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1 Introduction

Let d ≥ 1 be any integer and denote D = {1, 2, · · · , d}, we consider random walks in a
random environment on the strip S = Z × {1, 2, · · · , d}. This model was introduced by
Bolthausen and Goldsheid ([1], 2000), where the conditions for recurrent and transient
has been obtained. After that, Goldsheid ([4], 2008) considered the hitting time of the
walk by the method of “enlarged random environments”; Bolthausen and Goldsheid ([2],
2008) obtained the (log t)2 asymptotic behaviour and Roitershtein ([10], 2008) proved
a strong law of large numbers and an annealed central limit theorem for the walk in a
suitable environment situation; etc..

The aim of this paper is to reveal the intrinsic branching structure within the transient
random walk on a strip in a random environment, which enables us to express the hitting
time explicitly. Roitershtein (Theorem 2.3, [10], 2008) figured out the stationary distribu-
tion for the Markov chain of “environments viewed from the particle” which is equivalent
to the original distribution. To specify the density of the absolutely continuous invariant
measure is another application of our branching structure. And as a by product, the rate
of the LLN can be obtained.

For the nearest random walk in random environment (RWRE, for short) on the line,
as we known, the branching structure is a powerful tool in the proof of the famous result
about “stable law” by Kesten et al ([8], 1975), and is also used by Dembo et al ([3], 1996),
Ganterta and Shi in ([5], 2002), etc. The branching structure for the one dimensional
RWRE with bounded jumps has been considered by Key ([9], 1987), Hong & Wang ([6],
2009) and Hong & Zhang ([7], 2010).
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1.1 Description of the model.

We adapt the description of the model as that of [1]. Let (Pn, Qn, Rn),−∞ < n <
∞, be a strictly stationary ergodic sequence of triples of m × m matrices with non-
negative elements such that for all n the sum Pn + Qn + Rn is a stochastic matrix,
i.e., (Pn + Qn + Rn)1 = 1, where 1 is a column vector whose components are all equal
to 1. We write the components of Pn as Pn(i, j), 1 ≤ i, j ≤ m, and similarly for Qn

and Rn. Let (Ω,F , P, θ) be the corresponding dynamical system with Ω denoting the
space of all sequences ω := (ωn) = ((Pn, Qn, Rn)) of triples described above, F being
the corresponding natural σ-algebra, P denoting the probability measure on (Ω,F ), and
the shift operator on Ω defined by θ: (θω)n = ωn+1, n ∈ Z. The random walk on the
strip S = Z× D := Z× {1, 2 · · · , d} is denoted by X = {Xn, n ∈ Z},

Xn = (ξn, Yn), ξn ∈ Z, Yn ∈ D .

ξn is the Z-coordinate of the walk and Yn takes values in D := {1, 2 · · · , d}.
For describing the initial distribution, we introduce Md,

Md =
{
(µω)ω∈Ω : µw is a probability measure vector on D = {1, 2, · · · , d}

}
.

Given a environment ω ∈ Ω and an µ = (µω) ∈ Md, one can define the random
walk Xn on the strip S = Z × D to be a time-homogeneous Markov chain taking values
in Z× {1, 2, · · · , d}, which is determined by its transition probabilities Qω(z, z1):

Q(z, z1) =


Pn(i, j) if z = (n, i), z1 = (n+ 1, j),
Rn(i, j) if z = (n, i), z1 = (n, j),
Qn(i, j) if z = (n, i), z1 = (n− 1, j),

0 otherwise,

and initial distribution

P µ
ω (ξ0 = 0, Y0 = z0) = µω(z0) for any z0 ∈ D . (1.1)

This defines for any starting point x0 = (0, y0) ∈ S and for any ω ∈ (Ω,F , P ), the
quenched law P µ

ω for the Markov chain by

P µ
ω (X0 = x0, X1 = x1, · · · , Xn = xn) := µω(y0)Qω(x, x1)Qω(x1, x2) · · ·Qω(xn−1, xn).

(1.2)
Then we define a annealed law Pµ = P

⊗
P µ
ω on (Ω× (Z× D)N,F × G ) by

Pµ(F ×G) =

∫
F

P µ
ω (G)P (dω) F ∈ F , G ∈ G , (1.3)

and the expectation with respect to Pµ defined by Eµ. Statements involving P µ
ω and Pµ are

called quenched and annealed, respectively.

2



Notations and assumption. Throughout the paper we use the notation 0 = (0, 0, · · · , 0) ∈
Rd, 1 = (1, 1, · · · , 1) ∈ Rd, and denote ei = (0, · · · , 1, · · · , 0), (i = 1, 2, · · · , d) as the
canonical basis of Rd. For the vector x = (xj) and matrix A = (a(i, j)), define

∥x∥ := max
j

|xj| and ∥A∥ := max
i

∑
j

|a(i, j)|.

We say that A is strictly positive (denoted by A > 0) if all its components satisfy a(i, j) >
0, and A is non-negative (which is denoted byA ≥ 0) if all a(i, j) are negative. If a d×d real
matrix A is non-negative, ∥A∥ := ∥A1∥. Finally, we use the notation IA for the indicator
function of the set A. For the random walk Xn = (ξn, Yn), we often use the expressions
like limn→∞Xn = +∞ which simply means ξn tends to +∞ as n → ∞.

The hitting time Tn is defined as the the first time when the walk reaches layer n ,
Ln := {(n, j), 1 ≤ j ≤ m} starting from a point z ∈ L0 := {(0, j), 1 ≤ j ≤ m}. Let
To = 0, and for n ≥ 1,

Tn := inf{t : X(t) ∈ Ln} and τn := Tn − Tn−1, (1.4)

with the usual convention that the infimum over an empty set is ∞ and ∞−∞ = ∞.

The following Condition C is from Bolthausen and Goldshied [1].

Condition C.
C1 The dynamical system (Ω,F ,P, T ) is ergodic.
C2

E log(1− ∥Rn + Pn∥)−1 < ∞ and E log(1− ∥Rn +Qn∥)−1 < ∞. (1.5)

C3 For all j ∈ {1, 2, · · · ,m} and all n,

m∑
i=1

Qn(i, j) > 0,
m∑
i=1

Pn(i, j) > 0 P-almost surely. (1.6)

C4 With positive P-probability, the layer 0 is in one communication class.

Known results. Let us first review some known results about the random walk in a random
environment on the strip.

1.recurrence and transience. If Condition C is satisfied, Theorem 1 in [1] proved ζn, n ∈
Z of m × m matrices is the unique sequence of stochastic matrices which satisfies the
following system of equations:

ζn = (I −Qnζn−1 −Rn)
−1Pn, P − a.s. n ∈ Z, (1.7)

and the enlarged sequence (Pn, Qn, Rn, ζn),−∞ < n < ∞, is stationary and ergodic.

Let

An := (I −Qnζn−1 −Rn)
−1Qn and un := (I −Qnζn−1 −Rn)

−11 (1.8)
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and

λ+ := lim
n→∞

1

n
log ∥ AnAn−1 · · ·A1 ∥, (1.9)

Theorem 2 in [1] gave the criterion of recurrent and transient behavior for Xn = (ξn, Yn).
One of the cases is

lim
t→∞

ξ(t) = ∞, P− a.e. if and only if λ+ < 0. (1.10)

2.exit probability. Let ηn(i, j) be the probability of a random walk starting in (n, i) reaches
the layer n + 1 at point (n, j) finally, we usually called it the exiting probability. If the
random walk is transient to the right, we have ηn = ζn, P − a.e.(see [4], (1.15) ). And if
Condition C is satisfied, ζn > 0 for P − a.s. ω.

We only concentrate on random walks which are transient to the right in our paper.

3.stationary sequence of probability vectors yn.

If Condition C is satisfied then following limit exists for P − a.s. ω (Lemma 1, [4]):

yn := lim
a→−∞

uaζa(ω)ζa+1(ω) · · · ζn(ω). (1.11)

where ua is any sequence of row-vectors with non-negative components ua(i), and
∑d

i=1 ua(i) =
1. Note that the sequence {yn} is the unique solution of yn = yn−1ζn in the class
of probability vectors and it has the property yn > 0, which is a probability measure
on D = {1, 2, · · · , d} whose support is the whole D . It is clear that vectors yn := y(ω≤n)
form a stationary sequence.

1.2 Statement of main results.

We assume the walk Xn = (ξn, Yn) starts from layer 0, the initial distribution P µ
ω (ξ0 =

0, Y0 = i) = µω(i), P−a.s.ω, for any i ∈ D with µω ∈ Md. In what follows, suppose Con-
dition C is satisfied and λ+ < 0, i.e., we concentrate on random walks Xn = (ξn, Yn) tran-
sient to the right Xn → +∞, P − a.s.. In this case, suppose T0 = 0 and we
have Tk < ∞, P − a.s. for any positive integer k ≥ 1. The aim of this paper is to
calculate the hitting time T1 = inf{i : ξ(i) = 1} accurately in terms of the intrinsic
branching structure within the walk. For n ≤ 1, define

Un = (U1
n, U

2
n, · · · , Ud

n), where U i
n (1 ≤ i ≤ d) is the number of steps from layer n to

layer n− 1 at the site (n− 1, i) before time T1.

Zn = (Z1
n, Z

2
n, · · · , Zd

n), where Zi
n (1 ≤ i ≤ d) is the number of steps from layer n to

the same layer at the site (n, i) before time T1.

And

|Un| =
d∑

i=1

U i
n = Un1 and |Zn| =

d∑
i=1

Zi
n = Zn1. (1.12)

All steps before T1 can be recorded by Un and Zn. Since Xn → +∞, P − a.s., if the
random walk takes a step to the left from any layer n (n ≤ 0), it must come back finally
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from layer n− 1 to layer n , so

T1 = 1 +
∑
n≤0

(2|Un|+ |Zn|),

and the following theorem tells us that {|Un|, |Zn|, n ≤ 1} is an inhomogeneous branching
process with immigration. The exit probability ηn plays an important role, when Xn →
+∞, ηn = ζn, P − a.e., (see [4], (1.15) ), which is given by (1.7).

Theorem 1.1 Assume Condition C is satisfied and Xn → +∞, P − a.s., the initial
distribution P µ

ω (ξ0 = 0, Y0 = i) = µω(i), P − a.s.. Then

(1) for P − a.s. ω, {|Un|, n ≤ 1} and {|Zn|, n ≤ 1} are inhomogeneous branching
processes with immigration. The offspring distribution is given by for n ≤ 0

P µ
ω

(
|Un| = m

∣∣∣Un+1 = ei

)
= ei[(I −Rn)

−1Qnζn−1]
m(I −Rn)

−1Pn1, (1.13)

P µ
ω

(
|Zn| = K

∣∣∣Un+1 = ei

)
= ei[(I −Qnζn−1)

−1Rn]
K(I −Qnζn−1)

−1Pn1, (1.14)

with immigration

P µ
ω

(
U1 = ei

)
= µω(i), i ∈ D , (1.15)

where ζn = ηn (see [4], (1.15) ) is exit probability, which is given by (1.7).

(2) The first hitting time T1 is given by

T1 = 1 +
∑
n≤0

(2|Un|+ |Zn|). (1.16)

2

Remark (1) In Theorem 1.1, we restrict ourselves only to the trajectory of the walk
Xt for t ∈ [0, T1], and all the steps have been counted in {|Un|, |Zn|, n ≤ 1} which
formulate a branching structure as (1.13) and (1.14) with immigration (1.15). After that,
the trajectory of the walk Xt follows the same structure. For example, the trajectory of
the walk Xt for t ∈ [T1, T2], all the steps have been counted in {|Un|, |Zn|, n ≤ 2} which

formulate a branching structure as (1.13) and (1.14) with immigration P µ
ω

(
U2 = ei

)
=

YT1(i), and so on.

(2) Note that it is “unsymmetrical” in the branching structure (1.13) and (1.14) between
the “father ” and “children”. It can be explained as that we focus on the number of the
“children” but the individual of the “father ” (determine the probability). 2

As an immediate application of the branching structure, we can calculate the mean of
the hitting time explicitly.

Theorem 1.2 Assume Condition C is satisfied and Xn → +∞, P−a.s., and the initial
distribution P µ

ω (ξ0 = 0, Y0 = i) = µω(i), P − a.s.. Then

ET1 = E(−→µω(u0 + A0u−1 + · · ·+ A0A−1 · · ·A−ku−k−1 + · · · )),

where An, un is given in (1.8). 2
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Another application of the branching structure is to specify the density of the absolutely
continuous invariant measure for the “environments viewed from the particle”. Let us
review the process discussed in Section 4 of [10]. Let ωn = θξnw, for n ≥ 0, and consider
the process Zn := (ωn, Yn), defined in (Ω×D ,F ⊗H ), where H as the set of all subsets
of D , and the initial distribution P µ

ω (ξ0 = 0, Y0 = i) = µω(i) = y−1(i) given by (1.11).
(Zn)n≥0 is a Markov chain under Pµ with transition kernel

K(ω, i;B, j) = P0(i, j)IB(θw) +R0(i, j)IB(w) +Q0(i, j)IB(θ
−1w). (1.17)

Usually, Zn = (ωn, Yn) be called as auxiliary Markov chain.

Let vp = 1
ET1

, whenever ET1 < ∞. For B ∈ F , i ∈ D , define a probability mea-
sure Q on (Ω× D ,F ⊗ H ):

Q(B, i) := vpE

(
T1−1∑
n=0

IB(ωn)IYn(i)

)
. (1.18)

Q(·) is a invariant measure under the Markov kernel K (Proposition 4.1, [10]).

Define a probability measure Q(·) on (Ω,F ) by setting

Q(B) := Q(B,D), B ∈ F . (1.19)

and let Qi(B) := Q(B, i) for B ∈ F . Then both Qi(·) and Q(·) are absolutely
continuous with regard to P (Proposition 4.1, [10]), but where only the up bound of
the density have been proved. The branching structure enable us to specify the density
completely in the following theorem.

Theorem 1.3 Assume Condition C is satisfied and Xn → +∞, P − a.s., the initial
distribution P µ

ω (ξ0 = 0, Y0 = i) = µω(i) = y−1(i) , for P − a.s. ω, and assume in
addition that vp > 0. Then Qi(·) is absolutely continuous with regard to P , and so is
Q(·). The density is given by

dQi

dP
= Λ(i)

ω , (1.20)

where
Λ(i)

ω = vp[µω (ũ0 + ζ0A1ũ0 + ζ0ζ1A2A1ũ0 + · · · )](i). (1.21)

and
dQ

dP
= Λω, (1.22)

where
Λω = vp[µω (ũ0 + ζ0A1ũ0 + ζ0ζ1A2A1ũ0 + · · · )]1, (1.23)

where ũn := (I −Qnζn−1 −Rn)
−1. 2

Remark (1) The first part of the Theorem 1.3 is obtained in Proposition 4.1 of [10]. We
will focus on the “density” part only.
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(2) As a by product, we can prove the LLN from two different method as the situation
for the nearest RWRE on the line ([13]). On the one hand, If −→µω = y−1, then {τi : i ∈ N}
in (1.4) is a stationary and ergodic sequence variables (Lemma 3.2, [10] ), so the LLN can
be obtained from the hitting time decomposition; on the other hand, with the “density”
in hand, it is easy to obtain the LLN again from the point of view “environments viewed
from the particle”. We omit the details of the proof.

Corollary 1.4 Assume Condition C is satisfied and Xn → +∞, P − a.s., the initial
distribution P µ

ω (ξ0 = 0, Y0 = i) = µω(i) = y−1(i) , for P − a.s. ω, and assume in
addition that vp > 0. Then P− a.s.,

lim
n→∞

ξ(n)

n
=

1

E
(
y−1(u0 + A0u−1 + · · ·+ A0A−1 · · ·A−ku−k−1 + · · · )

) . (1.24)

2

2 Proofs

2.1 Intrinsic branching structure—Proof of Theorem1.1.

Assume Condition C is satisfied and Xn → +∞, P−a.s., the initial distribution P µ
ω (ξ0 =

0, Y0 = i) = µω(i), P − a.s.. Note that Tk < ∞, P− a.s. for any positive integer k ≥ 1.
We will analyze the trajectory of the walk, and restrict to the first excursion between lay
0 to lay 1, i.e., the path of Xk for k ∈ [0, T1]. Define for n ≤ 0,

αn,0 = min{k ≤ T1 : Xk ∈ Ln},
βn,0 = min{αn,0 < k ≤ T1 : Xk−1 ∈ Ln, Xk ∈ Ln−1}.

And for b ≥ 1,

αn,b = min{βn,b−1 < k ≤ T1 : Xk ∈ Ln},
βn,b = min{αn,b < k ≤ T1 : Xk−1 ∈ Ln, Xk ∈ Ln−1}.

(with the usual convention that the minimum over an empty set is +∞).

We refer to the time interval [βn,b−1, αn,b] as the b-th excursion from n−1 layer to n layer.

For any b ≥ 0, any n ≤ 0, and i ∈ {1, 2, · · · , d}, define

U i
n,b := ♯{k ≥ 0 : Xk−1 ∈ Ln, Xk = (n− 1, i), βn+1,b < k < αn+1,b+1}, (2.1)

Zi
n,b := ♯{k ≥ 0 : Xk−1 ∈ Ln, Xk = (n, i), βn+1,b < k < αn+1,b+1}. (2.2)

Note that U i
n,b is the number of steps from layer n to (n − 1, i) during the b + 1-th

excursion from layer n to layer n+ 1 , whereas Zi
n,b is the number of steps from layer

n to (n, i) during the same excursion.

7



Define for n ≤ 0 and i ∈ {1, 2, · · · , d}, U i
n :=

∑
b≥0 U

i
n,b, then U i

n is the number
of steps from layer n to (n − 1, i) before time T1. Similarly define Zi

n :=
∑

b≥0 Z
i
n,b.

Un = (U1
n, U

2
n, · · · , Ud

n), and |Un| =
∑d

i=1 U
i
n = Un1; Zn = (Z1

n, Z
2
n, · · · , Zd

n), and |Zn| =∑d
i=1 Z

i
n = Zn1 which have been defined in (1.12).

By Markov property, we obtain

P µ
ω

(
|Un| = m, |Zn| = K

∣∣∣Un+1 = ei

)
= ei

∑
k0+k1+···+km=K

Rk0
n Qnζn−1R

k1
n · · ·Qnζn−1R

km
n Pn1. (2.3)

where ζn = ηn is the exiting probability matrix (see (1.7)).

In (2.3), the path of an excursion is considered: the particle start from layer n (given
by Un+1 = ei), moves at layer n by |Zn| = K steps (each step with probability Rn) and
|Un| = m steps from layer n to layer n − 1 ( but in the trajectory point, each “down”
step with probability Qn must connect with a path “from layer n − 1 finally goes back
to layer n ” with probability ζn−1), the last step of the excursion is from layer n to layer
n+ 1 with probability Pn.

The idea of (2.3) is that we only care the number of the “children”, which lead to the
“unsymmetrical”. Note that only the “U ” type particles produce “children”. With a
similar consideration, the branching mechanism can also be expressed as

P µ
ω

(
|Un| = m, |Zn| = K

∣∣∣Un+1 = ei

)
= ei

∑
m0+m1+···+mK=m

Qnζ
m0
n−1RnQnζ

m1
n−1 · · ·RnQnζ

mK
n−1Pn1. (2.4)

In what follows, we will derive the marginal distribution of |Un| and |Zn| respectively.
Let’s discuss the marginal distribution of |Un| first, summarize over K in (2.3),

P µ
ω

(
|Un| = m

∣∣∣Un+1 = ei

)
=

+∞∑
K=0

P µ
w

(
|Un| = m, |Zn| = K

∣∣∣Un+1 = ei

)
= ei

[ +∞∑
K=0

∑
k0+k1+···+km=K

Rk0
n Qnζn−1R

k1
n · · ·Qnζn−1R

km
n Pn1

]
. (2.5)

It’s not hard to see
+∞∑
K=0

∑
k0+k1+···+km=K

Rk0
n Qnζn−1R

k1
n · · ·Qnζn−1R

km
n

= (I −Rn)
−1Qnζn−1(I −Rn)

−1 · · ·Qnζn−1(I −Rn)
−1

= [(I −Rn)
−1Qnζn−1]

m(I −Rn)
−1. (2.6)

Taking together (2.5) and (2.6), derives the marginal distribution of |Un|,

P µ
ω

(
|Un| = m

∣∣∣Un+1 = ei

)
= ei[(I −Rn)

−1Qnζn−1]
m(I −Rn)

−1Pn1. (2.7)
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For the marginal distribution of |Zn|, summarize over m in (2.4), we have

P µ
ω

(
|Zn| = K

∣∣∣Un+1 = ei

)
= ei

+∞∑
m=0

∑
m0+m1+···+mK=m

Qnζ
m0
n−1RnQnζ

m1
n−1 · · ·RnQnζ

mK
n−1Pn1

= ei(I −Qnζn−1)
−1Rn(I −Qnζn−1)

−1 · · ·Rn(I −Qnζn−1)
−1Pn1

= ei[(I −Qnζn−1)
−1Rn]

K(I −Qnζn−1)
−1Pn1. (2.8)

Complete the proof of part (1) of Theorem (1.1); and part (2) is immediate. 2

Remark. From the marginal distribution, we also can test of the validity of the
branching structure. In fact,

+∞∑
m=0

P µ
ω

(
|Un| = m

∣∣∣Un+1 = ei

)
= ei[

+∞∑
m=0

[(I −Rn)Qnζn−1]
m](I −Rn)

−1Pn1

= ei[I − (I −Rn)Qnζn−1]
−1](I −Rn)

−1Pn1

= ei[(I −Rn)−Qnζn−1]
−1]Pn1

= eiζn1 = 1.

2.2 ET1—Proof of Theorem 1.2

The random walk Xn = (ξn, Yn) starts from layer 0 with the initial distribution µω.
With the branching structure in hand, we can calculate the mean of the first hitting time
T1. We discuss it by four steps as follows.

Step 1. Eµ
ω

(
|Un|

∣∣∣Un+1 = ei

)
and Eµ

ω

(
|Zn|

∣∣∣Un+1 = ei

)
.

From (1.13) of Theorem 1.1,

Eµ
ω

(
|Un|

∣∣∣Un+1 = ei

)
=

+∞∑
m=0

mP µ
ω

(
|Un| = m

∣∣∣Un+1 = ei

)
= ei

+∞∑
m=1

m[(I −Rn)
−1Qnζn−1]

m(I −Rn)
−1Pn1. (2.9)

To process the calculation, we need the following

lemma 2.1 For matrix B, I −B is non-degenerate, then
∑+∞

m=1mBm = B(I −B)−2.

Proof.
+∞∑
m=1

mBm = (B + 2B2 + 3B3 + · · · ) = B(I + 2B + 3B2 + · · · ),
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and

(I −B)−2 = ((I −B)−1)2 = (
+∞∑
m=1

Bn)2 = (
+∞∑
m=1

Bn)(
+∞∑
m=1

Bn) = (I + 2B + 3B2 + 4B3 · · · ).

Thus
∑+∞

m=1mBm = B(I −B)−2. 2

Let B = (I −Rn)
−1Qnζn−1, (2.9) can be continued as

Eµ
ω

(
|Un|

∣∣∣Un+1 = ei

)
= ei(I −Rn)

−1Qnζn−1[I − (I −Rn)
−1Qnζn−1]

−2(I −Rn)
−1Pn1

= ei(I −Qnζn−1 −Rn)
−1Qnζn−1ζn1 (2.10)

= eiAn1. (2.11)

The second equality (2.10) need a series calculations about the matrix which we leave it
as Appendix, where An is given in (1.8). Similarly,

Eµ
ω

(
|Zn|

∣∣∣Un+1 = ei

)
=

+∞∑
K=0

eiK[(I −Qnζn−1)
−1Rn]

K(I −Qnζn−1)
−1Pn1

= ei(I −Qnζn−1 −Rn)
−1Rnζn1

= ei(I −Qnζn−1 −Rn)
−1Rn1. (2.12)

As a result, we have

Eµ
ω

(
|Un|

∣∣∣Un+1

)
= Un+1An1, (2.13)

Eω

(
|Zn|

∣∣∣Un+1

)
= Un+1(I −Qnζn−1 −Rn)

−1Rn1. (2.14)

Step 2. Steps visited on layer n.

For any n ≤ 0, define

N i
n = ♯{k ∈ [0, T1) : Xk = (n, i)}. (2.15)

Note that N i
n is the number of steps visited (n, i) before time T1. Let

Nn = (N1
n, N

2
n, · · · , Nd

n) and |Nn| =
d∑

i=1

N i
n = Nn1.

Define a vector valued random variable U′
n where U′i

n, 1 ≤ i ≤ d is the number of steps
from layer n− 1 to (n, i). Then

|Nn| = |U′
n|+ |Zn|+ |Un+1|, P− a.s.. (2.16)

For another perspective, T1 =
∑

n≤0(|Nn|), P− a.s.. Since Xn → +∞, P− a.s., if the
random walk takes a step to the left from any layer n (n ≤ 0) to layer n − 1 , it must
come back finally from layer n− 1 to layer n , therefore |Un| = |U′

n|, P− a.s..
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Together with (2.16), we have

Eµ
ω(|Nn|) = Eµ

ω(|Un|+ |Zn|+ |Un+1|)

= Eµ
ω

[
Eµ

ω(|Un|
∣∣∣Un+1) + Eµ

ω(|Zn|
∣∣∣Un+1) + Eµ

ω(|Un+1|
∣∣∣Un+1)

]
.

By using (2.13), one can calculate the quenched expectation of |Nn| as

Eµ
ω(|Nn|) = Eµ

ω [Un+1An1+Un+1(I −Qnζn−1 −Rn)
−1Rn1+Un+11]

= Eµ
ω [Un+1(I −Qnζn−1 −Rn)

−1(Qnζn−1 +Rn + I −Qnζn−1 −Rn)1]

= Eµ
ω(Un+1)(I −Qnζn−1 −Rn)

−11. (2.17)

Step 3. The next object is to discuss Eµ
ω(Un+1).

Define a probability matrix Bm, where Bm(i, j) is the probability of a particle starting
from (n+1, i), takes more than m steps to the layer n, and the m-th step located at (n, j).
Bm(i, j) can be expressed by our branching structure

Bm(i, j) = ei

[ +∞∑
K=0

∑
k0+k1+···+km−1=K

Rk0
n+1Qn+1ζnR

k1
n+1Qn+1ζnR

k2
n+1 · · ·Qn+1ζnR

km−1

n+1 Qn+1

]
ej

= ei[(I −Rn+1)Qn+1ζn]
m−1(I −Rn+1)

−1Qn+1ej. (2.18)

Let
P̃m
i,j := Bm(i, j)−Bm+1(i, j),

be the probability of a particle starts from (n+ 1, i), the m-th step takes to the left and
located at (n, j) . We have

Eµ
ω(U

j
n+1

∣∣∣Un+2 = ei) =
+∞∑
m=1

mP̃m
i,j = ei

+∞∑
m=1

m(Bm −Bm+1)ej

= ei

+∞∑
m=1

Bmej. (2.19)

Combine with (2.18),

Eµ
ω(Un+1|Un+2) = Un+2

+∞∑
m=1

Bm

= Un+2

+∞∑
m=1

[(I −Rn+1)Qn+1ζn]
m−1(I −Rn+1)

−1Qn+1

= Un+2(I −Qn+1ζn −Rn+1)
−1Qn+1

= Un+2An+1. (2.20)

Then
Eµ

ω(Un+1) = Eµ
ω [E

µ
ω(Un+1|Un+2)] = Eµ

ω(Un+2)An+1, (2.21)

11



where An is given in (1.8). By recursive argument, we obtain

Eµ
ω(Un+1) = Eµ

ω(Un+3)An+2An+1

= · · ·
= Eµ

ω(U1)A0A−1A−2 · · ·An+2An+1. (2.22)

Step 4.Calculate E(T1). It follows from (2.17) and (2.22) that,

E(T1) = E(Eω(T1)) = E

(∑
n≤0

Eω(|Nn|)

)

= E

(∑
n≤0

Eω(Un+1)(I −Qnζn−1 −Rn)
−11

)

= E

(∑
n≤0

Eω(U1)A0A−1A−2 · · ·An+2An+1(I −Qnζn−1 −Rn)
−11

)
= E(Eµ

ω(U1)(u0 + A0u−1 + · · ·+ A0A−1 · · ·A−ku−k−1 + · · · ))
= E(−→µω(u0 + A0u−1 + · · ·+ A0A−1 · · ·A−ku−k−1 + · · · )). (2.23)

where An, un is given in (1.8). 2

2.3 Density of the absolutely continuous invariant measure–
Proof of Theorem 1.3

Let us review the process discussed in Section 4 of [10]. From the point of view “en-
vironments viewed from the particle”, let ωn = θξnw, for n ≥ 0, and consider the
process Zn := (ωn, Yn), defined in (Ω × D ,F ⊗ H ), where H as the set of all subsets
of D , and the initial distribution P µ

ω (ξ0 = 0, Y0 = i) = µω(i) = y−1(i) given by (1.11).
(Zn)n≥0 is a Markov chain under Pµ with transition kernel

K(ω, i;B, j) = P0(i, j)IB(θw) +R0(i, j)IB(w) +Q0(i, j)IB(θ
−1w). (2.24)

Let vp = 1
ET1

, whenever ET1 < ∞. For B ∈ F , i ∈ D , define a probability mea-
sure Q on (Ω× D ,F ⊗ H ):

Q(B, i) := vpE

(
T1−1∑
n=0

IB(ωn)IYn(i)

)
= vp

∑
j∈D

Ep

(
µω(j)E

j
ω

(
T1−1∑
n=0

IB(θ
ξnω)IYn(i)

))

Q(·) is a invariant measure under the Markov kernel K (Proposition 4.1, [10]).

Define a probability measure Q(·) on (Ω,F ) by setting

Q(B) := Q(B,D), B ∈ F . (2.25)
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and let Qi(B) := Q(B, i) for B ∈ F . Then both Qi(·) and Q(·) are absolutely
continuous with regard to P (Proposition 4.1, [10]), but where only the up bound of the
density have been proved.

For m ≤ 0, i ∈ D , define N i
m as in (2.15):

N i
m := {♯n ∈ [0, T1) : ξn = m, Yn = i} .

Note that for any bounded measurable function f : Ω → R and ∀ i ∈ D ,∫
Ω

f(ω)Q(dω, i) = vp

+∞∑
n=0

Eµ(f(wn); Yn = i, T1 > n)

= vp
∑
m≤0

Eµ(f(θmω)N i
m)

= vpEp

(∑
k∈D

µω(k)
∑
m≤0

(
f(θmω)Ek

ωN
i
m

))

= vpEp

(
f(ω)

∑
k∈D

∑
m≤0

µθ−mω(k)E
k
θ−mωN

i
m

)
. (2.26)

Therefore, Qi is absolutely continuous with respect to P , and also Q is absolutely
continuous with respect to P . And the density is

Λ(i)
ω :=

dQi

dP
= vp

∑
k∈D

∑
m≤0

µθ−mω(k)E
k
θ−mω(N

i
m) (2.27)

Λω :=
dQ

dP
= vp

∑
k∈D

∑
m≤0

µθ−mω(k)E
k
θ−mω(Nm1). (2.28)

We intend to spesity the density Λ
(i)
ω and Λω by branching structure. Note that µω(i) =

y−1(i) given by (1.11), and ζ−n = η−n is the exit probability,

µθω = lim
n→∞

eiζ−n(θω) · · · ζ−2(θω)ζ−1(θω)

= lim
n→∞

eiζ−n+1(ω) · · · ζ−1(ω)ζ0(ω)

= µωζ0(ω).

Thus ∑
k∈D

µθω(k)E
k
θω(N

i
−1) =

∑
k∈D

µθω(k)E
k
ω(N

i
0) =

∑
k∈D

µωζ0(k)E
k
ω(N

i
0).

Similarly, for m ≤ 0 and i ∈ D∑
k∈D

µθ−mω(k)E
k
θ−mω(N

i
m) =

∑
k∈D

µωζ0ζ1 · · · ζ−m−1(k)E
k
ω(N

i
0). (2.29)

The following lemma is closely related to branching structure.

13



lemma 2.2 For n < 0,
Eω(Nn) = µωA0A−1 · · ·An+1ũn. (2.30)

Proof. Due to the definition of Nn, U
′
n, Zn and Un+1,

Nn = U′
n + Zn +Un+1.

Recall the branching structure and by similarly argument as in the proof of Theorem 1.2,
we obtain that

Eω(U
′
n) = Un+1

+∞∑
m=1

(
(I −Rn)

−1Qnζn−1

)m−1
(I −Rn)

−1Qnζn−1

= Un+1 ((I −Qnζn−1 −Rn)
−1Qnζn−1 = Un+1Anζn−1,

and

Eω(Zn) = Un+1

+∞∑
K=0

(
(I −Qnζn−1)

−1Rn

)K
(I −Qnζn−1)

−1Rn

= Un+1 (I −Qnζn−1 −Rn)
−1 Rn.

Thus

Eω(Nn | Un+1) = Eω(Nn | Un+1)

= Eω(U
′
n | Un+1) + Eω(Zn | Un+1) + Eω(Un+1 | Un+1)

= Eω(Un+1

[
(I −Qnζn−1 −Rn)

−1Qnζn−1 + (I −Qnζn−1 −Rn)
−1Rn + I

]
)

= Eω(Un+1)(I −Qnζn−1 −Rn)
−1.

Together with the fact
Eω(Un+1) = Un+2An+1,

we have

Eω(Nn) = µωA0A−1 · · ·An+1(I −Qnζn−1 −Rn)
−1

= µωA0A−1 · · ·An+1ũn.

Then Lemma 2.2 follows. 2

It follows from equation (2.29) and lemma 2.2 that∑
k∈D

µθ−mω(k)E
k
θ−mω(N

i
m) =

∑
k∈D

µωζ0ζ1 · · · ζ−m−1(k)E
k
ω(N

i
0)

= µωζ0ζ1 · · · ζ−m−1A−mA−m−1 · · ·A2A1ũ0(i). (2.31)

Thus

Λ(i)
ω =

dQi

dP
= vp

∑
k∈D

∑
m≤0

µθ−mω(k)E
k
θ−mω(N

i
m)

= vp
∑
m≤0

[µωζ0ζ1 · · · ζ−m−1A−mA−m−1 · · ·A2A1ũ0](i)

= vp[µω (ũ0 + ζ0A1ũ0 + ζ0ζ1A2A1ũ0 + · · · )](i).
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and similarly

dQ

dP
= Λω = vp

∑
k∈D

∑
m≤0

µθ−mω(k)E
k
θ−mω(Nm1)

= vp
∑
m≤0

[µωζ0ζ1 · · · ζ−m−1A−mA−m−1 · · ·A2A1ũ0]1

= vp[µω (ũ0 + ζ0A1ũ0 + ζ0ζ1A2A1ũ0 + · · · )]1.
2

Appendix

The following calculation is needed in (2.10), it is a details calculations on the matrix.

Eµ
w(|Un| | Un+1 = ei)

=
+∞∑
m=0

mP µ
w(|Un| = m | Un+1 = ei)

=
+∞∑
m=0

eim[(I −Rn)
−1Qnζn−1]

m(I −Rn)
−1Pn1

= ei

+∞∑
m=1

m[(I −Rn)
−1Qnζn−1]

m(I −Rn)
−1Pn1

= ei(I −Rn)
−1Qnζn−1[I − (I −Rn)

−1Qnζn−1]
−2(I −Rn)

−1Pn1

= ei(I −Rn)
−1Qnζn−1[I − (I −Rn)

−1Qnζn−1]
−1[I − (I −Rn)

−1Qnζn−1]
−1(I −Rn)

−1Pn1

= ei{[(I −Rn)
−1Qnζn−1]

−1}−1[I − (I −Rn)
−1Qnζn−1]

−1[I − (I −Rn)
−1Qnζn−1]

−1(I −Rn)
−1Pn1

= ei{[I − (I −Rn)
−1Qnζn−1][(I −Rn)

−1Qnζn−1]
−1}−1[I − (I −Rn)

−1Qnζn−1]
−1(I −Rn)

−1Pn1

= ei{[(I −Rn)
−1Qnζn−1]

−1 − I}−1[I − (I −Rn)
−1Qnζn−1]

−1(I −Rn)
−1Pn1

= ei{[I − (I −Rn)
−1Qnζn−1][[(I −Rn)

−1Qnζn−1]
−1 − I]}−1(I −Rn)

−1Pn1

= ei{(I −Rn)[I − (I −Rn)
−1Qnζn−1][[(I −Rn)

−1Qnζn−1]
−1 − I]}−1Pn1

= ei{[(I −Rn)−Qnζn−1][[(I −Rn)
−1Qnζn−1]

−1 − I]}−1Pn1

= ei{[(I −Rn)−Qnζn−1][(Qnζn−1)
−1(I −Rn)− I]}−1Pn1

= ei{[(I −Rn)−Qnζn−1][(Qnζn−1)
−1](I −Rn −Qnζn−1)}−1Pn1

= ei[(I −Qnζn−1 −Rn)(Qnζn−1)
−1(I −Qnζn−1 −Rn)]

−1Pn1

= ei(I −Qnζn−1 −Rn)
−1Qnζn−1(I −Qnζn−1 −Rn)

−1Pn1

= ei(I −Qnζn−1 −Rn)
−1Qnζn−1ζn1

= eiAnζn−1ζn1

= eiAn1.
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