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Functional central limit theorem for super
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Abstract A functional central limit theorem is proved for the centered occupation time
process of the super α-stable processes in the finite dimensional distribution sense. For
the intermediate dimensions α < d < 2α (0 < α 6 2), the limiting process is a Gaus-
sian process, whose covariance is specified; for the critical dimension d = 2α and higher
dimensions d > 2α, the limiting process is Brownian motion.
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1 Introduction and statement of results

The asymptotic behavior of superprocesses has been investigated over the past
years[1−6]. A general central limit theorem was proved by Iscoe[5] for the (α, d, β)-
superprocess in higher dimensions d > α(1 + β), whereas for the intermediate and
critical dimensions, the CLT was only obtained in the situation that the underlying mo-
tion is Brownian motion and the branching is of finite variance, i.e. α = 2, β = 1.
Hong et al.[2−4] have considered the limiting behavior of the super-Brownian motion with
super-Brownian immigration, and some new and interesting phenomena were revealed for
this new model. Recently, Dawson et al.[7] considered the occupation time fluctuations of
branching particle system in 3 levels, and complete results were obtained for the situation
of finite variance branching and α-stable motion.

In this paper, we will focus on the path-valued limit behavior, i.e. the functional
central limit theorem for the occupation time process of super α-stable processes with
finite variance branching (β = 1). For the intermediate dimensions α < d < 2α (0 <

α 6 2), the norming is T ( 3

2
−

d
2α

) and the limiting process is a non-Brownian Gaussian
process, whose covariance is given explicitly; for the critical dimension d = 2α and
higher dimensions d > 2α, the limiting process (in the finite dimensional distribution
sense) is Brownian motion when the norming is (T log T )

1

2 and T
1

2 respectively. Similar
results appeared for the zero-range process[8] and branching random walk[9]. For the super-
Brownian motion, Iscoe[5] has got a result for d = 3, and proved a functional ergodic
theorem in ref. [6]; recently, Zhang1) has considered the path-valued limit behavior for

1) Zhang Mei, Functional central limit theorem for the super-brownian motion with super-Brownian immigration,
J. Theoret. Probab., to appear.
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the super-Brownian motion with super-Brownian immigration.

We will recall the concept of the superprocess briefly, for the general background
we refer the readers to Dawson[10]. Let C(Rd) denote the space of bounded continuous
functions on R

d. We fix a constant p > d and let φp(x) := (1+ |x|2)−p/2 for x ∈ R
d. Let

Cp(R
d) := {f ∈ C(Rd) : |f(x)| 6 const·φp(x)}. In duality, let Mp(R

d) be the space
of Radon measures µ on R

d such that 〈µ, f〉 :=
∫

f(x)µ(dx) < ∞ for all f ∈ Cp(R
d).

We endow Mp(R
d) with the p-vague topology, that is, µk → µ if and only if 〈µk, f〉 →

〈µ, f〉 for all f ∈ Cp(R
d). Then Mp(R

d) is metrizable. Throughout this paper, λ denotes
the Lebesgue measure on R

d.

Suppose that ξ = (ξt, t > 0) is an α-stable process (0 < α 6 2) in R
d with

semigroup (P α
t )t>0. Its infinitesimal generator is a fractional power of the Laplacian,

∆α = −(−∆)α/2. Let pα(t, x, y) be the transition density function of the α-stable
process, it is smooth, symmetric and unimodal with the self-similar property (cf. ref. [5]),

pα(t, x, y) = pα(t, x − y) = t−d/αpα(1, t−1/α(x − y)).

A super α-stable process X = (Xt, Qµ) is an Mp(R
d)-valued Markov process with

X0 = µ and the transition probabilities given by the following Laplace functional

E exp{−〈Xt, f〉} = exp{−〈µ, n(t, ·)〉}, f ∈ C+
p (Rd), (1.1)

where n(·, ·) is the unique mild solution of the evolution equation






ṅ(t) = ∆αn(t) − n2(t),

n(0) = f.
(1.2)

Let {g(t, ·) : t > 0} be a continuous C+
p (Rd)-valued path such that for each a > 0 there

is a constant Ca > 0 such that g(t) 6 Caφp for all t ∈ [0, a]. The weighted occupation
time of the super α-stable process may be determined by

E exp(−

∫ t

0

〈Xs, g(s)〉ds) = exp{−〈µ,m(0, t, ·)〉}, (1.3)

where m(0, ·, ·) is the unique mild solution of






ṁ(s) = ∆αm(s) − m2(s) + g(t − s), 0 6 s 6 t,

m(0) = 0.
(1.4)

See e.g. Iscoe[5].

For the path-valued setting, we consider the numerical centered occupation time pro-
cess ZT

t (f),

ZT
t (f) := a−1

d (T )

∫ Tt

0

[〈Xs, f〉 − E 〈Xs, f〉]ds, f ∈ Cp(R
d)+, (1.5)

where

ad(T ) =















T ( 3

2
−

d
2α

), d/2 < α < d,

(T log T )
1

2 , d = 2α,

T
1

2 , d > 2α.

(1.6)
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Theorem 1.1. For d > α, as T → ∞, in finite dimensional distribution sense

ZT
t (f) −→ Zt(f),

in C([0,∞), R), and the finite dimensional distribution of (Zt(f))t>0 is characterized by
the Laplace transformation given by

E exp
{

−
k

∑

i=1

θiZti
(f)

}

= exp{θ̂Aθ̂′},

where 0 6 t1 6 t2 · · · 6 tk, 0 6 θ1, θ2, · · · , θk, θ̂ = (θ1, θ2, · · · , θk), A = (aij)k×k ,

(i) When α < d < 2α (0 < α 6 2),

aij = E [Zti
(f)Ztj

(f)]

=
pα(1, 0)

Cd,α

〈λ, f〉2
[

t
3−d/α
i + t

3−d/α
j −

1

2
(ti + tj)

3−d/α −
1

2
|ti − tj |

3−d/α

]

,

i.e. Zt(f) is a Gaussian process with covariance

E [Zs(f)Zt(f)]

=
2pα(1, 0)

Cd,α

〈λ, f〉2
[

s3−d/α + t3−d/α −
1

2
(s + t)3−d/α −

1

2
|s − t|3−d/α

]

,

and

Cd,α =
( d

α
− 1

)(

2 −
d

α

)(

3 −
d

α

)

.

(ii) When d > 2α, aij = Cd min(ti, tj), i.e. Zt(f) is Brownian motion, with covari-
ance 2Cd min(s, t), and

Cd =







pα(1, 0)〈λ, f〉2, d = 2α,
∫

∞

0 dr
∫

∞

0 dr′
∫

f(y)P α
r+r′f(y)dy, d > 2α.

Remark 1.1. For d > α, the limiting process (Zt(f))t>0 is something like frac-
tional Brownian motion, but there is some difference in the covariance. (Recall that the
fractional Brownian motion with Hurst parameter H has covariance 1

2
{|t1|

2H + |t2|
2H −

|t1 − t2|
2H} (see for example, ref. [11])).

Remark 1.2. We only obtain a limit in the finite dimensional distribution sense, the
tightness has not been proved yet. Actually, we are uncertain whether tightness holds for
this situation, and we leave it as an open problem.

As a byproduct, we get a central limit theorem in the intermediate and critical dimen-
sions for the super α-stable processes; whereas for the higher dimensions (i.e. d > 2α),
the result is well known by Iscoe (Theorem 5.4 in ref. [5]). Consider the centered occupa-
tion time process YT (f),

YT (f) := a−1
d (T )

∫ T

0

[〈Xs, f〉 − E 〈Xs, f〉]ds, f ∈ Cp(R
3)+. (1.7)

Proposition 1.1. As T → ∞,

YT (f) −→ Y∞(f),
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where Y∞(f) is a centered Gaussian random variable and

(i) for α < d < 2α (0 < α 6 2), ad(T ) = T ( 3

2
−

d
2α

), and the variance of Y∞(f) is

E (Y 2
∞

(f)) =
2

Cd,α

(1 − 21−d/α)pα(1, 0)〈λ, f〉2;

(ii) for d = 2α (0 < α 6 2), ad(T ) = (T log T )1/2, and the variance of Y∞(f) is

E (Y 2
∞

(f)) =
1

2
pα(1, 0)〈λ, f〉2.

The proof is similar as in Theorem 1.1, we omit the details.

2 Proofs

To simplify the notation, we shall consider k = 2 and let fT := a−1
d (T )f . From (1.3),

(1.4) and (1.5) the Laplace transformation of (ZT
t1

(f), ZT
t2

(f)), (0 6 t1 6 t2, 0 6 θ1, θ2)
is given by

E exp
{

−θ1Z
T
t1

(f) − θ2Z
T
t2

(f)
}

= E exp

{

−

∫ Tt2

0

[

〈Xs, θ1fT 1[0,T t1](s) + θ2fT 〉

− E (〈Xs, θ1fT 1[0,T t1](s) + θ2fT 〉)
]

ds

}

= exp

{

∫ Tt2

0

〈λ, u2
T (s, ·)〉ds

}

, (2.1)

where uT (s, x) is the mild solution of the equation






u̇T (s) = ∆αuT (s) − u2
T (s) + θ1fT1[0,T t1](T t2 − s) + θ2fT , 0 6 s 6 T t2,

uT (0) = 0,

(2.2)

i.e.






u̇T (s) = ∆αuT (s) − u2
T (s) + θ1fT 1[T (t2−t1),T t2](s) + θ2fT , 0 6 s 6 T t2,

uT (0) = 0,

(2.3)

and with mild form

uT (s, x) =

∫ s

0

P α
s−r[θ1fT 1[T (t2−t1),T t2](r) + θ2fT ](x)dr

−

∫ s

0

P α
s−ruT (r, ·)2(x)dr. (2.4)

Let

AT (θ1, θ2; t1, t2) =

∫ Tt2

0

〈λ, [

∫ s

0

P α
s−r(θ1fT 1[T (t2−t1),T t2](r) + θ2fT )dr]2〉ds. (2.5)
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We first note that (let δ = t2 − t1)

AT (θ1, θ2; t1, t2)

= a−2
d (T )

∫ Tt2

0

ds

∫ s

0

dr

∫ s

0

dr′

∫ ∫

pα(2s − r − r′, y, z)

×[θ1f(y)1[Tδ,T t2](r) + θ2f(y)][θ1f(z)1[Tδ,T t2](r
′) + θ2f(z)]dydz

=: A
(1)
T + A

(2)
T + A

(3)
T + A

(4)
T ,

where

A
(1)
T = θ2

1a
−2
d (T )

∫ Tt2

Tδ

ds

∫ s−Tδ

0

dr

∫ s−Tδ

0

dr′

∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz,

A
(2)
T = θ1θ2a

−2
d (T )

∫ Tt2

Tδ

ds

∫ s

0

dr

∫ s−Tδ

0

dr′

∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz,

A
(3)
T = θ1θ2a

−2
d (T )

∫ Tt2

Tδ

ds

∫ s−Tδ

0

dr

∫ s

0

dr′

∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz,

A
(4)
T = θ2

2a
−2
d (T )

∫ Tt2

0

ds

∫ s

0

dr

∫ s

0

dr′

∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz.

We will consider α < d < 2α (0 < α 6 2) at first by the following two lemmas.

Lemma 2.1. Let α < d < 2α (0 < α 6 2), then

lim
T→∞

AT (θ1, θ2; t1, t2) = θ̂Aθ̂′,

where θ̂, A are as in Theorem 1.1 (with k = 2).

Proof. Recall ad(T ) in (1.6) and the self-similar property of the transition density
function of the α-stable process, when α < d < 2α,

A(1)
T = θ2

1

∫ t2

δ

ds

∫ s−δ

0

dr

∫ s−δ

0

dr′

×

∫ ∫

(r + r′)−
d
α pα(1, (T (r + r′))−1/α(y − z))f(y)f(z)dydz,

by dominated convergence theorem

lim
T→∞

A(1)
T = θ2

1p
α(1, 0)〈λ, f〉2

∫ t2

δ

ds

∫ s−δ

0

dr

∫ s−δ

0

(r + r′)−
d
α dr′

=
2

Cd,α

(1 − 21−d/α)pα(1, 0)〈λ, f〉2θ2
1t

3−d/α
1 .

Similarly, we get

lim
T→∞

A
(2)
T = lim

T→∞

A
(3)
T

=
〈λ, f〉2

Cd,α

pα(1, 0)θ1θ2

[

t
3−d/α
1 +t

3−d/α
2 −

(t1+t2)
3−d/α

2
−
|t1 − t2|

3−d/α

2

]

,

lim
T→∞

A
(4)
T =

2

Cd,α

(1 − 21−d/α)pα(1, 0)〈λ, f〉2θ2
2t

3−d/α
2 ,

where Cd,α is given in Theorem 1.1. Combining the above, we are done.

Copyright by Science in China Press 2004



Functional central limit theorem for super α-stable processes 879

Lemma 2.2. Let α < d < 2α (0 < α 6 2),

βT (θ1, θ2; t1, t2) := AT (θ1, θ2; t1, t2) −

∫ Tt2

0

〈λ, u2
T (s, ·)〉ds.

Then
lim

T→∞

βT (θ1, θ2; t1, t2) = 0.

Proof. Let

GT (s) =

∫ s

0

P α
s−r[θ1fT 1[T (t2−t1),T t2](r) + θ2fT ]dr,

from (2.4) we know that

0 6 uT (s) 6 GT (s) 6 C

∫ s

0

P α
s−rfT dr,

where C is a positive constant (it can take different values in different lines), and

0 6 G2
T (s) − u2

T (s) 6 2GT (s) ·

∫ s

0

P α
s−ru

2
T (r)dr.

Then

βT (θ1, θ2; t1, t2) =

∫ Tt2

0

〈λ,G2
T (s) − u2

T (s)〉ds

6 2

∫ Tt2

0

〈λ,GT (s) ·

∫ s

0

P α
s−ru

2
T (r)dr〉ds

6 C

∫ Tt2

0

〈λ,

∫ s

0

P α
s−r′fTdr′ ·

∫ s

0

P α
s−r[

∫ r

0

P α
r−hfT dh]2dr〉ds

6 Cad(T )−3T 3−d/α

∫ t2

0

ds

∫ s

0

dr′

∫ s

0

pα(2s − r − r, 0)dr

·

∫

[

∫ Tr

0

P α
h fT dh]2(z)dz

6 Cad(T )−3T 5−2d/α

∫ t2

0

ds

∫ s

0

dr′

∫ s

0

pα(2s − r − r, 0)dr

·

∫ t2

0

dh

∫ t2

0

pα(h + h′, 0)dh′,

which goes to 0 as T → ∞, because the integral at the right hand side is finite and
ad(T )−3T 5−2d/α = T 1/2−d/2α → 0 when α < d < 2α. This completes the proof.

Remark 2.1. To consider k-dimensional distribution of the process ZT
t where k >

2, it is enough to replace θ1fT 1[0,T t1](T t2 − s) + θ2fT by
k−1
∑

i=1

θifT 1[0,T ti](T tk − s) + θkfT

in eq. (2.2), and we can prove the counterpart of Lemma 2.1 and Lemma 2.2 with a bit
more complicated calculation.

Proof of part (i) of Theorem 1.1. Combining Lemma 2.1 and Lemma 2.2 with
(2.1), we are done by the discussion in Theorem 5.4 of Iscoe[5] on bilateral Laplace trans-
form. Q.E.D.
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We can prove part (ii) of Theorem 1.1 by the same method, so we will only calculate
the limit of AT and the remaining proof is similar as that of part (i). Recall (2.5), and
t1 < t2, δ = t2 − t1. Firstly, note that

A
(1)
T = θ2

1a
−2
d (T )

∫ Tt2

Tδ

ds

∫ s−Tδ

0

dr

∫ s−Tδ

0

dr′

∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz

= θ2
1a

−2
d (T )T

∫ t2

δ

ds

∫ (s−δ)T

0

dr

∫ (s−δ)T

0

dr′

∫ ∫

pα(r+r′, y, z)f(y)f(z)dydz.

When d > 2α, recall (1.6),

A
(1)
T = θ2

1

∫ t2

δ

ds

∫ (s−δ)T

0

dr

∫ (s−δ)T

0

dr′

∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz,

and by monotone convergence theorem

lim
T→∞

A
(1)
T = θ2

1

∫ t2

δ

ds

∫

∞

0

dr

∫

∞

0

dr′

∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz

= θ2
1Cdt1.

When d = 2α,

lim
T→∞

A
(1)
T = lim

T→∞

θ2
1(log T )−1

∫ t2

δ

ds

∫ (s−δ)T

0

dr′

∫ (s−δ)T

0

dr
∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz

= lim
T→∞

θ2
1(log T )−1

∫ t2

δ

ds

∫ (s−δ)T

a

dr′

∫ (s−δ)T

a

dr
∫ ∫

pα(r + r′, y, z)f(y)f(z)dydz

= lim
T→∞

θ2
1(log T )−1

∫ t2

δ

ds

∫ (s−δ)T

a

dr′

∫ (s−δ)T+r′

a+r′

dr

∫ ∫

pα(r, y, z)f(y)f(z)dydz,

where a is a positive constant. Breaking up the integral over r at (s − δ)T + a and
interchanging the order of integral, we get

lim
T→∞

A
(1)
T = θ2

1 lim
T→∞

∫ t2

δ

[I1(T, s) + I2(T, s)]ds,

where

I1(T, s) = (log T )−1

∫ (s−δ)T+a

2a

(r − 2a)r−2dr
∫ ∫

pα(1, r−1/α(y − z))f(y)f(z)dydz,

I2(T, s) = (log T )−1

∫ 2(s−δ)T

(s−δ)T+a

(2(s − δ)T − r)r−2dr

∫ ∫

pα(1, r−1/α(y − z))f(y)f(z)dydz.

But by a simple calculation,

0 6 I2(T, s)
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6 (log T )−1pα(1, 0)〈λ, f〉2
∫ 2(s−δ)T

(s−δ)T+a

((s − δ)T − a)((s − δ)T + a)−2dr

6 (log T )−1pα(1, 0)〈λ, f〉2,

and then

lim
T→∞

∫ t2

δ

I2(T, s)ds = 0.

Similarly,

0 6 I1(T, s) 6 (log T )−1pα(1, 0)〈λ, f〉2
∫ (s−δ)T+a

2a

r−1dr

6 2pα(1, 0)〈λ, f〉2,

when T is large enough. Then by dominated convergence theorem and L’Hopsital’s rule

lim
T→∞

A
(1)
T = θ2

1 lim
T→∞

∫ t2

δ

I1(T, s)ds = θ2
1p

α(1, 0)〈λ, f〉2t1.

By the same method, we get

lim
T→∞

A
(2)
T = lim

T→∞

A
(3)
T = θ1θ2Cdt1, lim

T→∞

A
(4)
T = θ2

2Cdt2,

where

Cd =







pα(1, 0)〈λ, f〉2, d = 2α
∫

∞

0 dr
∫

∞

0 dr′
∫

f(y)P α
r+r′f(y)dy, d > 2α.
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