;i_lh_i +h_i_1dT_2. Similarly, for each integer k < —i— 1, there are maps
Rl TR TR and BF : TF — T*+=1 such that uf = dkh*+! 4+ h* a1, Defining #* = 0 for all —i < k<0,
we have uf = dkn*! + BFd5T=1 for all k < 0. Similarly, we can prove that u = dki¥! + BFd5H=1 for k > 0. Tt
follows that u® = 0 in .#"°(A-proj). Hence Hom 4 _proj) (T*,T*[i]) = 0 for all i > 0. By an analogous proof,
—proj)(T.vT. [i]) = 0 for all i < 0. Finally, since P[r] and Q[—s] are in add(T*), we deduce
that 4A is in the triangulated subcategory of .#(A-proj) generated by add(7T*). Hence add(T*) generates
' °(A-proj) as a triangulated category, and consequently T* is a tilting complex over A. It follows from the
condition (5) in Theorem 1.1 that the tilting complex 7® induces an iterated almost v-stable derived equivalence
between A and End ;4 _pro;) (T*). O

one get Hom( 0 (A

To illustrate Proposition 3.6, we give an example. Let k be a field, and let A be the finite-dimensional
k-algebra given by the quiver
o B
[ ] [ ]

Y
°
1o 2 B 3 y 4

with relations o/a = B’ = o = By = p'o’ =yYB = P'B— 7Y = 0. We use P; to denote the indecomposable
projective A-module corresponding to the vertex i for i = 1,2,3,4. The Loewy structure of the projective A-
modules can be listed as follows.

1 2 3 4
P2 Ph:1 3 P32 4 Py 3
1 3 4

Let P:= P and Q := P; ® P4. Then we have add(4P) = add(v4P), add(4,Q) = add(v4Q), and Homy (P, Q) = 0.
Using Proposition 3.6, we have a tilting complex 7* over A. The indecomposable direct summands of 7* are:

*': 0—P —0

7: 0—P —P—P—0
T; 0—P;—0
T;: 0—P,—0

A calculation shows that the algebra B := Endgp 4) (T*) is given by the quiver

with relations oot = op = 8o’ = Byd = Yoy = 0. By Proposition 3.6, T* induces an iterated almost v-stable
derived equivalence between A and B. Therefore, A and B are also stably equivalent of Morita type.

Finally, let us remark that one can inductively construct iterated almost v-stable derived equivalences from
given ones, as we have done for almost v-stable derived equivalences in [7] and [8].
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