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A note on the passage time of finite state Markov chains1

Wenming Hong2 Ke Zhou3

Abstract

Consider a Markov chain with finite state {0, 1, · · · , d}. We give the
generation functions (or Laplace transforms) of absorbing (passage) time
in the following two situations : (1) the absorbing time of state d when
the chain starts from any state i and absorbing at state d; (2) the passage
time of any state i when the chain starts from the stationary distribution
supposed the chain is time reversible and ergodic. Example shows that
it is more convenient compared with the existing methods, especially we
can calculate the expectation of the absorbing time directly.
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1 Discrete time

1.1 Absorbing time when the process starting from any state i

Consider the discrete time Markov chain {Xn}n≥0 with finite states {0, 1, · · · , d} and absorbing
at state d, the transition probability matrix P is given by

P =


r0 p0,1 · · · p0,d−1 p0,d
q1,0 r1 · · · p1,d−1 p1,d

...
. . .

. . .
. . .

...
qd−1,0 qd−1,1 · · · rd−1 pd−1,d

0 0 · · · 0 1


(d+1)×(d+1)

.

For 0 ≤ i ≤ d, let τi,d be the absorbing time of state d starting from i, i.e.,

τi,d := inf{n ≥ 1, Xn = d when X0 = i},

and fi(s) be the generation function of τi,d,

fi(s) = Esτi,d for 0 ≤ i ≤ d, (1.1)

we have
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Theorem 1.1. For 1 ≤ j ≤ d+ 1, denote Aj(s) as the d×d sub-matrix by deleting the (d+ 1)th

row and the jth column of the matrix Id+1 − sP . Then, for 0 ≤ i ≤ d, we have

fi(s) = (−1)d−i
detAi+1(s)

detAd+1(s)
. (1.2)

�

Remark 1.1. As a consequence (see Corollary 1.1 below), for the birth-death and more general
the skip-free (upward jumps is only of unit size, and there is no restriction on downward jumps)
Markov chain with finite state {0, 1, · · · , d} and absorbing at state d, the absorbing time is
distributed as a summation of d independent geometric (or exponential) random variables.

There are many authors give out different proofs to the results. For the birth and death
chain, the well-known results can be traced back to Karlin and McGregor ([10], 1959) Keilson
([11], 1971; [12]). Kent and Longford ([13], 1983) proved the result for the discrete time version
(nearest random walk) although they have not specified the result as usual form (section 2, [13]).
Fill ([5], 2009) gave the first stochastic proof to both nearest random walk and birth and death
chain cases via duality which was established in [3]. Diaconis and Miclo ([4], 2009) presented
another probabilistic proof for birth and death chain. Gong et al ([8], 2012) gave a similar result
in the case that the state space is Z+. For the skip-free chain, Brown and Shao ([2], 1987)
first proved the result in continuous time situation; Fill ([6], 2009) gave a stochastic proof to
both discrete and continuous time cases also by using the duality, and considered the general
finite-state Markov chain situation when the chain starts from state 0.

However, the existing proofs we mentioned above are heavily relied on the initial state being
0, no matter the “analysis” method by Brown and Shao ([2], 1987) and the “stochastic” method
by Fill ([6], 2009), etc.. The first purpose of this paper (Theorem 1.1 and 2.1) is to improve
the result to the general situation: the chain starts from any state i (not just from state 0 only
([6], 2009)). In particulary, the results generalize the well-known theorems for the birth-death
(Karlin and McGregor [10], 1959) and the skip-free ([2] and [6]) Markov chain.

Before proving the Theorem, let us at first to recover the results for the skip-free (and then
the birth-death) discrete time Markov chain (Fill [6], 2009).

Corollary 1.1. Assume pi,j = 0 for j − i > 1. We have

f0(s) =

d−1∏
i=0

[
(1− λi)s
1− λis

]
, (1.3)

where λ0, · · · , λd−1 are the d non-unit eigenvalues of P .
In particular, if all of the eigenvalues are real and nonnegative, then the hitting time is dis-

tributed as the sum of d independent geometric random variables with parameters 1− λi.

Proof. Note that, 1 is an eigenvalue of P evidently. So on the one hand det(Id+1 − sP ) =
(1 − s)

∏d−1
i=0 (1 − λis) (where λ0, · · · , λd−1 are the d non-unit eigenvalues of P ); on the other

hand we have det(Id+1 − sP ) = (1− s)× detAd+1(s) from (1.2); it’s trivial to show that

detAd+1(s) =

d−1∏
i=0

(1− λis). (1.4)
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From the definition of A1, it is easy to see

detA1(s) = (−1)dp0,1p1,2 · · · pd−1,ds
d. (1.5)

By (1.2) and (1.4) we have

detA1(1) = (−1)df0(1) · detAd+1(1) = (−1)df0(1) ·
d−1∏
i=0

(1− λi).

And from (1.5), we get detA1(1) = (−1)dp0,1p1,2 · · · pd−1,d. Recall that f0(1) = 1, by (1.1), we
obtain

p0,1p1,2 · · · pd−1,d =
d−1∏
i=0

(1− λi). (1.6)

Then by (1.5) and (1.6)

detA1(s) = (−1)d
d−1∏
i=0

(1− λi)sd, (1.7)

and (1.3) holds from (1.4) and (1.7) directly . �

Remark 1.2. The following example shows that Theorem 1.1 is more convenient compared with
the existing methods in Corollary 1.1, especially we can calculate the expectation of the absorbing
time directly from (1.2).

Consider a Markov chain with d + 1 states {0, 1, 2, . . . d} whose transition matrix P can be
given by

P =


q p · · · 0 0

q 0
. . . 0 0

...
. . .

. . .
. . .

...
q 0 · · · 0 p
0 0 · · · 0 1


(d+1)×(d+1)

,

where p+ q = 1.

Corollary 1.2. For 0 ≤ i ≤ d,

fi(s) =
pd−isd−i(1− s) + pdqsd+1

1− s+ pdqsd+1
, (1.8)

and we have

Eτi,d =
1− pd−i

pdq
. (1.9)

Proof . Take full advantage of p+ q = 1, we can calculate that

detAi+1(s) = (−1)d−i
pd−isd−i(1− s) + pdqsd+1

1− ps
,
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detAd+1(s) =
1− s+ pdqsd+1

1− ps
.

We obtain (1.8) by using Theorem 2.1. Recall that Eτi,d = f
′
i (1), we can get (1.9) by some

calculation easily. �

Proof of Theorem 1.1 By decomposing the first step, for 0 ≤ i ≤ d, the generation function of
τi,d satisfies,

fi(s) = risfi(s) + pi,i+1sfi+1(s) + pi,i+2sfi+2(s) + · · · pi,d−1sfd−1(s) + pi,ds

qi,i−1sfi−1(s) + qi,i−2sfi−2(s) + · · ·+ qi,0sf0(s).

These system of equations are linear with respect to f0(s), f1(s) · · · , fd−1(s). Using Cramer’s
Rule, we can get (1.2) by solving from these equations. �

1.2 Passage time when starting from the stationary distribution

Consider a discrete time Markov chain {Xn}n≥1 with finite states {0, 1, · · · , d} starting from the

stationary distribution π := (π0, π1, . . . , πd), the transition probability matrix P̂ is given by

P̂ =


r0 p0,1 · · · p0,d−1 p0,d
q1,0 r1 · · · p1,d−1 p1,d

...
. . .

. . .
. . .

...
qd,0 qd,1 · · · qd,d−1 rd


(d+1)×(d+1)

.

In addition, write

D =


1 −π1 · · · −πd−1 −πd
0 1− r1s · · · −p1,d−1s −p1,ds
...

. . .
. . .

. . .
...

0 −qd,1s · · · −qd,d−1s 1− rds

 , (1.10)

and

D0 =


π0 −π1 · · · −πd−1 −πd
q1,0s 1− r1s · · · −p1,d−1s −p1,ds

...
. . .

. . .
. . .

...
qd,0s −qd,1s · · · −qd,d−1s 1− rds

 . (1.11)

Theorem 1.2. When the chain starts from X0 with the stationary distribution π, and

τ := inf{n ≥ 0, Xn = 0 }, (1.12)

be the passage time of state 0. Denote gπ(s) as the generation function of τ , i.e., gπ(s) = Eπsτ ;
we have

gπ(s) =
detD0

detD
,

where D and D0 are given in (1.10) and (1.11) respectively.
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Specifically, if the chain is time reversible and ergodic, Brown([1], 1999) point out the elegant
connection between the passage time stating from the stationary distribution and the interlacing
eigenvalues theorem of linear algebra. Recently, this result also proved by Fill and Lyzinski([7],
2013) with a stochastic method. In what follows, we will reprove it directly as a corollary of
Theorem 1.2.

Corollary 1.3. Let λ1, · · · , λd be the d non-unit eigenvalues of P̂ (we assume λ0 = 1), and
γ1, · · · , γd be the d eigenvalues of P̂0, which is the sub-matrix obtained by deleting the first row
and the first column of P̂ . Then we have

gπ(s) =

(
d∏
i=1

1− γi
1− λi

)
d∏
i=1

(
1− λis
1− γis

)
.

Proof of Corollary 1.3 It is easy to see that (recall γ1, · · · , γd are the eigenvalues of P̂0),

detD =

d∏
i=1

(1− γis). (1.13)

In what follows we will show

detD0 = π0

d∏
i=1

(1− λis). (1.14)

Define e1 = (1, 0, . . . , 0), and recall that π = (π0, π1, . . . , πd). Then, we have

detD0 =

∣∣∣∣ 0 π

eT1 I − sP̂

∣∣∣∣ .
If we let Π = diag(π0, π1, . . . , πd), the reversibility of P̂ implies that Π1/2P̂Π−1/2 is a real
symmetric matrix. Thus there exist an orthogonal matrix U such that

UΠ1/2P̂Π−1/2UT = diag(λ0, λ1, . . . , λd). (1.15)

We can calculate that(
1 0
0 U

)(
1 0

0 Π1/2

)(
0 π

eT1 I − sP̂

)(
1 0

0 Π−1/2

)(
1 0
0 UT

)
=

(
0 πΠ−1/2UT

UΠ1/2eT1 UΠ1/2(I − sP̂ )Π−1/2UT

)
=

(
0 πΠ−1/2UT

UΠ1/2eT1 I − sdiag(λ0, λ1, · · · , λd)

)
It is easy to prove that λ0 = 1 is the unique eigenvalue of maximum modulus of P̂ . So the

geometric multiplicity of P̂ corresponding to λ0 is one ([10] P500 Perron’s Theorem). On the
one hand, e1UΠ1/2 is a left eigenvector corresponding to λ0. π is also the left eigenvector of λ0.
Because ‖e1UΠ1/2‖ = ‖π‖ = 1, we have e1UΠ1/2 = π. So

UΠ1/2eT1 = (e1UΠ1/2)T = πT . (1.16)



6

On the other hand, Π−1/2UT eT1 is a right eigenvector corresponding to eigenvalue λ0, and
1 = {1, 1, · · · , 1} is also the right eigenvector of λ0. Because ‖Π−1/2UT eT1 ‖ = ‖1‖ = 1, we have
Π−1/2UT eT1 = 1, and

πΠ−1/2UT eT1 = π1 = 1 (1.17)

By (1.15) and π = πP̂ ,

πΠ−1/2UT = πP̂Π−1/2UT = πΠ−1/2UTdiag(λ0, λ1, . . . , λd).

Because λi 6= 1 for i = 1, 2, · · · d, by (1.17), πΠ−1/2UT must be equal to e1. By (1.16), we obtain

detD0 =

∣∣∣∣ 0 πΠ−1/2UT

UΠ1/2eT1 I − sP̂

∣∣∣∣ =

∣∣∣∣ 0 e1
πT I − sP̂

∣∣∣∣ = π0

d∏
i=1

(1− λis),

which we get (1.14). Combine (1.13) and (1.14), we obtain

gπ(s) =
π0
∏d
i=1(1− λis)∏d

i=1(1− γis)
.

Because gπ(s) is a generation function, gπ(1) = 1. So

π0 =

∏d
i=1(1− γi)∏d
i=1(1− λi)

,

which complete the proof. �

Proof of Theorem 1.2 Denote gi(s) as the generation function of passage time of state 0 when
the chain is starting from i. By the Markov property, we have

gπ(s) = π(0)g0(s) + π(1)g1(s) + · · ·+ π(d)gd(s). (1.18)

Obviously, g0(s) = 1. By decomposing the first step, for 1 ≤ i ≤ d, gi(s) satisfies

gi(s) = risgi(s) + pi,i+1sgi+1(s) + · · · pi,d−1sgd−1(s) + pi,dsgd(s)

+ qi,i−1sgi−1(s) + qi,i−2sgi−2(s) + · · ·+ qi,0s.

These system of equations together with (1.18) are linear with respect to gπ(s), g1(s), g2(s) · · · , gd(s).
Use Cramer’s Rule, we can get gπ(s) by solving from these equations as

gπ(s) =
detD0

detD
.

�

Remark 1.3. Actually, if we define for i = 1, 2, · · · , d

τi := inf{n ≥ 0, Xn = i }, (1.19)

be the passage time of state i. Denote giπ(s) as the generation function of τi, i.e., giπ(s) = Eπsτi,
we can obtain the formula for giπ(s) with the corresponding modification for the D and D0, the
proof is almost line by line with regard of gi(s) = 1 this time .



7

2 Continuous time

We can write the counterpart results for the continuous time Markov chain with finite states
{0, 1, · · · , d} easily. The proof is similar as in section 1 and so we omit the details.

2.1 Starting from any fixed state

Define {Xt}t≥0 being the (continuous time) Markov chain with finite states {0, 1, · · · , d} and
absorbing at state d, the generator Q is given by

Q =


−γ0 α0,1 · · · α0,d−1 α0,d

β1,0 −γ1 · · · α1,d−1 α1,d
...

. . .
. . .

. . .
...

βd−1,0 βd−1,1 · · · −γd−1 αd−1,d

0 0 · · · 0 0


(d+1)×(d+1)

.

Let τi,d be the absorbing time of state d starting from i and f̃i(s) be the Laplace transform of
τi,d. i.e.

f̃i(s) = Ee−sτi,d .

Theorem 2.1. For 1 ≤ j ≤ d + 1, we denote Ãj(s) as the d × d sub-matrix by deleting the
(d+ 1)th row and the jth column of the matrix sId+1 −Q. Then, for 0 ≤ i ≤ d we have

f̃i(s) = (−1)d−i
det Ãi+1

det Ãd+1

. (2.1)

�

Immediately, we recover the results for the skip-free continuous time Markov chain (Brown
and Shao [2], 1987).

Corollary 2.1. Assume αi,j = 0 for j − i > 1. We have

ϕd(s) =
d−1∏
i=0

λi
λi + s

,

where λi are the d non-zero eigenvalues of −Q.
In particular, if all of the eigenvalues are real and nonnegative, then the hitting time is

distributed as the sum of d independent exponential random variables with parameters λi.

Proof. The proof is similar as Corollary 1.1, we can calculate that det Ãd+1 =
∏d−1
i=0 (λi+s), and

det Ã1 = (−1)dα0,1α1,2 · · ·αd−1,d = (−1)d
∏d−1
i=0 λi. �
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2.2 Starting from the stationary distribution

If we consider a time reversible ergodic Markov chain with generator Q̂, let Q̂0 be the sub-matrix
which is obtained by deleting the first row and the first column of Q̂. We denote g̃π(s) as the
Laplace transform of the hitting time of state 0 when the chain is starting from the stationary
distribution π.

Theorem 2.2. We have

g̃π(s) =

(
d∏
i=1

γi
λi

)
d∏
i=1

(
λi + s

γi + s

)
, (2.2)

where λ1, · · · , λd are the d non-zero eigenvalues of −Q̂ (we assume λ0 = 0), and γ1, · · · , γd are
the d eigenvalues of −Q̂0.
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