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Branching structure for the transient (1, R)–random

walk in random environment and its applications ∗
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Abstract

An intrinsic multitype branching structure within the transient (1, R)-RWRE
is revealed. The branching structure enables us to specify the density of the
absolutely continuous invariant measure for the environments seen from the par-
ticle and reprove the LLN with an drift explicitly in terms of the environment,
comparing with the results in Brémont (2002).
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1 Introduction and main results

A random walk in random environment (RWRE, for short) {Xn, n ∈ N} with bounded jumps
on the line, written as (L,R)-RWRE, means that for each step the possible jump range to the
left is bounded by L and to the right by R, where L and R are positive integers. The aim of this
paper is to reveal the branching structure within the (1, R)-RWRE, which is a story different
with but essentially complement for that of (L, 1)-RWRE (Hong and Wang, [10], 2009) when it
transient to the right.

It is well-known that when the walk is transient, i.e., Xn → ∞, the intrinsic branching
structure within the (1, 1)-RWRE is a Galton-Watson branching process with geometric offspring
distribution, which plays an important role in the proofs of the limiting stable law (Kesten et
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al [12], 1975), the renewal theorem (Kesten [11], 1977), and the law of large numbers (Alili [1],
1999) for this nearest random walk in random environment, see also Gantert and Shi ([9], 2002).

However, when L or R > 1, and the random walk is transient (we consider Xn → ∞),
It seems no result about the intrinsic branching structure within the (L,R)-RWRE up to our
knowledge, even for random walks in non-random environment. Recently, partially progress has
been made by Hong and Wang ([10], 2009), where a multitype branching structure within the
(L, 1)-RWRE have been revealed when Xn → ∞ and the Kesten’s type stable law have been
proved. In the present paper, we focus on the opposite direction which is more complicated: we
will figure out the intrinsic branching structure within the (1, R)-RWRE when Xn → ∞(note
that the situation for the (L, 1)-RWRE transient to the left is equivalent to that for the (1, R)-
RWRE transient to the right). We will discuss R = 2 in detail and extend to general R at the
end.

RWRE has been studied extensively in recent years, especially for the nearest (1, 1)-RWRE
on which many results have been obtained, see for example [18], [12], [11], [2], etc., we refer to
Sznitman ([17], 2002) and Zeitouni ([19], 2004) as a general review. For the (L,R)-RWRE, Key
([13], 1984) discussed recurrence/transience criterion in terms of the sign of two intermediate
Liapounov exponents of a random matrix. Brémont ([6], 2009) formulate a criterion for the
existence of the absolutely continuous invariant measure for the environments seen from the
particle and deduce a characterization of the non-zero-speed regime of the model. It should
note that the (L,R)-RWRE can be treated as a special case of the random walks in random
environments on a strip, see Bolthausen and Goldsheid ([3], 2000; [4], 2008 ) and Roitershtein
([16], 2008).

Brémont ([5], 2002) has proved a recurrence/transience criterion for (L, 1)-RWRE involv-
ing the greatest Lyapunov exponent with respect to a random matrix M , and the law of large
numbers by assuming the (IM) condition related the existence of an invariant measure for the
environments seen from the particle. As an important application of our branching structure
within the (1, R)-RWRE, it enables us to specify the density of the absolutely continuous invari-
ant measure explicitly and reprove the LLN with an drift explicitly in terms of the environment.

We now introduce the model of (1, 2)-RWRE. Generally speaking, random walks in random
environment involves two kinds of randomness: the transition probability (we call it the “envi-
ronment”), which is chosen from a specified distribution; and the random walk driven by the
chosen “environment”. Specifically, let Λ = {−1, 1, 2} be the set of possible jump range of the
random walks. Let M(Λ) be the collection of all probability measures on Λ. Then define an
environment to be an element ω = {(q(ω)x, p1(ω)x, p2(ω)x) : x ∈ Z} ∈ M(Λ)Z =: Ω. Let P
be a stationary and ergodic probability distribution on (Ω,F) and θ be the spatial shift, i.e.,
(θω)n = ωn+1. Assume that θ is an invertible transformation on the probability space (Ω,F , P ),
measurable as well as its inverse and preserving P . Moreover, assume that the environment is
elliptic:

∃ ε > 0, ∀ z ∈ {1, 2}, (pz/q) ≥ ε, P -a.s..

Given an environment ω ∈ Ω, one can define a random walk {Xn} in the environment ω to be
a time-homogeneous Markov chain on Z with X0 = 0 and the transition probabilities

Pω(Xn+1 = x− 1|Xn = x) := q(θxω)0 = q(ω)x,

Pω(Xn+1 = x+ z|Xn = x) := pz(θ
xω)0 = pz(ω)x,
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for all x ∈ Z and z ∈ {1, 2}. For each ω, we use Pω to denote the law induced on the space of
paths (ZN,G). Then, define a probability measure P := P ⊗ Pω on (Ω× Z

N,F × G) by

P(F ×G) :=

∫

F

Pω(G)P (dω), F ∈ F , G ∈ G.

Statements involving Pω and P are called quenched and annealed, respectively. Generally, with
a slight abuse of notation, P can also be used to denote the marginal on Z

N. Expectations under
Pω and P will be denoted by Eω and E, respectively.

We will need the following notations. pz(θ
xω)0 will be simply denoted by pz(x). Any

expression of the form f(θkω) will be simply denoted by f(k). For the random walk {Xn} and
k ∈ Z\{0}, we write P k

ω for the quenched probability starting at k, and Ek
ω for the corresponding

expectation.

Assume that X0 = 0 and the (1, 2)-random walk is transient to the right, i.e., Xn → ∞,
P-a.s.. Let T0 = 0, and

Tk = inf{n > Tk−1 : Xn > XTk−1
}, k ≥ 1

be the sequence of ladder times of the random walks. Note that Tk < ∞, P-a.s.. To calculate
T1 accurately, we will figure out a multitype branching processes by decomposing the path of
the walk. Intuitively, if the walk from i ≤ 0 take a step to i − 1, it must crossing back to i
or jumping over i (to i + 1) because of Tk < ∞, P-a.s., in which there are only three kind of
backing ways: from i− 1 to i, from i− 2 to i and from i− 1 to i+ 1. So we divide all the steps
from i to i − 1 into three kind of steps according the crossing back ways. Let A(i), B(i), and
C(i) are the numbers of steps from i to i− 1 before time T1 with crossing-back from i− 1 to i,
i − 2 to i and i − 1 to i + 1, respectively. And for the last step of T1, we can consider it as a
immigration for the multitype branching processes.

Set for i ≤ 0,
U(i) = [A(i), B(i), C(i)],

Then we have the branching structure within the (1, 2)-RWRE as follows.

Theorem 1.1 Assume Xn → ∞, P-a.s.. Then for P -a.s. ω,
(
U(i) = [A(i), B(i), C(i)]

)
i≤0

is

an inhomogeneous multitype branching process with immigration

U(1) = [1, 0, 0], with probability
p1(0)

1− α(0) − β(0)
,

U(1) = [0, 1, 0], with probability
γ(0)

1− α(0) − β(0)
,

U(1) = [0, 0, 1], with probability
p2(0)

1− α(0) − β(0)
.

The offspring distribution is given by

Pω

(
U(i) = [a, b, 0]

∣∣∣ U(i+ 1) = [1, 0, 0]
)
= [1− α(i) − β(i)]Ca

a+bα(i)
aβ(i)b, (1.1)

Pω

(
U(i) = [a, b, 1]

∣∣∣ U(i+ 1) = [0, 1, 0]
)
= [1− α(i) − β(i)]Ca

a+bα(i)
aβ(i)b, (1.2)
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Pω

(
U(i) = [a, b, 0]

∣∣∣ U(i+ 1) = [0, 0, 1]
)
= [1− α(i) − β(i)]Ca

a+bα(i)
aβ(i)b, (1.3)

where

γ(i) = q(i) · P i−1
ω [(−∞, i− 1), i+ 1],

α(i) = q(i) · P i−1
ω [(−∞, i− 1), i] · p1(i− 1)

p1(i− 1) + γ(i− 1)
,

β(i) = q(i) · P i−1
ω [(−∞, i− 1), i] · γ(i− 1)

p1(i− 1) + γ(i− 1)
,

and P i−1
ω [(−∞, i − 1), i − 1 + j] := P i−1

ω {reach [i,+∞) for the first time at the point i− 1 + j}
for j = 1, 2, the exit probabilities which can be expressed in terms of the environment in Lemma

2.1. �

As an immediate consequence of Theorem 1.1, We can get the offspring quenched mean
matrix of the multitype branching process and the quenched mean of the T1 .

Corollary 1.1 Assume Xn → ∞, P-a.s.. Then for P -a.s. ω, and i ≤ 0, the offspring mean

matrix of the (−i+ 1)-th generation of the multitype branching process is

N(i) =




α(i)
1−α(i)−β(i)

β(i)
1−α(i)−β(i) 0

α(i)
1−α(i)−β(i)

β(i)
1−α(i)−β(i) 1

α(i)
1−α(i)−β(i)

β(i)
1−α(i)−β(i) 0


 .

Moreover,

Eω(T1) = 1 +
〈
(2, 2, 1),

1

1− α(0) − β(0)

(
p1(0), γ(0), p2(0)

)
·
∑

i≤0

N(0) · · ·N(i)
〉
.

�

As an application of the branching structure to the random walks in non-random environ-
ment, let

X0 = 0, Xn = ξ1 + · · · + ξn,

where ξ1, ξ2, · · · is a series of i.i.d random variables with

P (ξ1 = −1) = q, P (ξ1 = 1) = p1, P (ξ1 = 2) = p2.

The computability of E(T1) by the branching structure as in Corollary 1.1 enable us to validate
the Wald’s equality.

Proposition 1.1 Assume that E(ξ1) = p1 + 2p2 − q > 0. Then the Wald’s equality holds:

E(XT1) = E(T1) · E(X1).

�
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From the point of view “environment viewed from the particles”, define ω(n) = θXnω. Then
the process {ω(n)} is a Markov process under either Pω or P, with state space Ω and transition
kernel

K(ω,dω′) = q1ω′=θ−1ω + p11ω′=θω + p21ω′=θ2ω.

Set ϕ1
θkω

= Pθkω(XT1 = 1), and ϕ2
θkω

= Pθkω(XT1 = 2) = 1−ϕ1
θkω

. Whenever E(T1) < ∞, define
the measure

Q(B) = E

(
1XT1

=1

ϕ1
ω

T1−1∑

i=0

1{ω(i)∈B} +
1XT1

=2

ϕ2
ω

T1−1∑

i=0

1{ω(i)∈B}

)
, Q(B) =

Q(B)

Q(Ω)
.

The significance of the branching structure to the (1, 2)-RWRE is that we can express the density
of Q with respect to P explicitly.

Theorem 1.2 Assume E(T1) < ∞. Then Q(·) is invariant under the Markov kernel K, that

is,

Q(B) =

∫∫
1ω′∈BK(ω, dω′)Q(dω).

Furthermore,

dQ

dP
= Π(ω),

where

Π(ω) =

2 +

〈
(1, 1, 1),

∑
i≥1

(
p1(i)

p1(i)+γ(i) ,
γ(i)

p1(i)+γ(i) , 1
)
·N(i) · · ·N(1)

〉

1− α(0) − β(0)
.

�

Therefore, the LLN for the (1, 2)-RWRE can be reproved with an explicit drift.

Theorem 1.3 Assume E(T1) < ∞. Then

lim
n→∞

Xn

n
= vP , P-a.s.,

where

vP =

EP

[
p1(0)+2p2(0)−p−1(0)

1−α(0)−β(0)

(
2 +

〈
(1, 1, 1),

∑
i≥1

(
p1(i)

p1(i)+γ(i) ,
γ(i)

p1(i)+γ(i) , 1
)
·N(i) · · ·N(1)

〉)]

EP

[
2 +

〈
(2, 2, 1),

∑
i≥0

(
p1(i)

p1(i)+γ(i) ,
γ(i)

p1(i)+γ(i) , 1
)
·N(i) · · ·N(0)

〉] .

�
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We arrange the remainder of this paper as follows. In section 2, we formulate the intrinsic
multitype branching structure within the (1, 2)-RWRE under the assumption Xn → ∞, i.e.,
Theorem 1.1, Corollary 1.1 and Proposition 1.1 are proved. In section 3, we specify the density
of the absolutely continuous invariant measure for the environments seen from the particle
explicitly based on the branching structure, i.e., Theorem 1.2 is proved. In section 4, as an
application of the branching structure, the LLN will be reproved with an explicit drift, that is,
Theorem 1.3 is proved. Finally in section 5, for general R > 1, we give the intrinsic multitype
branching structure within the (1, R)-RWRE under the assumption Xn → ∞.

2 Intrinsic multitype branching structure within the transient

(1, 2)-RWRE

We introduce the following exit probabilities of leaving a given interval from the right side.
Consider integers a, b, k with a ≤ k ≤ b, define

P k
ω [(a, b), b + 1] = P k

ω{reach (b,+∞) before (−∞, a) and at the point b+ 1},
P k
ω [(a, b), b + 2] = P k

ω{reach (b,+∞) before (−∞, a) and at the point b+ 2}.

These exit probabilities play an important role in the offspring distribution of the branching
structure, which can be expressed in terms of the environment (Brémont [5], page.1273-4, Lemma
2.1 and Proposition 2.2). Only a slight modification should be made: exiting from the left in [5]
corresponds exiting from the right here. We still give the details of the proof for convenience.

Lemma 2.1 For n ≥ 2, we have

P i
ω[(−n, i), i + 1] =

〈e1, [M(i) + · · ·+M(−n) · · ·M(i)]v〉
1 + 〈e1, [M(i) + · · ·+M(−n) · · ·M(i)]e1〉

,

P i
ω[(−n, i), i + 2] =

〈e1, [M(i) + · · ·+M(−n) · · ·M(i)]e2〉
1 + 〈e1, [M(i) + · · ·+M(−n) · · ·M(i)]e1〉

,

where e1 = (1, 0)′, e2 = (0, 1)′, v = e1 − e2 and

M(i) :=

(
p1(i)+p2(i)

q(i)
p2(i)
q(i)

1 0

)
.

Furthermore, if Xn → +∞, P-a.s., then

P i
ω[(−∞, i), i + 1] + P i

ω[(−∞, i), i + 2] = 1. (2.1)

Proof. Set f(k) = P k
ω [(−n, i), i+1]. For k such that −n ≤ k ≤ i, using Markov property, we

get a harmonic-type recurrence equation:

f(k) = p1(k)f(k + 1) + p2(k)f(k + 2) + q(k)f(k − 1),
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with f(i + 1) = 1, f(k) = 0 for k ≥ i + 2 or k ≤ −n − 1. Setting g(k) = f(k) − f(k − 1), we
obtain

g(k) =
p1(k)

q(k)
g(k + 1) +

p2(k)

q(k)

(
g(k + 2) + g(k + 1)

)

=
p1(k) + p2(k)

q(k)
g(k + 1) +

p2(k)

q(k)
g(k + 2).

Rewrite the equation as

(
g(k)

g(k + 1)

)
=

(
p1(k)+p2(k)

q(k)
p2(k)
q(k)

1 0

)(
g(k + 1)
g(k + 2)

)
.

Set

U(k) =

(
g(k)

g(k + 1)

)
, and M(k) =

(
a1(k) a2(k)
1 0

)
,

where a1(k) =
p1(k)+p2(k)

q(k) , a2(k) =
p2(k)
q(k) . Thus, we obtain the relations

U(k) = M(k)U(k + 1)

= M(k) · · ·M(i)U(i + 1),

with U(i + 1) = ([1 − f(i)],−1)′ and U(−n) = (f(−n), [f(−n + 1) − f(−n)])′. Summing from
−n to i, we deduce that

f(i) =
〈
e1,M(i)U(i + 1)

〉
+ · · ·+

〈
e1,M(−n)M(−n + 1) · · ·M(i)U(i + 1)

〉

=

〈
e1,
[
M(i) + · · ·+M(−n) · · ·M(i)

]
·
(

1− f(i)
−1

)〉
.

The first formula then follows. By similar reasoning, one can get the second formula. The second
part of the lemma is just the conclusion of Proposition 2.2 in [5]. �

Now we introduce the branching structure. Recall X0 = 0 and the sequence of ladder times

of the random walks: T0 = 0 and

Tk = inf{n > Tk−1 : Xn > XTk−1
}, k ≥ 1.

Note that Tk < ∞, P-a.s. if Xn → +∞, P-a.s.. Define, for i ≤ 0,

ηi,0 = min{k ≤ T1 : Xk = i},
θi,0 = min{ηi,0 < k ≤ T1 : Xk−1 = i,Xk = i− 1},

and for j ≥ 1,

αi,j = min{θi,j−1 < k ≤ T1 : Xk−1 = i− 1,Xk = i},
βi,j = min{θi,j−1 < k ≤ T1 : Xk−1 = i− 2,Xk = i},
γi,j = min{θi,j−1 < k ≤ T1 : Xk−1 = i− 1,Xk = i+ 1},

7



ηi,j = min{αi,j, βi,j , γi,j},
θi,j = min{ηi,j < k ≤ T1 : Xk−1 = i,Xk = i− 1},

with the usual convention that the minimum over an empty set is +∞. We refer to the time
interval [θi,j−1, ηi,j ] as the j-th excursion from i−1 to {i, i+1}. For any j ≥ 0, any i ≤ 0, define

Ai,j = #{k ≥ 0 : θi+1,j < θi,k < ηi+1,j+1, and ηi,k+1 = αi,k+1},
Bi,j = #{l ≥ 0 : θi+1,j < θi,l < ηi+1,j+1, and ηi,l+1 = βi,l+1},
Ci,j = #{m ≥ 0 : θi+1,j < θi,m < ηi+1,j+1, and ηi,m+1 = γi,m+1}.

Note that Ai,j, Bi,j , and Ci,j are the numbers of steps from i to i − 1 during the (j + 1)-th
excursion from i to {i+1, i+ 2} with crossing-back from i− 1 to i, i− 2 to i and i− 1 to i+1,
respectively. Special attentions should be paid to the different ending ways of each excursion
and their consequences, take the (j + 1)-th excursion from i to {i+ 1, i + 2} for example:

• If ηi+1,j+1 = αi+1,j+1, then the excursion [θi+1,j+1, αi+1,j+1] ends by jumping from i to
i+ 1.

• If ηi+1,j+1 = γi+1,j+1, then the excursion [θi+1,j+1, γi+1,j+1] ends by jumping from i to
i+ 2.

Furthermore, in the above two cases, excursions from i−1 to {i, i+1} included in the (j+1)-th
excursion from i to {i+ 1, i+ 2} must end at i and consequently, Ci,j = 0.

• If ηi+1,j+1 = βi+1,j+1, then the excursion [θi+1,j+1, βi+1,j+1] ends by jumping from i− 1 to
i+ 1.

Moreover, in this case, the last excursion from i−1 to {i, i+1} included in the j+1-th excursion
from i to {i+1, i+2} also ends by jumping from i− 1 to i+1, that is, if θi,m0 is the beginning
of it, then ηi,m0+1 = γi,m0+1 = βi+1,j+1 = ηi+1,j+1. Therefore, Ci,j = 1.

Define for i ≤ 0,

A(i) =
∑

j≥0

Ai,j, B(i) =
∑

j≥0

Bi,j, C(i) =
∑

j≥0

Ci,j

to be the numbers of steps from i to i− 1 before time T1 with crossing-back from i− 1 to i, i− 2
to i and i− 1 to i+ 1, respectively. Define for i ≤ 0,

U(i) = [A(i), B(i), C(i)].

Then A(i) + B(i) + C(i) is the total number of steps the walk jumping from i to i − 1 before
T1. The number of steps crossing back from i− 1 to i is A(i) + B(i), because Xn → ∞, P-a.s.
and C(i) = B(i+ 1) is counted as steps crossing back from i to i+ 1. Thus we have

T1 = 1 +
∑

i≤0

(
2A(i) + 2B(i) + C(i)

)

= 1 +
〈
(2, 2, 1),

∑

i≤0

U(i)
〉
. (2.2)
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In order to study T1, we consider {U(i)}i≤0 instead. We need the following probabilities. For
i ≤ 0,

α(i) = P i
ω[ the walk jumping from i to i− 1, and finally jumping back (2.3)

from i− 1 to i before T1],

β(i) = P i
ω[ the walk jumping from i to i− 1, and finally jumping back (2.4)

from i− 2 to i before T1],

γ(i) = P i
ω[ the walk jumping from i to i− 1, and finally jumping back (2.5)

from i− 1 to i+ 1 before T1].

Expressions of these probabilities will be given later in terms of the exit probabilities. By Markov
property, and the different ending cases explained above, we obtain, for i ≤ 0,

Pω

(
U(i) = [a, b, 0], U(i + 1) = [1, 0, 0]

∣∣∣ |U(i+ 1)| = 1
)
= Ca

a+bα(i)
aβ(i)bp1(i), (2.6)

Pω

(
U(i) = [a, b, 1], U(i + 1) = [0, 1, 0]

∣∣∣ |U(i+ 1)| = 1
)
= Ca

a+bα(i)
aβ(i)bγ(i), (2.7)

Pω

(
U(i) = [a, b, 0], U(i + 1) = [0, 0, 1]

∣∣∣ |U(i+ 1)| = 1
)
= Ca

a+bα(i)
aβ(i)bp2(i). (2.8)

Additionally, for i = 0, we define U(1) = [A(1), B(1), C(1)] for consistency. Noting that the walk
starts at 0, and the excursion from 0 to {1, 2} ends at time T1, there is only one jump crossing
up from 0 to 1 in the time interval [0, T1], which can be regarded as |U(1)| = 1 if T1 < ∞, P-a.s..
If the excursion from 0 to {1, 2} ends by jumping from 0 to 1, then set A(1) = 1, in other words,
U(1) = [1, 0, 0]. By similar reasoning, U(1) = [0, 1, 0] if the ending jump is from −1 to 1 and
U(1) = [0, 0, 1] if the ending jump is from 0 to 2. Summing over a, b ≥ 0 in (2.6), we have

Pω

(
U(i+ 1) = [1, 0, 0]

∣∣∣ |U(i+ 1)| = 1
)

=
∑

a,b≥0

Pω

(
U(i) = [a, b, 0], U(i + 1) = [1, 0, 0]

∣∣∣ |U(i+ 1)| = 1
)

=
∑

a,b≥0

Ca
a+bα(i)

aβ(i)bp1(i) =
p1(i)

1− α(i) − β(i)
. (2.9)

Similarly,

Pω

(
U(i+ 1) = [0, 1, 0]

∣∣∣ |U(i + 1)| = 1
)
=

γ(i)

1− α(i) − β(i)
, (2.10)

Pω

(
U(i+ 1) = [0, 0, 1]

∣∣∣ |U(i + 1)| = 1
)
=

p2(i)

1− α(i) − β(i)
. (2.11)

Now we are ready to calculate α(i), β(i), and γ(i). Firstly, by the definitions (2.3)–(2.5),
we can see

α(i) = Pω

(
U(i) = [1, 0, 0]

∣∣∣ |U(i)| = 1
)
,

β(i) = Pω

(
U(i) = [0, 1, 0]

∣∣∣ |U(i)| = 1
)
,

γ(i) = Pω

(
U(i) = [0, 0, 1]

∣∣∣ |U(i)| = 1
)
.
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Thus from (2.9) and (2.10), we have the ratio

α(i) : β(i) = p1(i− 1) : γ(i− 1). (2.12)

On the other hand, by the definitions (2.3)–(2.5) again, we know

α(i) + β(i) = P i
ω[ the walk jumping from i to i− 1,

and finally jumping back to i before T1],

γ(i) = P i
ω[ the walk jumping from i to i− 1,

and finally jumping back to i+ 1 before T1].

Recall the exit probabilities, we obtain

α(i) + β(i) = q(i) · P i−1
ω [(−∞, i− 1), i], (2.13)

γ(i) = q(i) · P i−1
ω [(−∞, i− 1), i + 1]. (2.14)

Finally, combining (2.12) and (2.13) we get

α(i) = q(i) · P i−1
ω [(−∞, i− 1), i] · p1(i− 1)

p1(i− 1) + γ(i− 1)
, (2.15)

β(i) = q(i) · P i−1
ω [(−∞, i− 1), i] · γ(i− 1)

p1(i− 1) + γ(i− 1)
. (2.16)

Proof of Theorem 1.1. By (2.6)–(2.8) and (2.9)–(2.11), we obtain

Pω

(
U(i) = [a, b, 0]

∣∣∣ U(i+ 1) = [1, 0, 0]
)
= [1− α(i)− β(i)]Ca

a+bα(i)
aβ(i)b, (2.17)

Pω

(
U(i) = [a, b, 1]

∣∣∣ U(i+ 1) = [0, 1, 0]
)
= [1− α(i)− β(i)]Ca

a+bα(i)
aβ(i)b, (2.18)

Pω

(
U(i) = [a, b, 0]

∣∣∣ U(i+ 1) = [0, 0, 1]
)
= [1− α(i)− β(i)]Ca

a+bα(i)
aβ(i)b. (2.19)

(2.17)–(2.19) give the offspring distribution for the (−i+ 1)-th generation (i ≤ 0). Indeed, it is
enough to show

∑

a,b≥0

[
Pω

(
U(i) = [a, b, 0]

∣∣∣ U(i+ 1) = [1, 0, 0]
)
· Pω

(
U(i+ 1) = [1, 0, 0]

∣∣∣ |U(i+ 1)| = 1
)

+Pω

(
U(i) = [a, b, 1]

∣∣∣ U(i+ 1) = [0, 1, 0]
)
· Pω

(
U(i+ 1) = [0, 1, 0]

∣∣∣ |U(i + 1)| = 1
)

+Pω

(
U(i) = [a, b, 0]

∣∣∣ U(i+ 1) = [0, 0, 1]
)
· Pω

(
U(i+ 1) = [0, 0, 1]

∣∣∣ |U(i + 1)| = 1
)]

= 1,

which is equivalent to check
p1(i) + γ(i) + p2(i)

1− α(i) − β(i)
= 1.

By (2.1), (2.13), and (2.14), we know α(i) + β(i) + γ(i) = q(i). The conclusion therefore follows
from p1(i) + p2(i) + q(i) = 1.
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Since X0 = 0 and Xn → ∞, P-a.s., we have T1 < +∞, P-a.s., so we imagine that there
are different types of particles immigrating into the system U(1) = [A(1), B(1), C(1)] and hence
|U(1)| = 1 P-a.s.. By (2.9), we know

Pω

(
U(1) = [1, 0, 0]

)
= Pω

(
U(1) = [1, 0, 0]

∣∣∣ |U(1)| = 1
)
=

p1(0)

1− α(0) − β(0)
.

By similar argument,

Pω

(
U(1) = [0, 1, 0]

)
=

γ(0)

1− α(0)− β(0)
,

Pω

(
U(1) = [0, 0, 1]

)
=

p2(0)

1− α(0)− β(0)
.

Thus the immigration of the multi-type branching process follows. This completes the proof. �

Proof of Corollary 1.1. Summing over b ≥ 0 in (2.17), we obtain

Pω

(
A(i) = a

∣∣∣ U(i+ 1) = [1, 0, 0]
)
=

1− α(i) − β(i)

1− β(i)

( α(i)

1− β(i)

)a
.

So the expected number of type-A offspring of a single type-A particle in one generation is

N11(i) =
∑

a≥0

a · Pω

(
A(i) = a

∣∣∣ U(i+ 1) = [1, 0, 0]
)
=

α(i)

1− α(i) − β(i)
.

By the same argument, we can get all the elements of the offspring mean matrix N(i). For the
second result, noting that by the multitype branching process, we have

Eω[U(i)] = Eω[U(i+ 1)] ·N(i) = Eω[U(1)] ·N(0) · · ·N(i),

and

Eω[U(1)]

= [1, 0, 0] · Pω

(
U(1) = [1, 0, 0]

)
+ [0, 1, 0] · Pω

(
U(1) = [0, 1, 0]

)

+[0, 0, 1] · Pω

(
U(1) = [0, 0, 1]

)

=
( p1(0)

1− α(0) − β(0)
,

γ(0)

1− α(0) − β(0)
,

p2
1− α(0) − β(0)

)

=
1

1− α(0) − β(0)

(
p1(0), γ(0), p2(0)

)
.

The desired conclusion follows by taking the quenched expectation in (2.2). �

As an immediate application of the branching structure, consider random walks in non-
random environment. Let ξ1, ξ2, · · · be independent variables with common distribution

P (ξ1 = −1) = q, P (ξ1 = 1) = p1, P (ξ1 = 2) = p2.
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The induced random walk is the sequence of random variables

X0 = 0, Xn = ξ1 + · · · + ξn.

Define T1 = inf{n : Xn > 0} as before. The countability of T1 in Corollary 1.1 enable us to
check the Wald’s equality ([8], pg. 397) directly.

Proof of Proposition 1.1. First, we have

E(XT1) = 1 · P (XT1 = 1) + 2 · P (XT1 = 2).

By Lemma 2.1, we obtain

P (XT1 = 1) = P 0[(−∞, 0), 1] = lim
n→∞

〈e1, [M +M2 + · · ·+Mn]v〉
1 + 〈e1, [M +M2 + · · ·+Mn]e1〉

, (2.20)

P (XT1 = 2) = P 0[(−∞, 0), 2] = lim
n→∞

〈e1, [M +M2 + · · ·+Mn]e2〉
1 + 〈e1, [M +M2 + · · ·+Mn]e1〉

, (2.21)

where

M :=

( p1+p2
q

p2
q

1 0

)
.

Note that

Mn = AΛnA−1 =

(
λ1 λ2

1 1

)
·
(

λn
1 0
0 λn

2

)
· 1

λ1 − λ2

(
1 −λ2

−1 λ1

)
,

where λ1,2 =
p1+p2±

√
(p1+p2)2+4qp2
2q are the eigenvalues of M . Then

〈e1,Mnv〉 = (1 + λ2)λ
n+1
1 − (1 + λ1)λ

n+1
2 ,

〈e1,Mne2〉 = (−λ2)λ
n+1
1 + λ1λ

n+1
2 ,

〈e1,Mne1〉 = λn+1
1 − λn+1

2 .

Since EX1 > 0, we have λ1 > 1, and λ2 ∈ (−1, 0). Hence, by (2.20) and (2.21), we obtain

P (XT1 = 1) = 1 + λ2,

P (XT1 = 2) = −λ2.

Therefore, E(XT1) = 1− λ2.

The next step is to calculate E(T1), which is done by the branching process (Corollary 1.1).
Since the environment is not random, there is no site index or integration with respect to P any
more. Applying Corollary 1.1 to this random walk, we have

E(T1) = 1 +
〈
(2, 2, 1),

1

1− α− β

(
p1, γ, p2

)
·
∑

n≥1

Nn
〉
.
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where

N :=




α
1−α−β

β
1−α−β

0
α

1−α−β
β

1−α−β
1

α
1−α−β

β
1−α−β

0


 ,

Using the eigenvalues and eigenvectors of N , and noting that the norm of the greatest eigenvalue
of N is less then 1, we have

∑

n≥1

Nn =
1

1− 2α− 3β




α β β
2α 2β 1− 2α − β
α β β


 . (2.22)

Thus,

E(T1) =
γ + 1− α− β

(1− α− β)(1− 2α− 3β)
.

Substituting γ = −qλ2, α = q(1 + λ2)
p1

p1−qλ2
, and β = q(1 + λ2)

−qλ2

p1−qλ2
, we have

γ + 1− α− β = ∆,

1− α− β =
1

2
(1− q +∆),

1− 2α− 3β = 1− (1 + q −∆)(p1 − 3p2 + 3∆)

2(p1 − p2 +∆)
,

where ∆ =
√

(p1 + p2)2 + 4p2q. Then

E(T1) =
2∆

(1− q +∆)− (1−q+∆)(1+q−∆)(p1−3p2+3∆)
2(p1−p2+∆)

=
2∆

(1− q +∆)− 2q(p1−p2+∆)(p1−3p2+3∆)
2(p1−p2+∆)

=
2∆

1− q − qp1 + 3qp2 + (1− 3q)∆
=:

a(p1, p2, q)

b(p1, p2, q)
,

and
E(XT1)

E(X1)
=

1− λ2

p1 + 2p2 − q
=

3q − 1 + ∆

2q(p1 + 2p2 − q)
=:

c(p1, p2, q)

d(p1, p2, q)
.

In order to prove E(XT1) = E(T1) · E(X1), it suffices to show

a(p1, p2, q)d(p1, p2, q) = b(p1, p2, q)c(p1, p2, q).

In fact,

a(p1, p2, q)d(p1, p2, q) = 4q(p1 + 2p2 − q)∆

= 4q(1− p2 − q + 2p2 − q)∆

= 4q(1 + p2 − 2q)∆.
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And,

b(p1, p2, q)c(p1, p2, q)

= [(1− q − qp1 + 3qp2) + (1− 3q)∆](3q − 1 + ∆)

= (1− q − qp1 + 3qp2)(3q − 1) + (1− 3q)∆2 + [(1− q − qp1 + 3qp2) + (1− 3q)(3q − 1)]∆

= (3q − 1)(1− q − qp1 + 3qp2 − (1− q)2 − 4qp2)

+[1− q − q(1− q − p2) + 3qp2 − (1− 6q + 9q2)]∆

= (3q − 1)(q(1 − p1 − p2)− q2) + [4q + 4qp2 − 8q2]∆

= 4q(1 + p2 − 2q)∆.

Thus, the desired conclusion follows. �

Remark Proposition 1.1 is a strong evidence to validate the branching structure.

3 Density of the absolutely continuous invariant measure

Now we introduce the machinery of the “environment viewed from the particle”. The first
step consists of introducing an auxiliary Markov chain. Starting from the RWRE {Xn}, define
ω(n) = θXnω. The sequence {ω(n)} is a process with paths in ΩN. This process is in fact a
Markov process. The proof is the same as Zeitouni ([19], page 204, Lemma 2.1.18), we omit the
details.

Lemma 3.1 The process {ω(n)} is a Markov process under either Pω or P, with state space Ω
and transition kernel

K(ω, dω′) = q1ω′=θ−1ω + p11ω′=θω + p21ω′=θ2ω.

�

The next step is to construct an invariant measure for the transition kernel K. Assume that
Xn → ∞, P-a.s., implying Tn < ∞, P-a.s.. Set ϕ1

θkω
= Pθkω(XT1 = 1), and ϕ2

θkω
= Pθkω(XT1 =

2) = 1− ϕ1
θkω

. Whenever E(T1) < ∞, define the measure

Q(B) = E

(
1XT1

=1

ϕ1
ω

T1−1∑

i=0

1{ω(i)∈B} +
1XT1

=2

ϕ2
ω

T1−1∑

i=0

1{ω(i)∈B}

)
, Q(B) =

Q(B)

Q(Ω)
.

Note that Q is a probability measure.

Proof of Theorem 1.2—invariant measure. We will show

Q(B) =

∫∫
1ω′∈BK(ω,dω′)Q(dω).

On one hand,

Q(B) =
∞∑

i=0

E

(
1XT1

=1

ϕ1
ω

;T1 > i;ω(i) ∈ B

)
+

∞∑

i=0

E

(
1XT1

=2

ϕ2
ω

;T1 > i;ω(i) ∈ B

)
.
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On the other hand,
∫∫

1ω′∈BK(ω,dω′)Q(dω)

=
∞∑

i=0

E

(
1XT1

=1

ϕ1
ω

; T1 > i; ω(i+ 1) ∈ B

)
+

∞∑

i=0

E

(
1XT1

=2

ϕ2
ω

; T1 > i; ω(i+ 1) ∈ B

)

=

∞∑

j=1

E

(
1XT1

=1

ϕ1
ω

; T1 > j; ω(j) ∈ B

)
+

∞∑

j=1

E

(
1XT1

=2

ϕ2
ω

; T1 > j; ω(j) ∈ B

)

+E

(
1XT1

=1

ϕ1
ω

; T1 < ∞; ω(T1) ∈ B

)
+ E

(
1XT1

=2

ϕ2
ω

; T1 < ∞; ω(T1) ∈ B

)
.

It only needs to show

E

(
1XT1

=i

ϕi
ω

; T1 > 0; ω(0) ∈ B

)
= E

(
1XT1

=i

ϕi
ω

; T1 < ∞; ω(T1) ∈ B

)
, i = 1, 2.

Indeed,

R.S. = EP

[
1

ϕi
ω

Eω

(
1XT1

=i, ω(T1) ∈ B,T1 < ∞
)]

= EP

[
Pω

(
ω(T1) ∈ B, T1 < ∞

∣∣∣XT1 = i
)]

= P

[
θiω ∈ B · Pω

(
T1 < ∞

∣∣∣XT1 = i
)]

= P
(
θiω ∈ B

)
(since Pω(T1 < ∞) = 1).

Similarly, L.S.= P (ω ∈ B). Then, by the invariance of the environment, we get L.S.=R.S.. This
completes the proof. �

Proof of Theorem 1.2—density. Let f : Ω → R be measurable. Then,

∫
fdQ = E

( T1−1∑

i=0

f(ω(i))
1XT1

=1

ϕ1
ω

+

T1−1∑

i=0

f(ω(i))
1XT1

=2

ϕ2
ω

)

= E

(∑

i≤0

f(θiω)Vi

1XT1
=1

ϕ1
ω

+
∑

i≤0

f(θiω)Vi

1XT1
=2

ϕ2
ω

)
,

where Vi = #{k ∈ [0, T1) : Xk = i}. Using the shift invariance of P , we get

∫
fdQ =

∑

i≤0

EP

(
f(θiω)

[ 1

ϕ1
ω

Eω(Vi · 1XT1
=1) +

1

ϕ2
ω

Eω(Vi · 1XT1
=2)
])

=
∑

i≤0

EP

(
f(ω)

[ 1

ϕ1
θ−iω

Eθ−iω(Vi · 1XT1
=1) +

1

ϕ2
θ−iω

Eθ−iω(Vi · 1XT1
=2)
])

= EP

(
f(ω)

∑

i≤0

[ 1

ϕ1
θ−iω

Eθ−iω(Vi · 1XT1
=1) +

1

ϕ2
θ−iω

Eθ−iω(Vi · 1XT1
=2)
])
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= EP

(
f(ω)

∑

i≤0

[
Eθ−iω(Vi|XT1 = 1) + Eθ−iω(Vi|XT1 = 2)

])
.

Hence,
dQ

dP
=
∑

i≤0

[
Eθ−iω(Vi|XT1 = 1) + Eθ−iω(Vi|XT1 = 2)

]
.

The calculation of Eθ−iω(Vi|XT1 = k), (k = 1, 2) is based on the branching process. Note that
Vi = A(i+ 1) +B(i+ 1) + C(i+ 1) +A(i) +B(i) = |U(i+ 1)|+A(i) +B(i). Then

Eω

(
V0

∣∣∣XT1 = 1
)

= Eω

[
Eω

(
|U(1)| +A(0) +B(0)

∣∣∣ U(1)
)∣∣∣XT1 = 1

]

= Eω

[
|U(1)| + α(0)

1− α(0) − β(0)
|U(1)| + β(0)

1− α(0) − β(0)
|U(1)|

∣∣∣XT1 = 1
]

=
1

1− α(0)− β(0)

∣∣∣Eω

(
U(1)

∣∣∣XT1 = 1
)∣∣∣

=
1

1− α(0)− β(0)

〈
(1, 1, 1), Eω

(
U(1)

∣∣∣XT1 = 1
)〉

.

Similarly, for i ≤ −1,

Eω

(
Vi

∣∣∣XT1 = 1
)

= Eω

[
Eω

(
Vi

∣∣∣U(i+ 1)
)∣∣∣XT1 = 1

]

=
1

1− α(i) − β(i)

∣∣∣Eω

(
U(i+ 1)

∣∣∣XT1 = 1
)∣∣∣

=
1

1− α(i) − β(i)

∣∣∣Eω

(
U(1)

∣∣∣XT1 = 1
)
·N(0) · · ·N(i+ 1)

∣∣∣

=
1

1− α(i) − β(i)

〈
(1, 1, 1), Eω

(
U(1)

∣∣∣XT1 = 1
)
·N(0) · · ·N(i+ 1)

〉
.

Hence, for i ≤ −1,

Eθ−iω

(
Vi

∣∣∣XT1 = 1
)
=

1

1− α(0) − β(0)

〈
(1, 1, 1), Eθ−iω

(
U(1)

∣∣∣XT1 = 1
)
·N(−i) · · ·N(1)

〉
.

By the same argument,

Eω

(
V0

∣∣∣XT1 = 2
)
=

1

1− α(0) − β(0)

〈
(1, 1, 1), Eω

(
U(1)

∣∣∣XT1 = 2
)〉

.

And for i ≤ −1,

Eθ−iω

(
Vi

∣∣∣XT1 = 2
)
=

1

1− α(0) − β(0)

〈
(1, 1, 1), Eθ−iω

(
U(1)

∣∣∣XT1 = 2
)
·N(−i) · · ·N(1)

〉
.

By branching process, we have

Eω

(
U(1)

∣∣∣XT1 = 1
)

= (1, 0, 0) · Pω(U(1) = (1, 0, 0)|XT1 = 1)

+(0, 1, 0) · Pω(U(1) = (0, 1, 0)|XT1 = 1) + (0, 0, 1) · Pω(U(1) = (0, 0, 1)|XT1 = 1)
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= (1, 0, 0) · p1(0)

1− α(0) − β(0)

/( p1(0) + γ(0)

1− α(0) − β(0)

)

+(0, 1, 0) · γ(0)

1− α(0) − β(0)

/( p1(0) + γ(0)

1− α(0) − β(0)

)
+ (0, 0, 1) · 0

=
( p1(0)

p1(0) + γ(0)
,

γ(0)

p1(0) + γ(0)
, 0
)
.

And,

Eω

(
U(1)

∣∣∣XT1 = 2
)
= (0, 0, 1).

Consequently, we get that

dQ

dP
=

∑

i≤0

( ∑

k=1,2

Eθ−iω

(
Vi

∣∣∣XT1 = k
))

=

2 +

〈
(1, 1, 1),

∑
i≥1

[∑
k=1,2Eθiω

(
U(1)

∣∣∣XT1 = k
)]

·N(i) · · ·N(1)

〉

1− α(0) − β(0)

=

2 +

〈
(1, 1, 1),

∑
i≥1

(
p1(i)

p1(i)+γ(i) ,
γ(i)

p1(i)+γ(i) , 1
)
·N(i) · · ·N(1)

〉

1− α(0) − β(0)
.

�

4 The law of large numbers

We are now ready to prove the law of large number with an explicit drift based on the branching
structure by the method of “environment viewed from the particle”.

Lemma 4.1 Under the law induced by Q⊗ Pω, the sequence {ω(n)} is stationary and ergodic.

Proof . Since Q is an invariant measure under the transition kernel K by Theorem 1.2, we obtain
that the process {ω(n)} is stationary under Q ⊗ Pω. For the ergodicity, the proof is similar as
Zeitouni ([19], page 207, Corollary 2.1.25), we omit the details. �

Proof of Theorem 1.3. The idea of the proof for the LLN is the same as Zeitouni ([19], page 208,
Theorem 2.1.9), however, we pay attention to the drift here.

Define the local drift at site x in the environment ω, as d(x, ω) = Ex
ω(X1−x). The ergodicity

of {ω(i)} under Q⊗ Pω implies that:

1

n

n−1∑

k=0

d(Xk, ω) =
1

n

n−1∑

k=0

d(0, ω(k)) −→
∫

d(0, ω) dQ, as n → ∞, Q⊗ Pω-a.s.

On the other hand,

Xn =
n∑

i=1

(Xi −Xi−1) =
n∑

i=1

(
Xi −Xi−1 − d(Xi−1, ω)

)
+

n∑

i=1

d(Xi−1, ω)
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:= Mn +
n∑

i=1

d(Xi−1, ω).

Under Pω, Mn is a martingale, with |Mn − Mn−1| ≤ 3 for ω ∈ Ω. Hence, with Gn =
σ(M1, · · · ,Mn),

Eω(e
λMn) = Eω

(
eλMn−1Eω(e

λ(Mn−Mn−1)|Gn)
)

≤ Eω

(
eλMn−1e3λ

2
)
,

and hence, iterating, Eω(e
λMn) ≤ e3nλ

2
(this is a version of Azuma’s inequality, see [?], Corollary

2.4.7). Then Chebyshev’s inequality implies that

Mn

n
→ 0, P-a.s.

Hence,

lim
n→∞

1

n
Xn =

∫
d(0, ω) dQ = vP ,

Observe that

vP =

∫
d(0, ω)dQ = EQ(X1)

=
EP

[
Π(ω)

(
p1(0) + 2p2(0) − p−1(0)

)]

Q(Ω)

=

EP

[
p1(0)+2p2(0)−p−1(0)

1−α(0)−β(0)

(
2 +

〈
(1, 1, 1),

∑
i≥1

(
p1(i)

p1(i)+γ(i) ,
γ(i)

p1(i)+γ(i) , 1
)
·N(i) · · ·N(1)

)〉]

E(T1|XT1 = 1) + E(T1|XT1 = 2)
.

Moreover, by (2.2) and the proof of the density of Theorem 1.2, we have

E(T1|XT1 = 1) = EP

[
Eω

(
1 +

〈
(2, 2, 1),

∑

i≤0

U(i)
〉∣∣∣XT1 = 1

)]

= EP

[
1 +

〈
(2, 2, 1),

∑

i≤0

Eω

(
U(i)

∣∣∣XT1 = 1
)〉]

= EP

[
1 +

〈
(2, 2, 1),

∑

i≤0

Eω

(
U(1)

∣∣∣XT1 = 1
)
·N(0) · · ·N(i)

〉]

= EP

[
1 +

〈
(2, 2, 1),

∑

i≤0

( p1(0)

p1(0) + γ(0)
,

γ(0)

p1(0) + γ(0)
, 0
)
·N(0) · · ·N(i)

〉]
,

and by the same argument,

E(T1|XT1 = 2) = EP

[
1 +

〈
(2, 2, 1),

∑

i≤0

(
0, 0, 1

)
·N(0) · · ·N(i)

〉]
.
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Therefore,

E(T1|XT1 = 1) + E(T1|XT1 = 2)

= EP

[
2 +

〈
(2, 2, 1),

∑

i≤0

( p1(0)

p1(0) + γ(0)
,

γ(0)

p1(0) + γ(0)
, 1
)
·N(0) · · ·N(i)

〉]

= EP

[
2 +

〈
(2, 2, 1),

∑

i≥0

( p1(i)

p1(i) + γ(i)
,

γ(i)

p1(i) + γ(i)
, 1
)
·N(i) · · ·N(0)

〉]
,

where the last equation holds by the invariance of P . Consequently, the drift in this case can
be written as

vP =

EP

[
p1(0)+2p2(0)−p−1(0)

1−α(0)−β(0)

(
2 +

∑
i≥1

〈
(1, 1, 1),

(
p1(i)

p1(i)+γ(i) ,
γ(i)

p1(i)+γ(i) , 1
)
·N(i) · · ·N(1)

〉)]

EP

[
2 +

〈
(2, 2, 1),

∑
i≥0

(
p1(i)

p1(i)+γ(i) ,
γ(i)

p1(i)+γ(i) , 1
)
·N(i) · · ·N(0)

〉] .

�

Remark Consider the random walk in non-random environment defined in Proposition 1.1.
Then the drift vP reduces to E(X1) = p1 + 2p2 − q. In fact, when the environment is not
random, the drift in Theorem 1.3 can be written as

vP = (p1 + 2p2 − q)

1
1−α−β

(
2 +

〈
(1, 1, 1),

(
p1

p1+γ
, γ
p1+γ

, 1
)
·∑n≥1N

n
〉)

2 +
〈
(2, 2, 1),

(
p1

p1+γ
, γ
p1+γ

, 1
)
·∑n≥1N

n
〉 .

By (2.22), we obtain

vP = (p1 + 2p2 − q)

×
1

1−α−β

[
2 + 1

(p1+γ)(1−2α−3β)

〈
(1, 1, 1),

(
α(2p1 + 3γ), β(2p1 + 3γ), 2βp1 + (1− 2α)γ

)〉]

2 + 1
(p1+γ)(1−2α−3β)

〈
(2, 2, 1),

(
α(2p1 + 3γ), β(2p1 + 3γ), 2βp1 + (1− 2α)γ

)〉

= (p1 + 2p2 − q)×
2p1+3γ

(p1+γ)(1−2α−3β)

2p1+3γ
(p1+γ)(1−2α−3β)

= p1 + 2p2 − q,

as it should be. �

5 The general bounded jump case: (1, R)-RWRE

In this section, we consider (1, R)-RWRE, in which the possible jumps to the right are 1, 2, · · · , R,
where R is some fixed positive integer. In this case, the environment is an element

ω = {(q(ω)z , p1(ω)z, · · · , pR(ω)z) : z ∈ Z} ∈ M(Λ̃)Z =: Ω̃,
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where Λ̃ = {−1, 1, · · · , R} is the set of all possible jumps. Following the idea in section 2, we
can define a branching process with (1 + 2 + · · · + R)-type species. In fact, for a jump from
i to i − 1, there are (1 + 2 + · · · + R) crossing-back ways, i.e., jumping from i − k1 to i for
k1 ∈ {1, 2, · · · , R}, jumping from i − k2 to i + 1 for k2 ∈ {1, 2, · · · , R − 1}, · · · , jumping from
i− kR to i+R− 1 for kR = 1.

First, we need the following lemma dealing with exit probabilities for this general case.

Lemma 5.1 For n ≥ 2 and 1 ≤ j ≤ R, we have

P i
ω[(−n, i), i + j] =

〈e1, [M̃ (i) + · · ·+ M̃(−n) · · · M̃(i)](ej − ej+1)〉
1 + 〈e1, [M̃ (i) + · · ·+ M̃ (−n) · · · M̃(i)]e1〉

,

with eR+1 = 0 and

M̃(i) :=




p1(i)+···+pR(i)
q(i) · · · pR−1(i)+pR(i)

q(i)
pR(i)
q(i)

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0


 .

The proof is the same as Lemma 2.1. �

Define for i ≤ 0,

U(i) =
(
U1(i), · · · , UR(i), UR+1(i), · · · , UR+R−1(i), · · · , U1+2+···+R(i)

)
,

where, for k = 1, 2, · · · , (1+2+ · · ·+R), Uk(i) is the number of steps from i to i− 1 before time
T1 with crossing-back from i− 1 to i, · · · , i−R to i; i− 1 to i+ 1, · · · , i−R+ 1 to i+ 1; · · · ;
i− 1 to i+R− 1; respectively. For probabilities, let

p(1)(i) = P i
ω[the walk jumping from i to i− 1, and finally jumping back

from i− 1 to i before T1],

...

p(R)(i) = P i
ω[the walk jumping from i to i− 1, and finally jumping back

from i−R to i before T1],

p(R+1)(i) = P i
ω[the walk jumping from i to i− 1, and finally jumping back

from i− 1 to i+ 1 before T1],

...

p(R+R−1)(i) = P i
ω[the walk jumping from i to i− 1, and finally jumping back

from i−R+ 1 to i+ 1 before T1],

...

p(1+2+···+R)(i) = P i
ω[the walk jumping from i to i− 1, and finally jumping back

from i− 1 to i+R− 1 before T1].
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Expressions of these probabilities can be calculated by using the exit probabilities as this is done
in section 2. Firstly, we have

p(1) + · · ·+ p(R) = P i
ω[the walk jumping from i to i− 1, and finally

jumping back to i before T1],

p(R+1) + · · · + p(R+R−1) = P i
ω[the walk jumping from i to i− 1, and finally

jumping back to i+ 1 before T1],

...

p((1+2+···+R)−2)(i) + p((1+2+···+R)−1)(i) = P i
ω[the walk jumping from i to i− 1, and finally

jumping back to i+R− 2 before T1],

p(1+2+···+R)(i) = P i
ω[the walk jumping from i to i− 1, and finally

jumping back to i+R− 1 before T1].

Recall the exit probabilities, we obtain

p(1) + · · ·+ p(R) = q(i) · P i−1
ω [(−∞, i− 1), i],

p(R+1) + · · ·+ p(R+R−1) = q(i) · P i−1
ω [(−∞, i− 1), i + 1],

...

p((1+2+···+R)−2)(i) + p((1+2+···+R)−1)(i) = q(i) · P i−1
ω [(−∞, i− 1), i +R− 2], (5.1)

p(1+2+···+R)(i) = q(i) · P i−1
ω [(−∞, i− 1), i +R− 1].

Observe that

p((1+2+···+R)−2)(i) : p((1+2+···+R)−1)(i) = pR−1(i− 1) : p(1+2+···+R)(i− 1).

Thus by (5.1), we get

p((1+2+···+R)−2)(i) = q(i) · P i−1
ω [(−∞, i− 1), i +R− 2] · pR−1(i− 1)

pR−1(i− 1) + p(1+2+···+R)(i− 1)
,

p((1+2+···+R)−1)(i) = q(i) · P i−1
ω [(−∞, i− 1), i +R− 2] ·

p(1+2+···+R)(i− 1)

pR−1(i− 1) + p(1+2+···+R)(i− 1)
.

Using the same argument, we can get the expression of all the probabilities:

p(1+2+···+R)(i) = q(i) · P i−1
ω [(−∞, i− 1), i +R− 1],

p((1+2+···+R)−2)(i) = q(i) · P i−1
ω [(−∞, i− 1), i +R− 2] · pR−1(i− 1)

pR−1(i− 1) + p(1+2+···+R)(i− 1)
,

p((1+2+···+R)−1)(i) = q(i) · P i−1
ω [(−∞, i− 1), i +R− 2] ·

p(1+2+···+R)(i− 1)

pR−1(i− 1) + p(1+2+···+R)(i− 1)
,

...

p(R+1)(i) = q(i) · P i−1
ω [(−∞, i− 1), i + 1]

× p2(i− 1)

p2(i− 1) + p(R+R−1+1)(i− 1) + · · ·+ p(R+R−1+R−2)(i− 1)
,
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...

p(R+R−1)(i) = q(i) · P i−1
ω [(−∞, i− 1), i + 1]

×
p(R+R−1+R−2)(i− 1)

p2(i− 1) + p(R+R−1+1)(i− 1) + · · ·+ p(R+R−1+R−2)(i− 1)
,

p(1)(i) = q(i) · P i−1
ω [(−∞, i− 1), i] · p1(i− 1)

p1(i− 1) + p(R+1)(i− 1) + · · ·+ p(R+R−1)(i− 1)
,

p(2)(i) = q(i) · P i−1
ω [(−∞, i− 1), i] ·

p(R+1)(i− 1)

p1(i− 1) + p(R+1)(i− 1) + · · ·+ p(R+R−1)(i− 1)
,

...

p(R)(i) = q(i) · P i−1
ω [(−∞, i− 1), i] ·

p(R+R−1)(i− 1)

p1(i− 1) + p(R+1)(i− 1) + · · ·+ p(R+R−1)(i− 1)
.

Now we are ready to give the theorem about U(i).

Theorem 5.1 Assume Xn → ∞, P-a.s.. Then
(
U(i)

)
i≤0

is an inhomogeneous multitype

branching process in R
1+2+···+R with immigration

U(1) = e1, with probability
p1(0)

1− p(1)(0)− · · · − p(R)(0)
,

U(1) = e2, with probability
p(R+1)(0)

1− p(1)(0)− · · · − p(R)(0)
,

...

U(1) = eR, with probability
p(R+R−1)(0)

1− p(1)(0)− · · · − p(R)(0)
,

U(1) = eR+1, with probability
p2(0)

1− p(1)(0)− · · · − p(R)(0)
,

...

U(1) = e2+3+···+R, with probability
p(1+2+···+R)(0)

1− p(1)(0)− · · · − p(R)(0)
,

U(1) = e1+2+···+R, with probability
pR(0)

1− p(1)(0)− · · · − p(R)(0)
,

and the following offspring distribution:

Pω

(
U(0) = (u1, · · · , uR, 0, · · · , 0), U(1) = e1

∣∣∣|U(1)| = 1
)

=
(u1 + · · ·+ uR)!

u1! · · · uR!
pu1

(1)(0) · · · p
uR

(R)(0)p1(0),

Pω

(
U(0) = (u1, · · · , uR, 1, 0, · · · , 0), U(1) = e2

∣∣∣|U(1)| = 1
)

=
(u1 + · · ·+ uR)!

u1! · · · uR!
pu1

(1)(0) · · · p
uR

(R)(0)p(R+1)(0),
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...

Pω

(
U(0) = (u1, · · · , uR, 0 · · · , 0,

(R+R-1)th

1 , 0, · · · , 0), U(1) = eR

∣∣∣|U(1)| = 1
)

=
(u1 + · · ·+ uR)!

u1! · · · uR!
pu1

(1)(0) · · · p
uR

(R)(0)p(R+R−1)(0),

Pω

(
U(0) = (u1, · · · , uR, 0, · · · , 0), U(1) = eR+1

∣∣∣|U(1)| = 1
)

=
(u1 + · · ·+ uR)!

u1! · · · uR!
pu1

(1)(0) · · · p
uR

(R)(0)p2(0),

...

Pω

(
U(0) = (u1, · · · , uR, 0, · · · , 0, 1), U(1) = e2+3+···+R

∣∣∣|U(1)| = 1
)

=
(u1 + · · ·+ uR)!

u1! · · · uR!
pu1

(1)(0) · · · p
uR

(R)(0)p(1+2+···+R)(0),

Pω

(
U(0) = (u1, · · · , uR, 0, · · · , 0), U(1) = e1+2+···+R

∣∣∣|U(1)| = 1
)

=
(u1 + · · ·+ uR)!

u1! · · · uR!
pu1

(1)(0) · · · p
uR

(R)(0)pR(0).

Furthermore, for i ≤ 0, the offspring mean matrix of the (−i+ 1)-th generation is:

Ñ(i) = (Ñ1(i) Ñ2),

where

Ñ1(i) =




p(1)(i)

1−p(1)(i)−···−p(R)(i)
· · · p(R)(i)

1−p(1)(i)−···−p(R)(i)

...
...

...
p(1)(i)

1−p(1)(i)−···−p(R)(i)
· · · p(R)(i)

1−p(1)(i)−···−p(R)(i)




(1+2+···+R)×R

,

and

Ñ2 =




Z1,R−1 Z1,R−2 · · · Z1,1

IR−1 ZR−1,R−2 · · · ZR−1,1

Z1,R−1 Z1,R−2 · · · Z1,1

ZR−2,R−1 IR−2 · · · ZR−2,1

Z1,R−1 Z1,R−2 · · · Z1,1
...

...
...

...

Z1,R−1 Z1,R−2 · · · I1
Z1,R−1 Z1,R−2 · · · Z1,1




(1+2+···+R)×(1+2+···+R−1)

,

in which Zm,n is the zero matrix of dimension m×n, and Im is the identity matrix of dimension

m×m.

Remark Following the ideas in section 2, Theorem 5.1 can be proved analogously. We omit the
details.
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