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Goldbach’s Problem in the Matrix Ring over
a Principal Ideal Domain*
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Abstract: In this paper, we consider the Goldbach’s problem for matrix rings,
namely, we decompose an nn X o (n > 1) matrix over a principal ideal domain R into
a sum of two matrices in M, (R) with given determinants. We prove the following
result:

Let n > 1 be a natural number and A = (a;;) be a matrix in My(R). Define
d(A) := gc.d{a;;}. Suppose that p and g are two elements in R. Then

(1) It n > 1 is even, then A can be written as a sum of two matrices X, Y in
Mn(R) with det(X) = p and det(Y') = q if and only if d(4) | p — g¢;

(2) If n > 1 is odd, then A can be written as a sum of two matrices X, Y in
Mn(R) with det(X) = p and det(Y') = q if and only if d(A4) | p + g.

We apply the result to the matrices in Mp(Z) and M, (Q[z]) and prove that if
R = Z or Q|z], then any nonzero matrix A in M, (R) can be written as a sum of
two matrices in M, (R) with prime determinants.
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1 Ihtroduction

As is well known, Goldbach’s conjecture is a famous problem in number theory which can
be described as follows:

Every even integer n greater than 2 is the sum of two primes.

Goldbach first conjectured this in his famous letter to Leonhard Euler dated June 7,
1742. Since then, many people have been devoted to solve this problem. However, it still
remains unverified. In 1966, A Chinese famous mathematician Chen Jingrun proved that
any sufficient large even natural number is the sum of a prime and a number with no more
than two prime factors. Up to now, this is the best result on the conjecture.
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As we know, Goldbach’s conjecture is discussed over the ring Z, and it is a very hard
problem. But if one changes the point of view and considers the similar problem in matrix
rings, then things might go smoothly. For example, in [1], Vaserstein proved that given any
integer p and any matrix A in the ring M2(Z), there are X,Y in My(Z) such that

: X+Y=A4
and
det(X) = det(Y) =p.

Here M, (R) denotes the n x n matrix ring over a ring R. He also asked the analogous
question for M3(Z). In [2], Wang answered Vaserstein’s question for M,(Z) (n > 1), and
proved the following result:
(1) If n > 1 is even, then for any matrix A in M,(Z) and any p in Z, there are two
matrices X, Y in M,(Z) such that
X+Y=A

and
det(X) =det(Y) =p.

(2) Let n > 1 be an odd integer and p a fixed integer. Then for any A in M, (Z), there
are X, Y in M,(Z) such that
X+Y=A4

and
det(X) =det(Y)=p
if and only if d(A) divides 2p, where d(A) is the greatest common divisor of all the entries

of the matrix A.
In the present paper, we consider the following more general problem.

Goldbach’s Problem Suppose R is an arbitrary unique factorization domain. Let A
be a matrix in M,(R) (n > 1) and let p, ¢ be two elements in R. Are there two matrices
X,Y €éMu(R) such that det(X) =p, det(Y) =gand X + Y = A?

In this paper, we give a positive answer to the Goldbach’s problem for matrices over a
principal ideal domain (PID). For a matrix A in M, (R), we use d(A) to denote the greatest
common divisor of the n? entries of A. Our result is the following theorem.

Theorem 1.1 Let two elements p, q in a principal ideal domain R and a nonzero matriz
A in Mn(R) be given.

(1) If n > 1 is even, then A can be written as a sum of two matrices X, Y in M,(R)
with det(X) = p and det(Y) = q if and only if d(A) | p - ¢;

(2) If n > 1 is odd, then A can be written as a sum of two matrices X, Y in M, (R) with
det(X) = p and det(Y) = q if and only if d(A) | p +q.

In particular, we consider matrices over Z and Q[z], which are both principal ideal
domains. We get the following corollary.
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Corollary 1.1 Let R be Z or Q|z] and let A be a nonzero matriz in M,(R) (n > 1). Then
there are infinitely many pairs of prime elements p, q in R such that the matriz A can be
written as a sum of two matrices X,Y € Mn(R) with det(X) = p and det(Y) = q.

2 Definitions and Preliminaries

In this section, we give some basic definitions and two useful lemmas needed in this paper.

Let R be a principal ideal domain (PID). We denote by Mn(R) the ring of all n x n
matrices over R. For a matrix A €éM,(R) we denote by d(A) the greatest common divisor
of the n? entries of A.

Two matrices A, B € Mn(R) are said to be equivalent if there are two matrices U,V €
Mn(R) with det(U) = det(V) = 1 such that B = UAV.

Now we give the following useful lemma.

Lemma 2.1([3], p-26) Let R be a PID and let A be a matriz in M, (R). Then A is
equivalent to a diagonal matriz

' D = diag[d,d,, - - - ,dy)
in Mn(R), where d = d(A).

Let A and B be two matrices in M (R) which are equivalent. If we want to decompose
the matrix A into a sum of two matrices in M, (R) with given determinants, we can deal
with B instead of A. Thus, by Lemma 2.1, we can assume that A itself is a diagonal matrix
with d(A) in its (1,1)-position. ,

In the proof of Theorem 3.3 below, we shall use the following lemma.

Lemma 2.2 (Eisenstein’s criterion, see [4], p.72) Let f(z) = ag + a1z + - -+ + ap,z™ be a
polynomial in Z[z]. If there is a prime number p such that the following three conditions are
satisfied:

(1) pian;

(2)plai fori=0,1,--- ,n—1;

(3) P2 { ao,
then f(x) is irreducible over Q.

A polynomial in Z[z] satisfying the three conditions in Lemma 2.2 is called an Eisenstein
polynomial over Q. Hence Lemma 2.2 can be rewritten as “Every Eisenstein polynomial
over Q is irreducible over Q”.

3 Results and Proofs

In this section, R always denotes a PID. We shall first consider the matrices in M, (R) and
prove Theorem 3.1 below. Then, we use Theorem 3.1 to investigate matrices in M, (Z) and
matrices in M, (Q[z]) respectively.

Now let us use Lemma 2.1 to prove the following result.
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Theorem 3.1 Let n > 1 be a natural number and let A be a nonzero matriz in M, (R).
Suppose that p and q are two elements in R. Then

(1) If n is even, then there are two matrices X and Y in M,(R) such that det(X) = p,
det(Y)=qand A=X+Y if and only if d(A) | p — q.

(2) If n is odd, then there are two matrices X and Y in M,(R) such that det(X) = p,
det(Y) =q and A=X +Y if and only if d(A) | p+ q.

Proof. By Lemma 2.1, we may assume that A itself is a diagonal matrix with d(A) in its
(1,1)-position and denote A by diag|d,dz,- - - ,dn], where d = d(A).
(1) » > 1 is an even integer. Suppose n = 2m. If there are two matrices X and Y in
My (R) such that det(X) = p, det(Y) = qand A = X +Y, then
X=A-Y = -Y(mod d).
Hence
det(X) = det(—Y )}{mod d).

Since n is even, we have »
det(—Y) = det(Y).

So
p = q(mod d),

that is,
dlp—gq.

Conversely, suppose p — ¢ = kd. Multiplying the first row of A by k and adding it to the
second row, we get

d 0 0 0

p—q d2 O 0

A - 0 0 ds 0
0 0 0 dn

Obviously, A is equivalent to A’, so we only need to consider the matrix A’. Put

d -1 0 1
X= 4 Y:
(0 ) w=(54)
o doi_1 -1 - 0 1
(9 ) w=(h4)

for i =2,3,--- ,m. Define
X = diag[X17X21"' 7Xm]7 Y = dlag[}/iy },27 :Ym]

and put

Then we have
det(X) = p, det(Y) =g¢q

and
A=X+Y.
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(2) n > 1 is an odd integer. If there are two matrices X and Y in M, (R) such that
det(X) = p, det(Y) =g¢

and
A=X+4Y,
then
X=A-Y = -Y(mod d).
Hence

det(X) = det(—Y)(mod d).

Since n is odd, we have
det(—Y) = —det(Y).
So
p = —g(mod d),
that is,
dip+aq

Conversely, suppose p + ¢ = kd. From the discussion for the case (1), we only need to
consider the case n = 3. Suppose that

A = diag[d, d2, d3]
with d = d(A4). Multiplying the first row of A by k and adding it to the third row, we get

the matrix
d 0 0
A = 0 d, 0 ,
p+qg 0 ds

which is equivalent to A. Thus we need only to consider A’ instead of A. Let

d 10 0 -1 0
X=(0 011}, Y= 0 d -1 }.
p 0 O g 0 ds

det(X) = p, det(Y) =g¢q

Then we have

and
A=X+Y.

Remark The above proof of the converse direction does not work for n = 1.

Since both Z and Q[z] are PIDs, we shall use Theorem 3.1 to investigate matrices in
M, (Z) and M,(Q|[z]) respectively and prove Corollary 1.1 mentioned in the introduction.
First, we give the definition of prime matrix.

Definition 3.1 Let R be a PID. A matriz X in M,,(R) is called a prime matriz if det(X)
s a prime element in R.
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For our purpose, we also need the following lemmas. For the convenience of the reader,

we provide their proofs.

Lemma 3.1 Let m # 0 be an integer. Then there are infinitely many pairs of prime

numbers p, q such that m | p—q.

Proof. Clearly, we can assume that m > 0. Let {p1,p2,P3,-- -} be the complete set of
prime numbers. Then for any & € N, the set {Pk(m+1)+1) Pk(m+1)+2s *** » p(k+1)(m+1)}
must contain two prime numbers p;, p; such that p; = p; (mod m). Thus m | pi — p; and
this completes the proof.

Lemma 3.2(Dirichlet, see (5], p.188) Let m and | be integers. Suppose that m > 2,
1 <! < m and (m,l) = 1. Then there are infinitely many prime numbers in the set

{tm+ 1t >0, t € Z}.
Using Lemma 3.2, we get the following corollary.

Corollary 3.1 Let m # 0 be an integer. Then there are infinitely many pairs of prime
numbers p,q such that m | p+q.

Proof. Clearly, we can assume that m > 0. If m = 1, it is trivial. We assume that
m > 2. By Lemma 3.2, there are infinitely many prime numbers in the set A = {tm + 1]t >
0, t € Z} since (m,1) = 1. Similarly, there are infinitely many prime numbers in the set
B ={tm+m—1Jt >0, t € Z} since (m,m — 1) = 1. Thus for any prime number p in A
and any prime number ¢ in B, we have
p+¢q =0 (mod m),

that is, rn | p+ ¢q. Hence the corollary is proved.

By Lemma 3.1 and Corollary 3.1, we are able to prove the following result, which says
that the Goldbach’s conjecture is true for the matrix ring M, (Z), n > 1.

Theorem 3.2 Let A be a nonzero matriz in Mp(Z), where n > 1. There are infinitely
many pairs of prime numbers p,q such that the matriz A can be written as a sum of two
prime matrices X,Y € M,,(Z) with det(X) = p and det(Y) = g.

Proof. Let d = d(A). Then d # 0. To prove the theorem, we consider the following two
cases:
(1) n > 1 is even. By Lemma 3.1, there are infinitely many pairs of prime numbers
p, q such that d | p — q. By Theorem 3.1, we can find two matrices X,Y € M, (Z) with
det{X) = p, det(Y) = ¢ such that
A=X+Y.

But det(X) and det(Y') are prime numbers, and hence X, Y are prime matrices.
(2) n > 1 is odd. By Corollary 3.1, there are infinitely many pairs of prime numbers
p, q such that d | p + ¢q. By Theorem 3.1, we can find two matrices X,Y € M,(Z) with
det(X) = p, det(Y) = q such that "
A=X+Y.
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Since X and Y are prime matrices, the theorem is proved.
Now we give an example. Let

3 -3 6
A= 6 -3 12
9 -9 27
Then
d(A) = 3.

We take p = 7 from the set {3k + 1}k € Z} and ¢ = 11 from the set {3k + 2|k € Z}. Let

( 3 -2 6) (O -1 0 )
X = 6 -4 13 |, Y = 0 1 -1].
-2 -1 -4 11 -8 31
We have
det(X) =7, det(Y) =11
and
X+Y =A

In the rest of this section, we consider matrices in M, (Q[z]) (n > 1) and prove Theorem
3.4 below. Note that the prime elements in Q[z] are just the irreducible polynomials in Q[z].
To prove our next result, we first show the following lemma.

Lemma 3.3 Let p, q be two prime numbers with p # q. Then there are two integers s, t
such that sp+tq=1 withpt{s and q 1 t.

Proof. Clearly, there are two integers a, b such that
ap+bg=1.
If pta and qtb, we define

Now we assume that p | @ or ¢ | . To find two required integers s and t, we consider the
following two cases.

Case 1: One of p and q is 2. Without loss of generality, we assume p = 2. Then we again
consider two cases:

Case (1): p|a. If ¢ b — p, we define

s=a+gq, t=b-p.
It is easy to see that p{ s, g1t and sp+tq = 1.
If g | b — p, we define
s=a+3q, t=>5b-3p.

It is easy to verify that pts, gtt and sp+tg = 1.
Case (2): pta. By our hypothesis, we have q | b. Define
s =a+ 2q, t="b-2p,
and we have s, t are as required.

Case 2: Both p and q are odd prime numbers. Similarly, we need to consider two cases:

£ 000 http://www.cqvip.com|
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Case (1): p| a. Clearly,
(a+qp+(b—p)g=1.

I gt b— p, we define
s=a+gq, t=b—p;

f not, we define
s=a+2q, t=>b—2p.

in either of the two cases, we have pts, g1 ¢ and sp + tg=1.

Case (2): p { a. By our hypothesis, we have g | b. Similarly, we can get two required
integers s, t.

Using the above lemma, together with Eisenstein’s criterion, we can get the following
theorem.

Theorem 3.3  For every polynomial f(x) of positive degree in Q[z], there are infinitely
many pairs of irreducible polynomials p(z), q(z) in Q[z] such that
p(z) + q(z) = f(z)
and
deg f(z) = deg p(z) = deg g(x).

Proof. Let f(z) be a polynomial in Q|z] of positive degree. Clearly, f(z) # 0 and there is
a non-zero element k in Q such that
kf(z) = ao+ a1z + azz® + - - + apz™
is in Z[z] and a,, # 0. We shall use Eisenstein’s criterion to give two irreducible polynomials
9(z) =go+ 1T+ - - - gnz™, h(z) = ho + hiz+--- hpa"
in Z{z] such that -
9(z) + h(z) = kf(x).

We consider the following two cases:
Case 1: ap = 0. Clearly, we can find infinitely many pairs of prime numbers p, g such
that
g—p>la,| + 1.
Now we define
gn=p-—1, hn=a,—(p—1).
Clearly, pt gn and ¢ { hy, since |hp| < Jan| +1+p < q. Obviously,
(mg)=1.
Thus there are two integers s, ¢ such that
sp+1itg=1.

Now define

go=pq,  ho=-pg


http://www.cqvip.com

£ 000 http://www.cqvip.com|

NO. 3 HU W. GOLDBACH’S PROBLEM IN THE MATRIX RING 363

and
gi=a;sp,  hi=ailg
for i = 1,--- ,n— 1. We have that both g(z) and h(z) are Eisenstein polynomials over Q.
Define A A
Pa) = z9@),  a(@) = Th(a).

We have that p(z) and g(z) are irreducible. Clearly
p(z) +q(z) = f(z),  degf(z) = degp(z) = degg(z).
Case 2: ag # 0. Since ag can only have finite prime factors, we can find infinitely many
pairs of prime numbers p, g such that
ptas, qtao
and
g—p>lan| +1.

First, we determine the leading coefficients of g(x) and h(z). We define
gn=p-—1, hp, =a, —(p—1).
Clearly, p4 g and g { hy, since |hy| < |an|+ 1 +p < ¢g. By Lemma 3.3, there are two integers
s, t with pt s and ¢ { ¢ such that
sp+itqg = 1.

Now define
gi = aisp, h; = a;tq

fori =0,1,--- ,n—1. Then p divides g; and ¢ divides h; fori = 1,2,.-- ,n—1. Furthermore,
P? 1 apsp and ¢? { aotq since p, q are not factors of ag and p { 5, ¢ { t. By Eisenstein’s
criterion, g(z) and h(z) are irreducible in Q[z]. Define

1 1 '
p(e) = z9(@),  a(z) = £h(z).
p(z) and g(z) are also irreducible. Obviously,
p(z) +q(z) = f(z),  degf(z) = degp(x) = degq(z).
; Now we prove the following theorem, which says that Goldbach’s conjecture is true for
the matrix ring M, (Q[z])(n > 1).

Theorem 3.4 Let A be a non-zero matriz in Mp(Q[z]) with n > 1. Then there are
infinitely many pairs of prime elements (irreducible polynomials) p(z), q(x) in Q[z] such
that the matriz A can be written as a sum of two prime matrices X,Y € Mp(Q[z]) with
det(X) = p(z) and det(Y') = q(z).

Proof. Let
d(z) = d(A).

By hypothesis, d(z) # 0 and hence zd(z) must have positive degree. By Theorem 3.3, there
are infinitely many pair of irreducible polynomials g(z), h(z) in Q[z] such that
zd(z) = g(z) + h(z).
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If n is even, we define
p(z) =9(z),  q(z) = —h(z).
Then p(z) and q(z) are irreducible and d(z) | p(z) — ¢(z). By Theorem 3.1, there are two
matrices X,Y € M,(Q[z]) such that
det(X) = p(z), det(Y) = ¢q(z)
and
A=X+Y.

If n is odd, we define
p(z) =9(z), q(z) = h(z).
Then p(x) and ¢(z) are irreducible and d(z) | p(z) + g(z). Again by Theorem 3.1, there are
two matrices X,Y € M,(Q[z]) such that
det(X) = p(z), det(Y) = q(z)
and
A=X+Y,
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