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Local large deviation principles are established in dimensions d \ 3 for the super
Brownian motion with random immigration X+

t , where the immigration rate is
governed by the trajectory of another super-Brownian motion +. The speed
function is t for d \ 4 and t1/2 for d=3, compared with the existing results, the
interesting phenomenon happened in d=4 with speed t (although only the
upper large deviation bound is derived here) is just because the structure of this
new model: the random immigration ‘‘smooth’’ the critical dimension in some
sense. The rate function are characterized by an evolution equation.

KEY WORDS: Large deviation; super-Brownian motion; random immigration;
evolution equation.

1. INTRODUCTION AND STATEMENT OF RESULTS

Measure-valued branching processes, or superprocesses, have been studied
extensively in recent years, for their rich mathematical structures and as the
theoretical basis for studies of particle populations appearing in a number
of applications. For the general theory, we refer to Dawson, (2) Dynkin, (8)

etc. Immigration structure associated with the superprocesses has been
studied by Dynkin, (8) Li, (23, 24) Li and Shiga, (25) etc., where the immigration
rate is governed by a determined measure. By randomizing the immigration
rate, Hong and Li (15) constructed the super-Brownian motion with super-
Brownian immigration (SBMSBI, for short), where the immigration rate is
governed by the trajectory of another super-Brownian motion, see also
Hong. (12, 13) The study of such model (SBMSBI) is also motivated by the
work of Dawson and Fleishmann, (3) where the branching mechanism was



randomized and got to the catalytic super-Brownian motion. Superpro-
cesses in random medium has received much attention in recent years, see
also Evans and Perkins, (10) Mytnik, (27) etc.

Large deviation principles (LDP) for the occupation time of the super-
Brownian motion have been considered by many authors, see, e.g., Refs. 6,
19–21, etc. Iscoe and Lee consider for the dimension d=3, 4 in Ref. 19 and
Lee for d \ 5 in Ref. 20, where they proved the speed function is t1/2 for
d=3, t for d \ 5 and log t/t for d=4.

In the present paper, we will discuss the large deviation principles for
SBMSBI itself. As pointed out by Hong and Li, (15) the SBMSBI itself pre-
sents the ergodicity with norming t because of the (random) immigration.
We will prove a local large deviation principles for SBMSBI itself with the
speed function t for d \ 4 and t1/2 for d=3, interesting phenomena is
happened at the critical dimension (d=4) which reveals that the random
immigration ‘‘smooth’’ the critical dimension in the sense that it does not
appear the ‘‘log’’ term; Whereas for the super-Brownian motion (without
immigration), the LDP were proved for the occupation time process not
itself; For the occupation time of the SBMSBI, Hong (13) have consider the
longtime behavior of it and, recently Hong and Zhao (16) have proved
the LDP in higher dimensions. After this paper has submitted, Hong (14) got
the moderate deviation for the SBMSBI, which fill in the gap of the central
limit behavior and the large deviation.

1.1. The Model SBMSBI

We first recall the concept of SBMSBI briefly. Let C(Rd) denote the
space of continuous bounded functions on Rd. We fix a constant p > d and
let fp(x) :=(1+|x|2)−p/2 for x ¥ Rd. Let Cp(Rd) :={f ¥ C(Rd) : |f(x)| [

const · fp(x)}. In duality, let Mp(Rd) be the space of Radon measures m on
Rd such that Om, fP :=> f(x) m(dx) < . for all f ¥ Cp(Rd). We endow
Mp(Rd) with the p-vague topology, that is, mk Q m if and only if Omk, fPQ

Om, fP for all f ¥ Cp(Rd). Then Mp(Rd) is metrizable. Throughout this
paper, l denotes the Lebesgue measure on Rd.

Suppose that (wt, t \ 0) is a standard Brownian motion in Rd with
semigroup (Pt)t \ 0. A super-Brownian motion +=(+t, Pm) is an Mp(Rd)-
valued Markov process with +0=m and the transition probabilities given
by

E exp{ −O+t, fP}=exp{ −Om, v(t, · )P}, f ¥ C+
p (Rd), (1.1)

where v( · , · ) is the unique mild solution of the evolution equation

˛ v̇(t)=Dv(t) − v2(t)
v(0)=f.

(1.2)
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Let {g(t, · ): t \ 0} be a continuous C+
p (Rd)-valued path such that for each

a > 0 there is a constant Ca > 0 such that g(t) [ Cafp for all t ¥ [0, a]. The
weighted occupation time of the super Brownian motion may be deter-
mined by

E exp 1−F
t

0
O+s, g(s)P ds2=exp{ −Om, u(0, t, · )P}, (1.3)

where u(0, · , · ) is the unique mild solution of

˛ u̇(s)=Du(s) − u2(s)+g(t − s), 0 [ s [ t
u(0)=0.

(1.4)

See, e.g., Iscoe. (17)

Suppose that {ct, t \ 0} is an Mp(Rd)-valued continuous path. A super-
Brownian motion with immigration determined by {ct, t \ 0} is an Mp(Rd)-
valued Markov process Xc=(Xc

t , Qc
m) with transition probabilities given

by

E exp(−OXc
t , fP)=exp 3 −Om, v(t, · )P− F

t

0
Ocs, v(t − s, · )P ds4 ,

f ¥ C+
p (Rd), (1.5)

where v( · , · ) is given by (1.2); see, e.g., Dawson (2) and Li and Wang. (26)

Based on (1.3) and (1.5) it is not difficult to construct a probability
space (W, F, Q) on which the processes {+t: t \ 0} and {X+

t : t \ 0} are
defined, where {+t: t \ 0} is a super Brownian motion with +0=l and,
given {+t: t \ 0}, the process {X+

t : t \ 0} is a super Brownian motion with
immigration determined by {+t: t \ 0} with X+

0=l. By (1.3) and (1.5) we
have

E exp{ −OX+
t , fP}=E[E exp{ −OX+

t , fP} | {s(+s, s [ t)}]

=E exp 3 −Ol, v(t, · )P− F
t

o
O+s, v(t − s, · )P ds4

=exp{ −Ol, v(t, · )P−Ol, u(t, · )P} (1.6)

where u( · , · ) is the unique mild solution of the equation

˛ u̇(s)=Du(s) − u2(s)+v(s), 0 [ s [ t
u(0)=0

(1.7)

and v( · , · ) is the mild solution of Eq. (1.2).
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The process {X+
t : t \ 0, Q} is what we call super-Brownian motion with

super-Brownian immigration (SBMSBI), for details, see Hong and Li (15) and
Hong, (13) and it may be considered as one kind of multitype superprocesses,
see also Dawson, Gorostiza, and Li, (4) Gorostiza and Lopez-Mimbela, (11)

and Li. (22)

1.2. Statement of the Main Results

In this paragraph, we fix f ¥ C+
p (Rd) satisfying Ol, fP=1 and let

W(t) :=
1
t
OX+

t , fP,

and

Ld(t, h) :=c−1
d (t) log E exp[hcd(t) W(t)], (1.8)

where the speed function is defined by

cd(t)=˛ t1/2, d=3
t, d \ 4.

The following estimation is useful in our proof, for any f ¥ C+
p (Rd),

Pt f [ c(1 N t−d/2). (1.9)

where c=max{(2p)−d/2, ||f||} is a positive constant, and then a :=
>.

0 c(1 N r−d/2) dr < . when d \ 3.
To obtain the LDP, based on the Gärtner–Ellis Theorem, (5) the key

step is to prove the existence of the limit function of Ld(t, h) as t Q . and
some properties of the limit function.

For this purpose, it is proved below that for d \ 4 the following equa-
tions

˛“v(t, x; h)
“t

=Dv(t, x; h)+v2(t, x; h)

v(0, x; h)=hf

(1.10)

and

˛“u(t, x; h)
“t

=Du(t, x; h)+u2(t, x; h)+v(t, x; h)

u(0, x; h)=0

(1.11)
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admit unique mild solutions v(t, x; h) and u(t, x; h) respectively when
|h| < 1

4a . Furthermore, for d \ 5, there is d > 0 such that

L(h) :=lim
t Q .

Ld(t, h)=h+F
.

0
Ol, [v(s, · ; h)]2P ds, (1.12)

exists and is strictly convex, continuously differentiable in |h| < d < 1
4a with

LŒ(0)=1.
Let I(a) be the Legendre transform of L(h), i.e.,

I(a) :=sup
|h| < d

[ah − L(h)]. (1.13)

Then we prove a local LDP for d \ 5:

Theorem 1.1. For d \ 5, the law of Wt under Q admit the LDP with
speed function t and rate function I(a), i.e., there exists a neighborhood O
of 1 such that if U … O is open and C … O is closed, then

lim inf
t Q .

1
t

log Q{W(t) ¥ U} \ − inf
a ¥ U

I(a),

lim sup
t Q .

1
t

log Q{W(t) ¥ C} [ − inf
a ¥ C

I(a).

For d=4, we have

lim sup
t Q .

L4(t, h) [ h+F
.

0
Ol, [v(s, · ; h)]2P ds+cb(h)2 :=L4(h), (1.14)

where b(h) is given below in Lemma 2.4, and L4(h) is finite, strictly
convex, continuously differentiable in |h| < 1

4a . Let I4(a) be the Legendre
transform of L(h), we obtain an upper large deviation bound for d=4,

Theorem 1.2. For d=4, the law of Wt under Q admit the upper
large deviation bound with speed function t and rate function I4(a), i.e., for
any closed C,

lim sup
t Q .

1
t

log Q{W(t) ¥ C} [ − inf
a ¥ C

I4(a).
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Remark 1.1. At this moment, we only obtain the upper large devia-
tion bound for d=4 because we can not get the exact limit of (1.14), but it
is enough to ensure the speed function is right t. It is an interesting ques-
tion to look for the lower bound for d=4.

For d=3, we will prove in Lemma 3.8 that the equation

˛“ū(t)
“t

=Dū(t)+ū2(t)+hp(t) 0 [ t [ 1

u(0)=0

(1.15)

admit unique mild solutions ū(t, · ; h) ¥ C([0, 1], L2(R3)) for |h| < 3
16c3

,
where c3=(2p)−3/2, p(t)=p(t, x) is the transition density function of the
Brownian motion. Moreover we will prove that there is d3 > 0 such that

L3(h) :=lim
t Q .

Ld(t, h)=Ol, ū(1, · ; h)P,

which is continuous differential and strictly convex in |h| < d3 < 3
16c3

with
L −

3(0)=1. Let I3(a) be the Legendre transform of L3(h) , i.e.,

I3(a) := sup
|h| < d3

[ah − L3(h)]. (1.16)

Then we have

Theorem 1.3. For d=3, the law of Wt under Q admit the LDP with
speed function t1/2 and rate function I3(a), i.e., there exists a neighborhood
O of 1 such that if U … O is open and C … O is closed, then

lim inf
t Q .

t−1/2 log Q{W(t) ¥ U} \ − inf
a ¥ U

I3(a),

lim sup
t Q .

t−1/2 log Q{W(t) ¥ C} [ − inf
a ¥ C

I3(a).

We will prove Theorem 1.1 and 1.2 in Section 2, Theorem 1.3 in Sec-
tion 3. Different from Lee (20) and Iscoe and Lee, (19) where they use the
partial differential equation method to get the result, our technique is based
on Dynkin’s moment formula and the structure of this model to prove the
existence of the solutions of the correspondence equations and to get some
useful estimations for the solutions, which play a key role in the proofs.
For d=3, to prove the L2-convergence of the evolution equation, with
some estimations in hand, the technique is adapted from Iscoe. (18)
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Remark 1.2. (a) It should be pointed out that we obtained the LDP
for the SBMSBI itself, whereas for the super-Brownian motion (without
immigration), large deviations have been proved for the occupation time of
it (see, e.g., Refs. 6, 19–21, etc.).

(b) The method of moment is effective in our proofs, but we can only
obtain local large deviation principles because the convergence of the loga-
rithmic generating function is only established for small parameters and we
can verified the LDP only in a small neighborhood, which is the limitation
of this method. In order to prove a full LDP, one would have to prove the
convergence up to a critical parameter and then the steepness. This is
rather challenging but would provide more insight, and we leave it as an
open problem.

2. PROOFS OF THEOREM 1.1 AND 1.2

Firstly, for any functions g(t, · ), h(t, · ) ¥ Cp(Rd), -t \ 0, p > 1, we
define the convolution

g(t, x) f h(t, x) :=F
t

0
Ps[g(t − s, · ) · h(t − s, · )](x) ds. (2.1)

Let

3gg1(t, x) :=g(t, x)
g(t, x)gn :=;n − 1

k=1 g(t, x)gk f g(t, x)g(n − k),
(2.2)

and {Bn, n \ 1} is a sequence of positive numbers determined by

3B1=B2=1
Bn=;n − 1

k=1 BkBn − k,
(2.3)

see Dynkin (7) and Wang. (28) Recall (1.9) for the positive constant c.

Lemma 2.1. Let d \ 3 and F(t, x)=Pt f(x), then

F(t, x)gn [ Bnan − 1 · Pt f(x) (2.4)

where a :=>.

0 c(1 N t−d/2) dr < . when d \ 3.

Proof. We will prove (2.4) by induction in n. It is trivial for n=1.
When n=2, from the definition and (1.9), we have
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F(t, x)g2=F
t

0
Ps[Pt − s f]2 (x) ds

[ Pt f(x) F
t

0
c(1 N (t − s)−d/2) ds

=a · Pt f(x),

as desired. If (2.4) is true for all k < n, by (2.2) and (2.3) we get

F(t, x)gn [ C
n − 1

1
Bkak − 1 · Pt f(x) f Bn − kan − k − 1 · Pt f(x)

=Bnan − 2 · Pt f(x) f Pt f(x)

[ Bnan − 1 · Pt f(x),

and then the proof is complete by induction. i

Lemma 2.2. Let d \ 3, |h| < 1
4a , then Eq. (1.10) admits an unique mild

solution v(t, x; h), moreover it is analytic in |h| < 1
4a and

|v(t, x; h)| [ b(h) · Pt f(x), (2.5)

where b(h)=(2a)−1 [1 − (1 − 4a |h|)1/2].

Proof. The mild form of Eq. (1.10) is

v(t, x; h)=hPt f(x)+F
t

0
Ps[v(t − s, · ; h)]2 (x) ds, (2.6)

i.e.,

v(t, x; h)=hF(t, x)+v(t, x; h) f v(t, x; h). (2.7)

Then

v(t, x; h)= C
.

n=1
F(t, x)gn hn (2.8)

by Dynkin (7) (see also Wang (28)) while we prove the convergence of
the series on the right hand, where F(t, x) is given in Lemma 2.1. By
Lemma 2.1, the series is dominated by

|v(t, x; h)| [ C
.

n=1
Bnan − 1 |h|n · Pt f(x). (2.9)

906 Hong



On the other hand, we know (see Dawson, (1) also Dynkin (7) and Wang (28))
that the function g(z)=1

2 [1 − (1 − 4z)1/2] can be expanded as a power
series

g(z)=1
2 [1 − (1 − 4z)1/2]= C

.

n=1
Bnzn,

when |z| < 1/4, where Bn is given in (2.3). So the series (2.8) is absolutely
convergence for |h| < 1

4a , and from (2.9) we get

|v(t, x; h)| [ (2a)−1 [1 − (1 − 4a |h|)1/2] · Pt f(x),

as desired. i

The following two Lemmas can be proved by the same method, and
they reflects the special structure properties of our model SBMSBI, but
note that they are invalid for d=3.

Lemma 2.3. Let d \ 4, |h| < 1
4a , v(t, x; h) be the mild solution of

Eq. (1.10), and

G(t, x; h)=F
t

0
Psv(t − s, · ; h)(x) ds,

then

G(t, x; h)gn [ Bncn − 1b(h)n · tPt f(x) (2.10)

where c is given in (1.9) and b(h) in Lemma 2.2.

Proof. By Lemma 2.2, it is trivial for n=1. For n=2,

G(t, x; h)g2=F
t

0
Ps
5F

t − s

0
Prv(t − s − r, · ; h) dr6

2

(x) ds

[ b(h)2 · F
t

0
Ps
5F

t − s

0
Pr(Pt − s − r f ) dr6

2

(x) ds

=b(h)2 · F
t

0
(t − s)2 Ps(Pt − s f )2 (x) ds

[ b(h)2 c · F
t

0
(t − s)2 [1 N (t − s)−d/2] ds · Pt f(x)

[ b(h)2 c · tPt f(x),
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we used (1.9) in the fourth step and note that > t
0 (t − s)2 [1 N (t − s)−d/2] ds

[ t when d \ 4. If (2.10) is true for all k < n, we get

G(t, x; h)gn [ C
n − 1

k=1
Bkck − 1b(h)k · [tPt f] f Bn − kcn − k − 1b(h)n − k · [tPt f](x)

=Bncn − 2b(h)n · F
t

o
Ps[(t − s) Pt − s f]2 (x) ds

[ Bncn − 1b(h)n · tPt f(x)

as desired by induction. i

Lemma 2.4. Let d \ 4, |h| < 1
4a , v(t, x; h) be the mild solution of

Eq. (1.10), then Eq. (1.11) admits an unique mild solution u(t, x; h), more-
over it is analytic in |h| < 1

4a and

|u(t, x; h)| [ b(h) · tPt f(x), (2.11)

where b(h)=(2c)−1 [1 − (1 − 4b(h) c)1/2].

Proof. The mild form of Eq. (1.11) is

u(t, x; h)=F
t

0
Psv(t − s, · ; h)(x)+F

t

0
Ps[u(t − s, · ; h)]2 (x) ds, (2.12)

i.e.,

u(t, x; h)=G(t, x; h)+u(t, x; h) f u(t, x; h). (2.13)

Then

u(t, x; h)= C
.

n=1
G(t, x; h)gn (2.14)

while we prove the convergence of the series on the right hand, where
G(t, x; h) is given in Lemma 2.3. By Lemma 2.3, the series is dominated by

|u(t, x; h)| [ C
.

n=1
Bncn − 1b(h)n · tPt f(x). (2.15)
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It is easy to check that |4b(h) c| < 1 whenever |h| < 1
4a , then the series in

(2.14) is uniform absolute convergence by the same method in Lemma 2.2,
and

|u(t, x; h)| [ (2c)−1 [1 − (1 − 4b(h) c)1/2] · tPt f(x), (2.16)

which completes the proof. i

Lemma 2.5. Let d \ 4, X+
t be the SBMSBI, then for |h| < 1

4a , we have

E exp{OX+
t , hfP}=exp{Ol, v(t, · ; h)P+Ol, u(t, · ; h)P} (2.17)

where v(t, x; h) and u(t, x; h) are the mild solutions of Eqs. (1.10) and
(1.11) respectively.

Proof. From the introduction we know that the Laplace transition
functional of the SBMSBI is given by (1.6), (1.2) (with f being replaced by
− hf) and (1.7) for h [ 0, i.e., (in which − h Y h, − v Y v, − u Y u).

E exp{OX+
t , hfP}=exp{Ol, v(t, · ; h)P+Ol, u(t, · ; h)P}, (2.18)

Where v(t, x; h) and u(t, x; h) are the mild solutions of the following equa-
tions respectively,

˛“v(t)
“t

=Dv(t)+v2(t)

v(0)=hf

(2.19)

and

˛“u(t)
“t

=Du(t)+u2(t)+v(t)

u(0)=0.

So (2.17) is true when h [ 0. Note that v(t, x; h) and u(t, x; h) is analytic in
h when |h| < 1

4a by Lemma 2.2 and Lemma 2.4, then (2.17) also holds for
0 < h < 1

4a by properties of Laplace transform of probability measure on
[0, .) (cf. Ref. 29). i

Lemma 2.6. Let d \ 5, |h| < 1
4a ,

L(h) :=lim
t Q .

t−1 log E exp[htW(t)], (2.20)
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then

L(h)=h+F
.

0
Ol, [v(s, · ; h)]2P ds. (2.21)

Proof. Recall (1.8), then by Lemma 2.5 we have

L(h)=lim
t Q .

t−1[Ol, v(t, · ; h)P+Ol, u(t, · ; h)P], (2.22)

where v(t, x; h) and u(t, x; h) are the mild solutions of Eqs. (1.10) and
(1.11) respectively, i.e.,

v(t, x; h)=hPt f(x)+F
t

0
Ps[v(t − s, · ; h)]2 (x) ds, (2.23)

u(t, x; h)=F
t

0
Psv(t − s, · ; h)(x) ds+F

t

0
Ps[v(t − s, · ; h)]2 (x) ds. (2.24)

Then (recall Ol, fP=1)

Ol, v(t, · ; h)P=h+F
t

0
Ol, [v(s, · ; h)]2P ds, (2.25)

Ol, u(t, · ; h)P=F
t

0
Ol, v(s, · ; h)P ds+F

t

0
Ol, [u(s, · ; h)]2P ds. (2.26)

By (2.5) and (2.11), it is easy to check that as t Q .

F
.

0
Ol, [v(s, · ; h)]2P ds [ b(h)2 F

.

0
(1 N s−d/2) ds < .,

t−1 F
t

0
Ol, [u(s, · ; h)]2P ds [ b(h)2 t−1 F

t

0
Ol, [sPs f]2P ds

[ cb(h)2 t−1 F
t

0
s2[1 N (s−d/2)] ds Q 0,

t−1Ol, v(t, · ; h)P [ t−1Ol, b(h) Pt fPQ 0.
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Combing all the above with (2.22), by l’Hospital’s rule we get

L(h)=lim
t Q .

t−1[Ol, v(t, · ; h)P+Ol, u(t, · ; h)P]

=lim
t Q .

t−1[Ol, u(t, · ; h)P]

=lim
t Q .

t−1 5F
t

0
Ol, v(s, · ; h)P ds+F

t

0
Ol, [u(s, · ; h)]2P ds6

=lim
t Q .

Ol, v(t, x; h)P=h+F
.

0
Ol, [v(s, · ; h)]2P ds,

completes the proof. i

Lemma 2.7. Let d \ 5 and L(h) as in Lemma 2.6, then there is d > 0
such that L(h) is strictly convex, continuous differentiable in |h| < d < 1

4a
with LŒ(0)=1.

Proof. From Lemma 2.2, v(t, x; h) is analytic in h, write
vŒ(t, x; h) :=“v(t, x; h)

“h
, by (2.8) it is easy to check that for |h| < 1

4a

|vŒ(t, x; h)| [ b̄(h) Pt f,

where b̄(h)=(1 − 4ah)−1/2. Then

F
.

0
Ol, |v(s, · ; h)| |vŒ(s, · ; h)|P ds [ cb(h) b̄(h) F

.

0
(1 N s−d/2) ds < ..

So by (2.21) we get

LŒ(h)=1+F
.

0
Ol, v(s, · ; h) · vŒ(s, · ; h)P ds,

for |h| < 1
4a and then LŒ(0)=1.

Similarly,

Lœ(h)=F
.

0
Ol, vŒ(s, · ; h)2+v(s, · ; h) · vœ(s, · ; h)P ds,

we get

Lœ(0)=F
.

0
Ol, vŒ(s, · ; 0)2P ds=F

.

0
F fP2s f dx ds > 0,

and then there is d > 0 such that L(h) is strictly convex in |h| < d < 1
4a . i

Large Deviations for the Super-Brownian Motion with Super-Brownian Immigration 911



Lemma 2.8. Let d=4, |h| < 1
4a , then

lim sup
t Q .

t−1 log E exp[htW(t)]

[ h+F
.

0
Ol, [v(s, · ; h)]2P ds+cb(h)2 :=L4(h), (2.27)

and L4(h) is finite, convex and differentiable in |h| < 1
4a , where b(h) is that

in Lemma 2.4.

Proof. All the calculations carried out in Lemma 2.6 is valid here for
d=4 except that

t−1 F
t

0
Ol, [u(s, · ; h)]2P ds [ b(h)2 t−1 F

t

0
Ol, [sPs f]2P ds

[ cb(h)2 t−1 F
t

0
s2[1 N (s−2)] ds

[ cb(h)2 < ..

Then

ū(h) :=lim sup
t Q .

t−1 F
t

0
Ol, [u(s, · ; h)]2P ds, (2.28)

is finite for |h| < 1
4a . We get

lim sup
t Q .

t−1 log E exp[htW(t)]

=h+F
.

0
Ol, [v(s, · ; h)]2P ds+ū(h)

[ h+F
.

0
Ol, [v(s, · ; h)]2P ds+cb(h)2 :=L4(h),

and the properties of L4(h) can be proved similar to Lemma 2.7. i

Proof of Theorem 1.1. Based on Lemma 2.7, Theorem 1.1 followed
from the general large deviation result Gärtner–Ellis Theorem [cf. Dembo
and Zeitouni (5) or Ellis (9)]. The neighborhood O is that of {LŒ(h): |h| < d}.

i

912 Hong



Proof of Theorem 1.2. The upper bound for the compact set is
followed by Theorem 4.5.3 of Ref. 5. For the closed set, we need to estab-
lish exponential tightness of the distribution of Wt, which can be proved by
the fact that L4(h) is finite for |h| < 1

4a (see the proof of the Gärtner–Ellis
Theorem (5)). i

3. PROOF OF THEOREM 1.3.

In this section, we will consider the large deviation for the SBMSBI in
d=3. Recall the Laplace transition functional of X+

t , (in which − h Y h,
− v Y v, − u Y u, h [ 0).

E exp{OX+
t , ht−1

2fP}=exp{Ol, v(t, · ; h)P+Ol, u(t, · ; h)P}, (3.1)

where v(t, x; h) and u(t, x; h) are the mild solutions of the following equa-
tions respectively,

˛“v(s)
“s

=Dv(s)+v2(s), 0 [ s [ t

v(0)=ht−1
2f

(3.2)

and

˛“u(s)
“s

=Du(s)+u2(s)+v(s), 0 [ s [ t

u(0)=0.

(3.3)

Let ū(s, x; t, h) :=tu(ts, t
1
2x; h), then by (3.3) ū(s, x; t, h) satisfy the follow-

ing equation,

˛“ū(s, x; t, h)
“s

=Dū(s, x; t, h)+ū2(s, x; t, h)+t2v(ts, t
1
2x; h), 0 [ s [ 1

ū(0, x; h)=0, (3.4)

the mild form of (3.4) is,

ū(s, x; t, h)=t2 F
s

0
Ps − rv(tr, t

1
2x; h) dr+F

s

0
Ps − r ū2(r, x; t, h) dr, 0 [ s [ 1

(3.5)
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where v(s, x; h) is the mild solution of (3.2), i.e.,

v(s, x; h)=ht−1
2Ps f+F

s

0
Ps − rv2(r, x; h) dr, 0 [ s [ t. (3.6)

The key step in this section is to prove the mild solution of (3.4) con-
verge to that of

˛“ū(s, x; h)
“s

=Dū(s, x; h)+ū2(s, x; h)+hp(s, x) 0 [ s [ 1

ū(0, x; h)=0,

(3.7)

as t Q ., where p(t, x) is the transition density function of Brownian
motion.

The existence of the solutions of Eqs. (3.2), (3.4), and (3.7) is well
known when h [ 0. Here we need the existence of the solutions in |h| < d

for some d > 0, and we will also use the method as in Section 2 to get the
result in the following three lemmas, which we will omit the details.

Lemma 3.1. Let d=3, |h| < t1/2

4a , F3(s, x)=t−1/2Ps f(x), then Eq. (3.6)
admits an unique mild solution v(s, x; h),

v(s, x; h)= C
.

n=1
F3(s, x)gn hn, (3.8)

moreover it is analytic in |h| < t1/2

4a and

|v(s, x; h)| [ b3(h, t) · Ps f(x), (3.9)

where b3(h, t)=(2a)−1 [1 − (1 − 4a |h| t−1/2)1/2].

For the Eq. (3.5), we have,

Lemma 3.2. Let d=3, |h| < 3
16a , G3(s, x; h)=t2 >s

0 Pr[v(t(s−r), t1/2 · ; h)]
× (x) ds, 0 [ s [ 1, t > 1, then

G(s, x; h)gn [ Bncn − 1
3 [t1/2b3(t, h)]n · s F p(s, x, t−1/2z) f(z) dz, (3.10)

where c3=(2p)−3/2, and Eq. (3.5) admits an unique mild solution
ū(s, x; t, h),

ū(s, x; t, h)= C
.

n=1
G3(s, x; h)gn (3.11)
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moreover it is analytic in |h| < 3
16a , and

|ū(s, x; t, h)| [ b3(h, t) · s F p(s, x, t−1/2z) f(z) dz, (3.12)

where b3(h, t)=(2c3)−1 [1 − (1 − 4c3t1/2b3(t, h))1/2], and a as in Lemma 2.1.

Proof. From Lemma (3.1),

|t2v(ts, t1/2x; h)| [ t2b3(t, h) · Pts f(t1/2x),

and then

G3(s, x; h)=t2 F
s

0
Pr[v(t(s − r), t1/2 · ; h)](x) ds

[ t2b3(t, h) F
s

0
F F p(r, x, y) p(t(s − r), t1/2y, z) f(z) dz dy dr

[ t1/2b3(t, h) · s F p(s, x, t−1/2z) f(z) dz.

If (3.10) is true for k < n, by (2.2), we get,

G3(s, x; h)gn [ C
n − 1

k=1
Bkck − 1

3 [t1/2b3(t, h)]k · s F p(s, x, t−1/2z) f(z) dz

f Bn − kcn − k − 1
3 [t1/2b3(t, h)]n − k · s F p(s, x, t−1/2z) f(z) dz

=Bncn − 2
3 [t1/2b3(t, h)]n

· F
s

0
Pr
5(s − r) F p(s − r, · , t−1/2z) f(z) dz6

2

(x) dr

[ Bncn − 2
3 [t1/2b3(t, h)]n

· F
s

0
(s − r)2 F p(r, x, y) F [p(s − r, y, t−1/2z)]2 f(z) dz dy dr

[ Bncn − 1
3 [t1/2b3(t, h)]n · F

s

0
(s − r)1/2 dr F p(s, x, t−1/2z) f(z) dz

[ Bncn − 1
3 [t1/2b3(t, h)]n · s F p(s, x, t−1/2z) f(z) dz,
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and (3.10) is proved by induction, in the third step we used Jensen’s
inequality. The remaining proof could carry out as Lemma 2.4, note that
|4c3t1/2b3(t, h)| < 1 whenever |h| < 3

16a . i

Lemma 3.3. Let d=3 , |h| < 1
4c3

, then the equation

˛“ū(s)
“s

=Dū(s)+ū2(s)+hp(s) 0 [ s [ 1

ū(0)=0

(3.13)

admits an unique mild solution ū(s, x; h), moreover it is nondecreasing and
analytic in |h| < 1

4c3
, and

|ū(s, x; h)| [ b̄3(h) · sp(s, x), (3.14)

where b̄3(h)=(2c3)−1 [1 − (1 − 4c3h)1/2], c3 as in Lemma 3.2. Furthermore,
we have

ū(s, x; t, h) Q ū(s, x; h), 0 [ s [ 1 (3.15)

pointwise and in L2(R3, l) for |h| < 3
16a as t Q ., where ū(s, x; t, h) is the

mild solution of (3.5).

Now we will prove that the mild solution of Eq. (3.4) convergence to
that of Eq. (3.7).

Lemma 3.4. Let d=3, then

lim
t Q .

ht3/2 F
s

0
Ps − r[(Ptr f )(t1/2 · )](x) dr=hsp(s, x), (3.16)

pointwise and in L2(R3, l) for 0 [ s [ 1.

Proof. It is easy to check that, as t Q .,

ht3/2 F
s

0
Ps − r[(Ptr f )(t1/2 · )](x) dr

=ht3/2 F
s

0
dr F

R3
dy F

R3
p(s − r, x, y) p(tr, t1/2y, z) f(z) dz

=h F
s

0
dr F

R3
dy F

R3
p(s − r, x, y) p(r, y, t−1/2z) f(z) dz

=hs F
R3

p(s, x, t−1/2z) f(z) dz

Q hsp(s, x),
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by Lebesgue’s dominated convergence theorem. Recall Ol, fP=1, we have

>ht3/2 F
s

0
Ps − r[(Ptr f )(t1/2 · )](x) dr − hsp(s, x)>

2

L2

=>hs F
R3

[p(s, x, t−1/2z) − p(s, x)] f(z) dz>
2

L2

=h2s2 F
R3

F
R3

[p(2s, t−1/2z, t−1/2zŒ) − p(2s, t−1/2z, 0)

− p(2s, t−1/2zŒ, 0)+p(2s, 0)] f(z) f(zŒ) dz dzŒ,

which goes to zero as t Q . by Lebesgue’s dominated convergence
theorem, because the integrand is dominated by 4p(2s, 0) f(z) f(zŒ), which
is integrable. i

Lemma 3.5. Let d=3, |h| < 3
16a , v(s, x; h) is the mild solution of

Eq. (3.6), then

lim
t Q .

t2 F
s

0
Ps − r

5F
tr

0
Ptr − h[v2(h, · ; h)](t1/2 · ) dh6 (x) dr=0 (3.17)

pointwise and in L2(R3, l) for 0 [ s [ 1.

Proof. From (3.9), we know that |v(s, x; h)| [ b3(h, t) · Ps f(x), note
that b3(h, t) ’ t−1/2 as t Q . we have,

t2 F
s

0
Ps − r

5F
tr

0
Ptr − h[v2(h, · ; h)](t1/2 · ) dh6 (x) dr

=t2 F
s

0
dr F

tr

0
dh F

R3
F

R3
p(s − r, x, y) p(tr − h, t1/2y, z) v2(h, z; h) dy dz

[ b3(h, t)2 t2 F
s

0
dr F

tr

0
dh F

R3
F

R3
p(s − r, x, y)

× p(tr − h, t1/2y, z)(Ph f(z))2 dy dz

[ b3(h, t)2 t1/2 F
s

0
dr F

tr

0
dh F

R3
F

R3
p(s − r, x, y) p(r, y, t−1/2zŒ) f(zŒ)

· c(1 N h−3/2) dy dzŒ

[ ab3(h, t)2 t1/2s F
R3

p(s, x, t−1/2zŒ) f(zŒ) dzŒ

Q 0,
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by Lebesgue’s dominated convergence theorem, we used (1.9) in the third
step, and the L2-convergence can be proved easily. i

Lemma 3.6. Let d=3, |h| < 3
16a , v(s, x; h) as in (3.6), then

lim
t Q .

t2 F
s

0
Ps − rv(tr, t

1
2x; h) dr=hsp(s, x), (3.18)

pointwise and in L2(R3, l) for 0 [ s [ 1.

Proof. It is enough to note that, from (3.6) we have,

t2 F
s

0
Ps−rv(tr, t

1
2x; h) dr=ht3/2 F

s

0
Ps − r[(Ptr f )(t1/2 · )](x) dr

+t2 F
s

0
Ps − r

5F
tr

0
Ptr −h[v2(h, · ; h)](t1/2 · ) dh6 (x) dr,

then (3.18) followed by Lemmas 3.4 and 3.5. i

Lemma 3.7. Let d=3, |h| < 3
16a , v(s, x; h) as in (3.6), then

ū(s, x; t, h) Q ū(s, x; h), (3.19)

pointwise and in L2(R3, l) uniformly as t Q . for 0 [ s [ 1, where
ū(s, x; t, h) and ū(s, x; t, h) are the mild solutions of Eq. (3.4) and that of
(3.7) respectively. Moreover,

lim
t Q .

Ol, ū(s, · ; t, h)P=Ol, ū(s, · ; h)P. (3.20)

Proof. Note that, from (3.12),

|ū(s, x; t, h)| [ b3(h, t) · s F p(s, x, t−1/2z) f(z) dz.

And then for t large enough

||ū(s, x; t, h)||2
L2 [ Ol, (b3(h, t) · s F p(s, x, t−1/2z) f(z) dz)2P

[ b3(h, t)2 s2p(2s, 0) [ Cs2p(2s, 0),
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because b3(h, t) Q C1, a constant, as t Q .. Based on Lemma 3.6 and this
estimation, (3.19) and (3.20) can be proved similar to that of Proposi-
tion 3.9 and Corollary 3.12 in Iscoe (18) respectively, we omit the details here.

i

Lemma 3.8. Let d=3, |h| < 3
16a ,

L3(h) :=lim
t Q .

t−1/2 log E exp[ht1/2W(t)], (3.21)

then

L3(h)=Ol, ū(1, · ; h)P (3.22)

where ū(s, x; h) is the mild solution of Eq. (3.13). And there is d3 > 0 such
that L3(h) is strictly convex, continuous differentiable in |h| < d3 < 3

16a with
LŒ(0)=1.

Proof. Recall the Laplace transition functional of the SBMSBI is
given by (in which − h Y h, − v Y v, − u Y u).

E exp{OX+
t , ht−1

2fP}=exp{Ol, v(t, · ; h)P+Ol, u(t, · ; h)P}, (3.23)

for h [ 0, where v(t, x; h) and u(t, x; h) are the mild solutions of (3.2)
and (3.3) respectively. Note that ū(s, x; t, h) :=t2u(ts, t1/2x; h), where
ū(s, x; t, h) is the mild solution of (3.5), one gets,

Ol, u(t, · ; h)P=t1/2Ol, ū(1, · ; t, h)P, (3.24)

then from (3.23) we have,

E exp{OX+
t , ht−1

2fP}=exp{Ol, v(t, · ; h)P+t1/2Ol, ū(1, · ; t, h)P}, (3.25)

by Lemma 3.1 and Lemma 3.2, both v(t, x; h) and ū(s, x; t, h) are analytic
in |h| < 3

16a when t is large enough, so (3.25) is also valid for 0 < h < 3
16a by

an analytic extension similar as Lemma 2.5.
From (3.9), we know that |v(s, x; h)| [ b3(h, t) · Ps f(x), it is easy to

verify that

lim
t Q .

t−1/2Ol, v(t, · ; h)P=0. (3.26)
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Then

L3(h)=lim
t Q .

t−1/2 log E exp[ht1/2W(t)]

=lim
t Q .

t−1/2 log E exp{OX+
t , ht−1

2fP}

=lim
t Q .

t−1/2[Ol, v(t, · ; h)P+t1/2Ol, ū(1, · ; t, h)P]

=Ol, ū(1, · ; h)P,

where ū(1, · ; h) is the mild solution of (3.7), the second step is by the defi-
nition of W in (1.8), the last step is followed by (3.26) and Lemma 3.7.

The mild solution of equation of (3.7) is

ū(s, x; h)=hsp(s, x)+F
s

0
Ps − r ū(r, · ; h)2 (x) dr.

Then

L3(h)=hs+F
1

0
Ol, ū(r, · ; h)2P dr.

We get LŒ(0)=1 and Lœ(0)=(4p)−3/2/3, and then there is d3 > 0 such that
L3(h) is strictly convex in |h| < d3 < 3

16a . i

Proof of Theorem 1.3. Based on Lemma 3.8, Theorem 1.3 followed
from the general large deviation result Gärtner–Ellis Theorem [cf. Dembo
and Zeitouni,(5) or Ellis (9)]. The neighborhood O is that of {L3Œ(h): |h| < d3}.

i
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