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Abstract

By decomposing the random walk path, we construct a multitype branching pro-
cess with immigration in random environment for corresponding random walk with
bounded jumps in random environment. Then we give two applications of the branch-
ing structure. Firstly, we specify the explicit invariant density by a method different
with the one used in Brémont [3] and reprove the law of large numbers of the random
walk by a method known as “ the environment viewed from particles”. Secondly, the
branching structure enables us to prove a stable limit law, generalizing the result of
Kesten-Kozlov-Spitzer [11] for the nearest random walk in random environment. As
a byproduct, we also prove that the total population of a multitype branching process
in random environment with immigration before the first regeneration belongs to the
domain of attraction of some κ-stable law.
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1 . Introduction

RandomWalk in Random Environment (RWRE for short) has been extensively studied (see e.g. Sznitman
[20] or Zeitouni [21] for a comprehensive survey), and has wide range of applications both in probability
theory and physics, for example, in metal physics and crystallography (see Hughes [9] for an introduction).
Two kinds of randomness are involved in RWRE: first the transition probability chosen randomly at each
state position (called random environment); and second the random walk, a time homogeneous Markov
chain driven by the chosen transition probability.

Random walk in random environment with bounded jumps ((L-R) RWRE, that is, the walk, in every
unit of time, jumping no more than L to the left and no more than R to the right, where R and L are
positive integers) was first introduced in Key [13]. Further developments can be found in Brémont [3, 4]
and Lëtchikov [16, 17]. We mention here that (L-R) RWRE is a special case of random walk in random
environment on a strip. RWRE on a strip was first introduced in Bolthausen-Goldsheid [2], where the
authors provided a criteria for the recurrence and transience of the walk. For further development of
RWRE on a strip, one can refer to Goldsheid [7, 8] and Roitershtein [19].

Branching structure played an important role in proving the limit properties for the nearest neighbor-
hood RWRE. When the walk is transient to the right, a branching structure was found in Kesten-Kozlov-
Spitzer [11] and an elegant stable limit law was obtained; and the renewal theorem was proved also relying
on the branching structure (Kesten [12]). Those fine results were proved because the steps of the walk
could be calculated accurately under the branching structure. By using the branching structure, Alili
[1] (see also Zeitouni [21]) got the invariant density and consequently proved the Law of Large Numbers
(LLN for short) by “ the environment viewed from particles”, a method which goes back to Kozlov [15].

Brémont has also systematically studied (L-1) RWRE in [3], where the recurrence and transience,
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LLN and some central limit theorem have been proved. One of the main purpose of this paper is to prove
a stable limit theorem to generalize Kesten-Kozlov-Spitzer [11] which dealt the nearest setting.

To get a stable limit theorem for the (L-1) RWRE, one of the crucial steps is to derive the branching
structure. In this paper, we will formulate a multitype branching process for the walk transient to the
right. However, it is much more complicated than the nearest setting, for (1) There are overlaps between
different steps, that is, there may be jumps down from i to i − 1, i − 2, ..., i − L. Consequently (2) one
could not use jumps down from i directly as the number of (n− i)-th generation of the branching process
any more, because one cannot figure out the exact parents of particles in (n− i)-th generation.

The idea to deal with this difficulty is to imagine that a jump of size l down from i by the walk can be
remembered by location i− 1, i− 2, ..., i− l. In this way we can construct a Multitype Branching Process
in Random Environment with one type-1 Immigrant in each generation (MBPREI for short) to analyze
Tn, the first hitting time of state n > 0.

After specifying the corresponding MBPREI, we give two applications. Firstly we can figure out
the invariant density directly from the branching structure and avoid introducing the (IM) condition in
Brémont [3]. Consequently we can reprove directly the LLN for the (L-1) RWRE by a method known as
“ the environment viewed from particles”; secondly we prove a stable limit Theorem for the (L-1) RWRE,
generalizing Kesten-Kozlov-Spitzer [11] for the nearest one.

We now define precisely the model of interests to us.

1.1 Description of the model

Let Λ = {−L, ..., 1}/{0}, Σ = {(xl)l∈Λ ∈ RL :
∑

l∈Λ xl = 1, xl ≥ 0, l ∈ Λ} the simplex in RL+1, and
Ω = ΣZ. Let µ be a probability measure on Σ and ω0 = (ω0(z))z∈Λ be a Σ-valued random vector with
distribution µ, satisfying

∑

z∈Λ ω0(z) = 1. Let P = ⊗Zµ on Ω making ωx, x ∈ Z i.i.d. and satisfying

P(ω0(z)/ω0(1) ≥ ε, ∀z ∈ Λ) = 1 for some ε > 0. (1)

Define the shift operator θ on Ω by the relation

(θω)i = ωi+1. (2)

The pair (Ω,P) will serve as the space of environment for both the random walk with bounded jumps
and the multitype branching process which we will give next. The random walk in random environment
ω with bounded jumps is the Markov chain defined by X0 = x and transition probabilities

Px,ω(Xn+1 = y + z|Xn = y) = ωy(z), ∀y ∈ Z, z ∈ Λ.

In the sequel we refer to Px,ω(·) as the “quenched” law. One also defines the “annealed” laws

Px := P× Px,ω for x ∈ Z.

In the rest of the paper, we use respectively E corresponding to P, Ex,ω corresponding to Px,ω and Ex

corresponding to Px to denote the expectations. And for simplicity, we may use P, Pω , E, and Eω instead
of P0, P0,ω, E0 and E0,ω .

1.2 Notations, basic conditions and known results

All the vectors, both row vectors and column vectors, involved in this paper are in RL except otherwise
stated. All the matrices involved are in RL×L. Let x be a vector and M be a matrix. We put

|x| =
L
∑

i=1

|xi|, ‖M‖c = max
|y|=1

|My|, and ‖M‖ = max
|x|=1

|xM |.
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One should note that the matrix norms ‖ · ‖ and ‖ · ‖c are different.

Let SL−1 := {x ∈ RL : |x| = 1} being the unit ball in RL, and S+ = {x ∈ SL−1 : xi ≥ 0}.
For i ∈ Z let

Mi =











bi(1) · · · bi(L− 1) bi(L)
1 + bi(1) · · · bi(L− 1) bi(L)

...
. . .

...
...

bi(1) · · · 1 + bi(L− 1) bi(L)











, M i =











ai(1) · · · ai(L− 1) ai(L)
1 · · · 0 0
...

. . .
...

...
0 · · · 1 0











, (3)

with ai(l) =
ωi(−l)+···+ωi(−L)

ωi(1)
, bi(l) =

ωi(−l)
ωi(1)

, 1 ≤ l ≤ L.

We also introduce the following special vectors. ei is the unit row vector with i-th component being
1. The black 1 = (1, ..., 1), e0 = ( 1

L
, ..., 1

L
), x0 = (2, 1, ..., 1)T , and x0 = (2,−1, 0, ..., 0)T .

For n ≥ 0, define
Tn = inf[k ≥ 0 : Xk = n].

Note that Tn is the first time the walk reaching n.

Let ρ = 1−ω0(1)
ω0(1)

. We use the following conditions in the paper.

Condition C
(C1) E

(

log+ ρ
)

< ∞, with log+ x := 0 ∨ log x.
(C2) P (ρ > 1) > 0.
Note that under (C2) it is an easy task to show that there exists some κ0 > 2 such that

E

[(

min
1≤i≤L

{
L
∑

j=1

M0(i, j)}
)κ0
]

= E(ρκ0) > 1. (4)

We mention that (4) corresponds to (1.13) of Kesten [10]. But they have different forms since the norm
used here differs from the one used in Kesten [10]. Now fixing such κ0 we give a new condition
(C3) E(ρκ0 log+ ρ) < ∞.
Let ̺ be the greatest eigenvalue of M0. One follows from (1) that ̺ > 0.
(C4) The group generated by supp[log ̺] is dense in R. �

In the remainder of the paper, except otherwise stated, we always assume that Condition C holds.

Remark 1.1 The above conditions look more or less like the conditions of the theorem in Kesten-Kozlov-

Spitzer [11]. (C1) implies that E(log+ ‖M0‖) < ∞, enabling us to calculate the Lyapunov exponents.

Condition (C2) excludes the biased trivial case and it also ensures the existing of a number κ ∈ (0, κ0]

such that

lim
n→∞

{E (‖ M0M−1 · · ·M−n+1 ‖κ)} 1
n = 1

(see (12) below). One follows from (C3) that

E
(

‖M0‖κ0 log+ ‖M0‖
)

< ∞, and max
1≤l≤L

E ((ω0(−l)/ω0(1))
κ0) < ∞,

which will be used many times in this paper. Also, (C3) implies (C1). Condition (C4) is the request of

Kesten [10] for the proof of the renewal theory of the products of random matrices.

The (L-1) RWRE has been studied intensively in Brémont [3], where the recurrence and transience
criteria, the LLN and some central limits theorem have been derived. We state only the recurrence and
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transience of the model here. Under condition (C1) one can calculate the greatest Ljapounov exponents
of {M i} and {Mi} under both the norms ‖ · ‖c and ‖ · ‖. Indeed in Proposition 3.1 below, we show that
{Mi} and {M i} share the same greatest Lyapunov exponent. Also as {Mi} and {M i} to be considered,
it causes no difference to calculate the Lyapunov exponents under different norms ‖ · ‖c and ‖ · ‖. So in
the remainder of the paper, we use γL to denote the greatest Lyapunov exponent of both {Mi} and {M i}.
The number γL provides the criteria for the transience and recurrence of (L-1) RWRE. We have

Theorem A (Brémont) The (L-1) RWRE {Xn}n≥0 is P -a.s. recurrent, transient to the right or
transient to the left according as γL = 0, γL < 0 or γL > 0.

1.3 Main results

When the walk {Xn} is transient to the right (P -a.s.), we can formulate a related MBPREI (with negative
time) to calculate the steps of the walk. We first define an MBPREI {Z−n}n≥0, with negative time. For
each integer k we define Z(k,m) to be the L-type branching process in random environment which begins
at time k. That is to say, conditioned on ω,

Pω(Z(k,m) = 0) = 1, if m > k,

Pω(Z(k, k) = e1) = 1, (5)

and for m < k

Pω(Z(k,m) = (u1, u2, ..., uL)
∣

∣Z(k,m+ 1) = e1)

=
(u1 + u2 + · · ·+ uL)!

u1!u2! · · ·uL!
ωm+1(−1)u1ωm+1(−2)u2 · · ·ωm+1(−L)uLωm+1(1), (6)

Pω

(

Z(k,m) = (u1, ..., ul−2, ul−1 + 1, ul, ..., uL)
∣

∣Z(k,m+ 1) = el
)

=
(u1 + u2 + · · ·+ uL)!

u1!u2! · · ·uL!
ωm+1(−1)u1ωm+1(−2)u2 · · ·ωm+1(−L)uLωm+1(1),

l = 2, 3, ..., L. (7)

In addition to assume that conditioned on ω, each of the process Z(k, ∗) has independent lines of descent,
we also assume that conditioned on ω, the processes Z(k, ∗) are independent.

Let

Z−n =
n−1
∑

k=0

Z(−k,−n), n > 0. (8)

Z−n is the total number of offspring, born at time −n to the immigrants who arrived between 0 and
−n+ 1, of an MBPREI beginning at time zero.

Next we consider the path of the (L-1) RWRE {Xn} with initial value X0 = 0.

Fix n > 0. For −∞ < i < n, 1 ≤ l ≤ L, let

Un
i,l = #{0 < k < Tn : Xk−1 > i,Xk = i− l + 1}

recording all steps by the walk between time interval (0, Tn) from above i to i− l + 1. Set

Un
i := (Un

i,1, U
n
i,2, · · · , Un

i,L).

One sees that |Un
i | is the total number of steps by the walk reaching or crossing i downward from above

i.

Let Ik =: {Xm : Tk ≤ m < Tk+1}, k = 0, 1, ..., n− 1, decomposing the the random walk path before
time Tn into n independent and non-intersecting pieces. Define for 1 ≤ l ≤ L, i < k,

Un
l (k, i) = #{Tk ≤ m < Tk+1 : Xm−1 > i,Xm = i− l + 1},
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counting the steps in Ik from above i to i− l + 1. Let

Un(k, i) = (Un
1 (k, i), U

n
2 (k, i), ..., U

n
L(k, i))

recording all steps in Ik reaching or crossing i downward from above i. Set Un(k, i) = 0 for i > k and set
Un(k, k) = e1. One can see from the definitions of Un

i and Un(k, i) that

Ui =

n−1
∑

k=(i+1)∨0

Un(k, i).

The relationship between the (L-1) RWRE and the MBPREI {Z−n}n≥0 is summarized in the following
theorem which will be proved in Section 2.

Theorem 1.1 Suppose that γL < 0 (implying that Xn → ∞ P -a.s. by Theorem A). Then one has that

(a)

Tn = n+

n−1
∑

i=−∞
|Un

i |+
n−1
∑

i=−∞
Un
i,1 = n+

n−1
∑

i=−∞
Un
i x0; (9)

(b) Each of the processes Un(k, ∗), 0 ≤ k ≤ n − 1, is an inhomogeneous multitype branching process

beginning at time k with branching mechanism

Pω(U
n(k, i− 1) = (u1, ..., uL)

∣

∣Un(k, i) = e1)

=
(u1 + · · ·+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(0), (10)

and for 2 ≤ l ≤ L,

Pω

(

Un(k, i− 1) = (u1, ..., 1 + ul−1, ..., uL)
∣

∣Un(k, i) = el
)

=
(u1 + · · ·+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(0). (11)

Moreover conditioned on ω, Un(k, ∗), k = 0, 1, ..., n−1 are mutually independent and each of the branching

processes Un(k, ∗) has independent line of descent. Consequently Un
n−1 = 0, Un

n−2, · · · , Un
1 , U

n
0 are the

first n generations of an inhomogeneous multitype branching process with a type-1 immigration in each

generation in random environment.

(c) Un
n−1 = 0, Un

n−2, · · · , Un
1 , U

n
0 has the same distribution with the first n generations of the inhomoge-

neous MBPREI {Z−n}n≤0 defined in (8).

We have immediately the following corollary about the offspring matrices of the multitype branching
process {Un

i }0≤i≤n−1.

Corollary 1.1 For the process {Un
i }n−1

i=0 , let Mi be the L × L matrix whose l-th row is the expected

number of offspring born to a type-l parent of the (n − i)-th generation conditioned on ω, that is,

Eω (Un(i, i− 1)|Un(i, i) = el) . Then one has that

Mi =















bi(1) · · · bi(L− 1) bi(L)

1 + bi(1) · · · bi(L− 1) bi(L)
...

. . .
...

...

bi(1) · · · 1 + bi(L− 1) bi(L)














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which coincides with the definition of Mi in (3). Similarly for the process {Z−n}n≥0 let M−i be the L×L

matrix whose l-th row is the expected number of offspring born to a type-l parent at time −i, conditioned

on ω : Eω (Z(−i,−i− 1)|Z(−i,−i) = el) . Then one has that

M−i =















b−i(1) · · · b−i(L− 1) b−i(L)

1 + b−i(1) · · · b−i(L− 1) b−i(L)
...

. . .
...

...

b−i(1) · · · 1 + b−i(L− 1) b−i(L)















.

Part (c) of Theorem 1.1 says that Un
n−1 = 0, Un

n−2, · · · , Un
1 , U

n
0 has the same distribution with the

first n generations of the inhomogeneous MBPREI {Z−n}n≤0 defined in (8). Instead of studying the
limiting behaviors of the hitting time Tn directly, one turns to study that of the L-type branching process
{Z−n}n≥0 first.

Let ν0 ≡ 0, and define recursively

νn = min{m > νn−1 : Z−m = 0} for n > 0,

being the successive regeneration times of MBPREI {Z−n}n≥0. For simplicity we write ν1 as ν.

One sees that the regeneration time ν of the MBPREI {Z−n}n≥0 corresponds to the regeneration
position (some position where the walk will never go back after passing it) for {Xn}n≥0.

Define also

W =
ν−1
∑

k=0

Z−k,

the total number of offspring born before the regeneration time ν.

Kesten[10] (see Theorem 5.2 below) has proved that if Condition C holds and the greatest Lyapunov
exponent γL of {M−n}n≥0 is strictly negative, there exists a unique κ ∈ (0, κ0], such that

log ρ(κ) = lim
n→∞

1

n
logE (‖ M0M−1 · · ·M−n+1 ‖κ) = 0. (12)

Then we have the following limiting theorem of MBPREI {Z−n}≥0.

Theorem 1.2 Let κ be the number in (12). Suppose that Condition C holds and γL < 0. If κ > 2, then

E((Wx0)
2) < ∞; if κ ≤ 2, then there exists some 0 < K3 < ∞ such that

lim
t→∞

tκP (Wx0 ≥ t) = K3. (13)

For n ≥ 0 define ω(n) = θXnω. Then {ω(n)} is a Markov chain with transition kernel

P (ω, dω′) = ω0(1)δθω=ω′ +

L
∑

l=1

ω0(−l)δθ−lω=ω′ .

In [3] an (IM) condition is said to be satisfied if there is π(ω) such that
∫

π̃(ω)P(dω) = 1 and π̃(ω) = P ∗ π̃(ω),

where π̃(ω) = π(ω)[E(π(ω))]−1 . Under (IM) condition Brémont showed an LLN of {Xn} in [3]. But the
(IM) condition was not given directly in the words of environment ω. So one has to check the existence

6



of the invariant density π(ω). In [3], Brémont showed the existence of π(ω) by analyzing its definition
and the transition probability of the walk.

What makes difference in this article is that, with the help of the branching structure, we specify
the invariant density π(ω) directly by analyzing a multitype branching process. Therefore we avoid
introducing the (IM) condition and show directly that {Xn} satisfies an LLN with a positive speed
under the assumption “E(π(ω)) < ∞”. Also the speed has a simple explicit form [E(π(ω))]−1.

Define π(ω) := 1
ω0(1)

(

1 +
∑∞

i=1 e1M i · · ·M1e
T
1

)

. Let π̃(ω) = π(ω)
E(π(ω)) . Then we have

Theorem 1.3 Suppose that E(π(ω)) < ∞. Then we have that

(i) γL < 0;

(ii) π̃(ω)P(dω) is invariant under the kernel P (ω, dω′), that is

∫

1Bπ̃(ω)P(dω) =

∫∫

1ω′∈BP (ω, dω′)π̃(ω)P(dω); (14)

(iii) and P-a.s., limn→∞
Xn

n
= 1

E(π(ω)) .

Remark 1.2 The independence assumption of the environment is unnecessary. It is enough if (Ω,P, θ)

is an ergodic system.

Also for the (L-1) RWRE we have the following stable limit theorem, generalizing Kesten-Kozlov-Spitzer
[11] which dealt with the nearest setting.

Theorem 1.4 Suppose that Condition C holds and that γL < 0. Let κ be the number in (12). Let

Lκ(x) be a κ-stable law (Lκ is concentrated on [0,∞) if κ < 1 and has mean zero if κ > 1). Then with

0 < Aκ, Bi < ∞ suitable constants, Φ(x) := 1√
2π

∫ x

−∞
e−

s2

2 ds,

(i) if 0 < κ < 1,

lim
n→∞

P (n− 1
κTn ≤ x) = Lκ(x),

lim
n→∞

P (n−κXn ≤ x) = 1− Lκ(x
− 1

κ );

(ii) if κ = 1, then for suitable D(n) ∼ logn and δ(n) ∼ (A1 logn)
−1n,

lim
n→∞

P (n−1(Tn −A1nD(nµ−1)) ≤ x) = L1(x),

lim
n→∞

P (n−1(log n)2(Xn − δ(n)) ≤ x) = 1− L1(−A2
1x);

(iii) if 1 < κ < 2,

lim
n→∞

P
(

n− 1
κ (Tn −Aκn) ≤ x

)

= Lκ(x),

lim
n→∞

P

(

n− 1
κ

(

Xn − n

Aκ

)

≤ x

)

= 1− Lκ(−xA1+κ−1

κ );

(iv) if κ = 2,

lim
n→∞

P
( Tn −A2n

B1

√
n logn

≤ x
)

= Φ(x),

7



lim
n→∞

P

(

A
3
2

2 B
−1
1 (n logn)−

1
2

(

Xn − n

A2

)

≤ x

)

= Φ(x);

(v) if κ > 2,

lim
n→∞

P
(Tn −B3n

B2
√
n

≤ x
)

= Φ(x),

lim
n→∞

P

(

B
3
2

3 B
−1
2 n− 1

2

(

Xn − n

B3

)

≤ x

)

= Φ(x).

Notes: The stable limit law for the nearest neighborhood RWRE ((1-1) RWRE) was shown in Kesten-
Kozlov-Spitzer [11]. But to prove Theorem 1.4 is far more than a trivial work for the following reasons:

(1) The branching structure (MBPREI {Z−n}n≥0) for (L-1) RWRE was never seen in literatures we

are aware of. But it is crucial to construct such branching structure to prove Theorem 1.4.

(2) After constructing the branching structure, to prove Theorem 1.4, a key step is to show Theorem

1.2, that is, to show that W, the total population of {Z−n}n≥0 before the first regeneration, belongs

to the domain of attraction of a κ-stable law:

lim
t→∞

tκP (Wx0 ≥ t) = K3. (15)

For this purpose one should use the tail of the series of the products of random matrices of Kesten

[10], that is,

lim
t→∞

tκP

( ∞
∑

n=0

xM0M−1 · · ·M−n+1x0

)

= K(x, x0), (16)

where K is a constant depending on positive x ∈ RL.

But to prove (15) one needs to find out how the constant K depending on x explicitly. For general

random matrix, this is still open. But for {Mi}, by the similarity between Mi and M i, we prove a

finer result based on (16). We show that

lim
t→∞

tκP

( ∞
∑

n=0

xM0M−1 · · ·M−n+1x0

)

= K2|xB|κ,

where K2 is independent of x.

For the reason we list above, although Key, E.S. indicated that “the general argument for finding limiting
distributions for {Xn} seems to go through except now {Zt} (some branching process) is multitype; the
only part that seems not to be line by line rewriting of Kesten, Kozlov and Spitzer’s argument is the
proof of

P (ν > t) < K4 exp(−K5t)” (17)

ν being the regeneration time of some multitype branching process {Zt}(see [14] page 350), we think it
makes sense to prove Theorem 1.4. �

Since the proof of Theorem 1.4 will be a long march. We describe the skeleton of its proof.

In order to determine the limit law of Xn, we consider first the limit law of the hitting time Tn. One
gets from Theorem 1.1 that

Tn = n+
n−1
∑

i=−∞
|Un

i |+
n−1
∑

i=−∞
Un
i,1 = n+

n−1
∑

i=−∞
Un
i x0.

8



Note that when the walk transient to the right, there are only finite steps in (−∞, 0), that is, P -a.s.,
1
n

∑

i<0 U
n
i x0 → 0. Consequently, it suffices to show that

∑n−1
i=0 Un

i x0 converges to Lκ in distribution
after suitable normalization. Also in Theorem 1.1 we observe that

Un
n−1 = 0, Un

n−2, · · · , Un
1 , U

n
0

has the same distribution with the first n generations of an inhomogeneous MBPREI {Z−n}n≥0 such
that conditioned on ω, Eω(Z−t|Z−k, 0 ≤ k < t) = (Z−t+1 + e1)M−t+1.

Let Wk :=
∑

νk≤t<νk+1
Z−t be the total offspring born between time interval [νk, νk+1). Then due

to the independence of the environment, (νk+1 − νk,Wk), k = 0, 1, 2, ... are independent and identically
distributed.

The key step is to show that

W0x0 is in the domain of attraction of a κ-stable law, (18)

which is proved in Theorem 1.2. Then Theorem 1.4 follows by a standard argument. To show (18), we
could approximate Wx0 by some random variable of the form Γ(R + I)x0, where Γ is a random row
vector with positive components and independent of R, and Rx0 has the same distribution with

η0x0 :=

∞
∑

m=1

M0M−1 · · ·M−m+1x0.

It remains to show that for all row vector x with positive components, xη0x0 belongs the domain of
attraction of κ-stable law, that is

P (xη0x0 > t) ∼ K2|xB|κt−κ as n → ∞ (19)

with the constant K2 independent of x.

To this end we first analyze the connections between the matrices Mi and M i and find that the
projection of η0x0 on different directions el, 1 ≤ l ≤ L, that is elη0x0, have the same distributions up to
certain linear transformations (see Proposition 3.2 below).

This fine property of the random variable η0 together with Kesten’s results of the products of random
matrices enables us to show that the constant K2 of (19) is independent of x (see Theorem 5.1 below).

We arrange the remainder of this paper as follows. In Section 2, we formulate the related branching
structure MBPREI and express the hitting time Tn by the MBPREI, i.e., Theorem 1.1 is proved. In
Section 3 we study the connections between the matrices Mi and M i which will be important to show
(19). In Section 4, we give the invariant density from the point of branching structure and provide an
alternative proof of LLN (Theorem 1.3). Finally the long Section 5 is devoted to studying the tail of
Wx0 (Theorem 1.2) and to proving the stable limit law (Theorem 1.4).

2 Branching structure and hitting times

In this section we assume the walk transient to the right, i.e., Xn → ∞ P -a.s., and always use notation
Js,h to denote a jump (a piece of random walk path) taken by {Xn} from s to h. That is

Js,h = {(Xn, Xn+1) : Xn = s,Xn+1 = h}, n ∈ N.

We are going to find a multitype branching process (i.e., MBPREI) to analyze Tn. To see this, for some
1 ≤ l ≤ L, suppose we have a jump, say Ji,i−l, by the walk from i downward to i − l before time Tn.
Though throughout this jump, the walk will not stop at i − 1, i− 2, ..., i− l + 1, we can imagine that it
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will cross i− 1, i− 2, · · · , i− l+1, and reach i− l at last. For −∞ < i < n, we want to record how much
times the walk will cross or reach i downward from above i. So for −∞ < i < n, 1 ≤ l ≤ L, we define

Un
i,l = #{0 < k < Tn : Xk−1 > i,Xk = i− l+ 1},

being the records of steps by the walk from above i to i− l + 1, and let

Un
i = (Un

i,1, U
n
i,2, · · · , Un

i,L).

Then |Un
i | is the total number of times the walk crossing or reaching i downward from above i before Tn.

In particular Un
i,1 is the total number of jumps taken by the walk downward from above i which reach

i. But every jump taken by the walk downward must reach some i. From this point of view, the total
number of steps taken by the walk downward before time Tn is

∑n−1
i=−∞ Un

i,1.

On the other hand, for the walk transient to the right, since we are considering the (L-1) RWRE,
every record of the walk reaching or crossing i downward from above i, an individual of Un

i , corresponds
to a jump taken by the walk upward from i to i + 1. Therefore the total number of the jumps taken by
the walk upward before time Tn is

∑n−1
i=−∞ |Un

i |. Then we conclude from the above discussion that

Tn = n+

n−1
∑

i=−∞
|Un

i |+
n−1
∑

i=−∞
Un
i,1 = n+

n−1
∑

i=−∞
Un
i x0,

where x0 = (2, 1, ..., 1)T ∈ RL. So instead of studying Tn directly we consider {Un
i }i<n.

We first divide the path between 0 and Tn into n pieces which do not have intersection. For k =
0, 1, .., n− 1, define

Ik =: {Xm : Tk ≤ m < Tk+1}, τk = {t : Tk ≤ t < Tk+1}
Then one follows from the strong Markov property that

(I0, τ0), (I1, τ1), ..., (In−1, τn−1)

are mutually independent under the quenched probability P 0
ω . We will see next that each of the pieces

(Ik, τk), 0 ≤ k ≤ n− 1, corresponds to an immigration structure.

Now we fix 0 ≤ k ≤ n− 1. We want to construct an L-type branching process from the random walk
path Ik.

Define for 1 ≤ l ≤ L, i < k,

Un
l (k, i) = #{Tk ≤ m < Tk+1 : Xm−1 > i,Xm = i− l + 1},

counting the steps in Ik from above i to i− l + 1. Let

Un(k, i) = (Un
1 (k, i), U

n
2 (k, i), ..., U

n
L(k, i))

recording all steps in Ik reaching or crossing i downward from above i.

Note that if i ≥ k, there is no step between time interval τk by the walk reaching or crossing i
downward from above i. So we set very naturally Un(k, i) = 0 for i > k.

But note also that there may be some steps between time interval τk by the walk reaching or crossing
k − 1 down ward from above. If we want to consider these jumps as the particles of a branching process
at time k − 1, we must figure out their parents. So we can assume that there is an immigrant entering
the system at time k. Therefore we set Un(k, k) := e1, representing the immigrant entering at time k.

We show next that {Un(k, i)}i≤k is an inhomogeneous L-type branching process beginning at time k.

Fix i < k. Let ηki,0 = Tk. Define recursively for j ≥ 1

ηki,j = min{ηki,j−1 < m < Tk+1 : Xm−1 > i,Xm ≤ i}.

10



Then by definition ηki,j , j ≥ 1 are the successive time of steps in Ik taken by the walk crossing or reaching
i downward from above i. For i ≤ k − 1, 1 ≤ l ≤ L, we have

Un
l (k, i) =

∞
∑

j=1

1[Tk<ηk
i,j

<Tk+1,Xηk
i,j

=i−l+1]. (20)

Also define
ξk,ji,l = #{ηki+1,j ≤ m < ηki+1,j+1 < Tk+1 : Xm−1 > i,Xm = i− l + 1},

recording the steps by the walk from above i to i − l + 1 between the j-th and the j + 1-th excursions
reaching or crossing i+ 1 in the time interval τk, and define

ξk,ji = (ξk,ji,1 , ..., ξ
k,j
i,L).

Then it follows from the path decomposition of Ik and the strong Markov property that ξk,ji , j =
1, 2, ... are i.i.d. for fixed k and i.

In the definition of ξk,ji,l , where things get delicate is the first step in the time interval [ηki+1,j , η
k
i+1,j+1).

Note that on the event {Xηk
i+1,j

= i + 1} there is no jump of the form Js,h with s > i + 1 and h ≤ i

during the time interval [ηki+1,j , η
k
i+1,j+1). Hence for 1 ≤ l ≤ L

ξk,ji,l = #{ηki+1,j ≤ m < ηki+1,j+1 < Tn : Xm−1 > i,Xm = i− l + 1}
= #{ηki+1,j < m < ηki+1,j+1 < Tn : Xm−1 = i+ 1, Xm = i− l + 1}
= #{jumps of the kind Ji+1,i+1−l by the walk during time interval (ηki+1,j , η

k
i+1,j+1)}.

For 2 ≤ m ≤ L, on the event {Xηk
i+1,j

= i−(m−1)+1}, the first step in the time interval [ηki+1,j , η
k
i+1,j+1)

taken by the walk from the above of i+ 1 reaches or crosses i downward and hence contributes uncondi-
tionally one particle to ξk,ji,m−1. There is no other step of the form Js,h with s > i + 1 and h ≤ i in such
interval. Hence

ξk,ji,m−1 = 1 +#{jumps of the kind Ji+1,i−(m−1)+1 by the walk during time interval (ηki+1,j , η
k
i+1,j+1)},

and for 2 ≤ l ≤ L, l 6= m− 1

ξn,ji,l = #{jumps of the kind Ji+1,i+1−l by the walk during time interval (ηki+1,j , η
k
i+1,j+1)}.

Then it follows from the above discussion and the definition of {Un(k, i)}i≤k that

Pω(U
n(k, i− 1) = (u1, ..., uL)

∣

∣Un(k, i) = e1)

= Pω(ξ
k,j
i−1,m = um, 1 ≤ m ≤ L

∣

∣Xηk
i,j

= i)

=
(u1 + · · ·+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(0), (21)

and for 2 ≤ l ≤ L,

Pω(U
n(k, i− 1) = (u1, ..., 1 + ul−1, ..., uL)

∣

∣Un(k, i) = el)

= Pω(ξ
k,j
i−1,l−1 = ul−1 + 1, ξk,ji−1,m = um,m 6= l − 1, 1 ≤ m ≤ L

∣

∣Xηk
i,j

= i+ 1− l)

=
(u1 + · · ·+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(0). (22)

Then one can conclude that {Un(k, i)}i≤k is an inhomogeneous L-type branching process beginning at
time k.

11



It follows from the independence of the {(Ik, τk)}n−1
k=0 that Un(k, ∗), k = n − 1, ..., 1, 0 is mutually

independent. Also by the above discussion of path decomposition inner the random walk piece Ik, we
found that particles of Un(k, i) generate offspring independently.

The above two kinds of independence correspond to the independence we imposed on the branching
processes Z(k, ∗).

Note that by the definition of Un
i,l, for 1 ≤ l ≤ L, one has that

Un
i,l =

n−1
∑

k=(i+1)∨0

∞
∑

j=1

1[ηk
i,j

<Tn,Xηk
i,j

=i−l+1]. (23)

Then it follows from (20) and (23) that

Un
i,l =

n−1
∑

k=(i+1)∨0

Un
l (k, i),

which implies that

Un
i =

n−1
∑

k=(i+1)∨0

Un(k, i) (24)

Comparing the above (21), (22) with (6), (7) in the definition of {Z−n}n≥0, since ωn−1, ωn−2..., ω1 have
the same joint distribution as ω0, ω−1, ..., ω−n+1, it follows that

Un
n−1 = 0, Un

n−2, ..., U
n
1 , U

n
0

has the same distribution with the first n generations of the inhomogeneous MBPREI {Z−n}n≥0 defined
in Section 1.

Summarizing the discussion above, we obtain the proof of Theorem 1.1.

3 Connections between matrices Mi and M i

Recall that in [3], the author used the greatest Lyapunov exponent γL of {M i} to characterize the
recurrence and transience of (L-1) RWRE {Xn} (see also Theorem A above). One may be curious that
in Corollary 1.1 the expected offspring matrices of the branching processes {Un

i }0≤i≤n−1 and {Z−n}n≥0

are matrices in the sequence {Mi}i∈Z . From this point of view, one may guess that there must be some
intrinsic connections between the matrices Mi and M i. So the main task of this short section is to find
some specific relations between {Mi} and {M i}.

Firstly, one easily sees that Mi and M i are similar to each other. Indeed, introduce the deterministic
matrix

B =











1
1 1
...

...
. . .

1 1 · · · 1











, with inverse B−1 =











1
−1 1

. . .
. . .

−1 1











(25)

the entries in the blank being all zero. Then one has that

M i = B−1MiB. (26)

Then the similarity between Mi and M i follows.

One notes that since P makes {ωi}i∈Z an i.i.d. sequence, it also makes {M i}i∈Z and {Mi}i∈Z two
i.i.d. sequences as well. These two random sequences of matrices are of great importance to us. Under
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condition (C1) one can apply Oseledec’s multiplicative ergodic theorem (see [18]) to both {M i} and
{Mi}, with the shift operator defined in (2). Write γL(M, θ) ≥ γL−1(M, θ) ≥ · · · ≥ γ1(M, θ) for the
Lyapunov exponents of {M i} and γL(M, θ) ≥ γL−1(M, θ) ≥ · · · ≥ γ1(M, θ) for the Lyapunov exponents
of {Mi} under the matrix norm ‖ ·‖c. For simplicity we write γL(M, θ) as γL(M) and γL(M, θ) as γL(M)
respectively. Due to the positivity of both M0 and M0, we have for all x ∈ S+, P-a.s.,

γL(M) = lim
n→∞

1

n
log ‖Mn−1 · · ·M1M0‖c = lim

n→∞
1

n
log |Mn−1 · · ·M1M0x|

= lim
n→∞

1

n
E(log ‖Mn−1 · · ·M1M0‖c) (27)

and

γL(M) = lim
n→∞

1

n
log ‖Mn−1 · · ·M1M0‖c = lim

n→∞
1

n
log |Mn−1 · · ·M1M0x|

= lim
n→∞

1

n
E(log ‖Mn−1 · · ·M1M0‖c).

Similarly we can calculate the greatest Lyapunov exponent γL(M) of {Mi}i≤0 and γL(M) of {M i}i≤0

under matrix norm ‖ · ‖ as

γL(M) = lim
n→∞

1

n
log ‖M0M−1 · · ·M−n+1‖ = lim

n→∞
1

n
log |xM0M−1 · · ·M−n+1|

= lim
n→∞

1

n
E(log ‖M0M−1 · · ·M−n+1‖)

and

γL(M) = lim
n→∞

1

n
log ‖M0M−1 · · ·M−n+1‖ = lim

n→∞
1

n
log |xM0M−1 · · ·M−n+1|

= lim
n→∞

1

n
E(log ‖M0M−1 · · ·M−n+1‖).

In fact we have the following simple but interesting result about the above the greatest Lyapunov
exponents.

Proposition 3.1 Suppose that condition (C1) holds. Then we have

γL(M) = γL(M) = γL(M) = γL(M).

Proof. The equality γL(M) = γL(M) follows directly from the similarity of Mn and Mn. Indeed, for any
n we see from the definition of Mn and Mn that Mn = B−1MnB. Since for any matrices A and B we
always have ‖AB‖c ≤ ‖A‖c‖B‖c, then

γL(M) = lim
n→∞

1

n
log ‖Mn−1 · · ·M0‖c = lim

n→∞
1

n
log ‖B−1Mn−1 · · ·M0B‖c

≤ lim
n→∞

1

n
log(‖B−1‖c‖Mn−1 · · ·M0‖c‖B‖c) = γL(M).

In the same way we have the inverse inequality γL(M) ≤ γL(M) to finish the proof of the first equality
γL(M) = γL(M). The third equality follows from the same reason as the first equality.

Next we show that γL(M) = γL(M). Note that for 1 ≤ l ≤ L− 1

M0M−1 · · ·M−n+1e
T
l = M0M−1 · · ·M−n+2((a−n+1(l)e

T
1 + eTl+1).

Then one has that

lim
n→∞

1

n
E(log e1M0M−1 · · ·M−n+1e

T
l )
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= lim
n→∞

1

n
E(log e1M0M−1 · · ·M−n+2((a−n+1(l)e

T
1 + eTl+1)

= max

{

lim
n→∞

1

n
E(log a−n+1(l)e1M0M−1 · · ·M−n+2e

T
1 ),

lim
n→∞

1

n
E(log e1M0M−1 · · ·M−n+2e

T
l+1)

}

≥ lim
n→∞

1

n
E
(

log e1M0M−1 · · ·M−n+2e
T
l+1

)

= lim
n→∞

1

n
E
(

log e1M0M−1 · · ·M−n+1e
T
l+1

)

.

Therefore it follows that

γL(M) = lim
n→∞

1

n
E(log ‖M0M−1 · · ·M−n+1‖)

= lim
n→∞

1

n
E(log e1M0M−1 · · ·M−n+11

T )

= lim
n→∞

1

n
E

(

log

L
∑

l=1

e1M0M−1 · · ·M−n+1e
T
l

)

= max
1≤l≤L

lim
n→∞

1

n
E

(

log

L
∑

l=1

e1M0M−1 · · ·M−n+1e
T
l

)

= lim
n→∞

1

n
E

(

log e1M0M−1 · · ·M−n+1e
T
1

)

.

Then one follows from stationarity that

γL(M) = lim
n→∞

1

n
E

(

log e1Mn−1 · · ·M1M0e
T
1

)

. (28)

But on the other hand

γL(M) = lim
n→∞

1

n
E(log 1Mn−1 · · ·M1M0e

T
1 ) = lim

n→∞
1

n
E

(

log
(

L
∑

l=1

e1Mn−l · · ·M1M0e
T
1

)

)

= max
1≤l≤L

lim
n→∞

1

n
E
(

log(e1Mn−l · · ·M1M0e
T
1 )
)

= lim
n→∞

1

n
E
(

log(e1Mn−1 · · ·M1M0e
T
1 )
)

. (29)

Then (28) and (29) imply that γL(M) = γL(M). �

Since γL(M) = γL(M) = γL(M) = γL(M), we write all of them as γL in the remainder of our article.
We recall that γL characterizes the transience and recurrence of RWRE Xn (see Theorem A of Section
1).

Recall that Z(−k,−m) is the m−k-th generation of the branching process beginning at time −k. Let

Y−k =

∞
∑

m=k+1

Z(−k,−m) (30)

being the total number of progeny of the immigrant at times −k. Sinece for m > k, Eω(Z(−k,−m)) =
M−kM−k−1 · · ·M−m+1, one has that

η−k :=
∞
∑

m=k+1

M−k...M−m+1, (31)
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is the expectation matrix of Y−k. In next proposition we find that the projection of η0x0 on different
directions el, 1 ≤ l ≤ L, that is elη0x0, have the same distribution up to certain linear transformations.

Proposition 3.2 Let x0 = (2, 1, ..., 1)T ∈ RL and x0 = (2,−1, 0, ..., 0)T ∈ RL. Then we have

i) for all 2 ≤ l ≤ L,

∞
∑

n=1

elM0M−1 · · ·M−n+1x0
D
= l+ l

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0;

ii) for all 2 < l ≤ L

∞
∑

n=1

elM0M−1 · · ·M−n+1x0
D
= 1 +

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0,

and ∞
∑

n=1

e2M0M−1 · · ·M−n+1x0
D
= 2 +

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0.

Proof. We mention that all equalities in distribution in our proof follow from the stationarity of the
environment. For fixed 1 < l ≤ L,

∞
∑

n=1

elM0M−1 · · ·M−n+1x0 =

∞
∑

n=1

elBM0M−1 · · ·M−n+1B
−1x0

=

∞
∑

n=1

l
∑

k=1

ekM0M−1 · · ·M−n+1x0.

For l = 2, note that

∞
∑

n=1

e2M0M−1 · · ·M−n+1x0 = 2 +

∞
∑

n=1

e1M−1M−2 · · ·M−nx0

D
= 2 +

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0 (32)

Then we have

∞
∑

n=1

e2M0M−1 · · ·M−n+1x0 =

∞
∑

n=1

(e1 + e2)M0M−1 · · ·M−n+1x0

D
= 2 + 2

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0 = 2 + 2

∞
∑

n=1

e1B
−1M0M−1 · · ·M−n+1Bx0

= 2 + 2

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0.

For 2 < l ≤ L note that

∞
∑

n=1

elM0M−1 · · ·M−n+1x0 = 1 +

∞
∑

n=1

e1M−l+1M−l · · ·M−l−n+2

D
= 1 +

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0. (33)
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Then we have
∞
∑

n=1

elM0M−1 · · ·M−n+1x0
D
= l + l

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0

= l + l

∞
∑

n=1

e1B
−1M0M−1 · · ·M−n+1Bx0 = l + l

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0.

Then the first assertion follows. The second assertion was also proved (see the above equations (32) and
(33)). �

4 An alternative proof of the LLN of Xn

For n ≥ 0 define ω(n) = θXnω. Then {ω(n)} is a Markov chain with transition kernel

P (ω, dω′) = ω0(1)δθω=ω′ +
L
∑

l=1

ω0(−l)δθ−lω=ω′ .

In [3] an (IM) condition is said to be satisfied if there is π(ω) such that
∫

π̃(ω)P(dω) = 1 and π̃(ω) = P ∗ π̃(ω),

where π̃(ω) = π(ω)[E(π(ω))]−1 . Under (IM) condition Brémont showed an LLN of {Xn} in [3]. But the
(IM) condition was not given directly in the words of environment ω. So one has to check the existence
of the invariant density π(ω). In [3], Brémont showed the existence of π(ω) by analyzing its definition
and the transition probability of the walk.

What makes difference in our article is that, with the help of the branching structure, we specify
the invariant density π(ω) directly by analyzing a multitype branching process. Therefore we can avoid
introducing the (IM) condition and show directly that {Xn} satisfies an LLN with a positive speed under
the assumption “E(π(ω)) < ∞”. Also the speed has a simple explicit form [E(π(ω))]−1.

The result of this section was stated in Theorem 1.3 in the introduction section. Before giving the
proof, we explain how we get the explicit expression of the invariant density π(ω) from the MBPREI
constructed in Section 2.

For i ≤ 0 define Ni = #{0 ≤ k ≤ T1, Xk = i}. Note that conditioned on the event {Xn → ∞},
Ni = U1

i,1 + |U1
i−1|. Then omitting the superscript “1”, for i < 0, we have

Eω(Ni

∣

∣Ui, Ui+1, ..., U0) = Ui,1 + |UiMi|.

Hence

Eω(Ni) = e1M0 · · ·Mi+1e
T
1 + |e1M0 · · ·Mi+1Mi|

= e1M0 · · ·Mi+1e
T
1 + e1M0 · · ·Mi+1Mi1

T

= (1 + ai(1))e1M0 · · ·Mi+11
T =

1

ωi(1)
e1BM0 · · ·M i+1B

−11T

=
1

ωi(1)
e1M0 · · ·M i+1e

T
1 . (34)

Note also that Eω(N0) = 1 + Eω(|U−1|) = 1 +
∑l

l=1 b0(l) =
1

ω0(1)
. Then

Eω(T1) = Eω

(

1 +
∞
∑

i=1

U−i,1 + |U−i|
)

=
∞
∑

i=0

Eω(N−i)
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=
1

ω0(1)
+

∞
∑

i=1

1

ωi(1)
e1M0 · · ·M−i+1e

T
1 .

Then we can define

π(ω) :=
1

ω0(1)

(

1 +

∞
∑

i=1

e1M i · · ·M1e
T
1

)

. (35)

Remark 4.1 Indeed, one can simply follows from (9) that T1 = 1 +
∑

i<0 Uix0 implying that

Eω(T1) = 1 +
∑

i<0

Eω(Ui(2, 1, ..., 1)
T ) = 1 +

∞
∑

i=1

e1M0 · · ·M−i+1(2, 1, ..., 1)
T .

Therefore one can also define

π(ω) = 1 +

∞
∑

i=1

e1Mi · · ·M1(2, 1, ..., 1)
T . (36)

One sees that the right-hand sides of (35) and (36) have different forms. But it follows from the second

line of (34) that they are the same indeed.

Proof of Theorem 1.3: Since the MBPREI {Ui} makes sense only on the event {Xn → ∞} we first
show that γL < 0, implying that P -a.s., Xn → ∞. Indeed for any i > 0 by Jensen’s inequality we have

E(e1M i · · ·M1e
T
1 ) = E

(

elog e1M i···M1e
T
1

)

≥ eE(log e1Mi···M1e
T
1 ).

But it follows from (27) that

γL = lim
n→∞

1

n
E(log 1Mn−1 · · ·M0e

T
1 ) = lim

n→∞
1

n
E

(

log
(

L
∑

l=1

e1Mn−l · · ·M0e
T
1

)

)

= max
1≤l≤L

lim
n→∞

1

n
E
(

log(e1Mn−l · · ·M0e
T
1 )
)

= lim
n→∞

1

n
E
(

log(e1Mn−1 · · ·M0e
T
1 )
)

.

Therefore as i → ∞,

eγLi ∼ eE(log e1Mi···M1e
T
1 ) ≤ E(e1M i · · ·M1e

T
1 ) → 0,

since E(π(ω)) < ∞. Then we have γL < 0. (i) is proved. We just give the idea of the proof (ii) and (iii)
since it is similar to Zeitouni [21] (see the second version of the proof of Theorem 2.1.9). It follows from
the stationarity that E(T1) = E(π(ω)) < ∞. Define

Q(B) = E

(

T1−1
∑

i=0

1{ω(i)∈B}

)

, Q(B) =
Q(B)

Q(Ω)
=

Q(B)

E(T1)
.

Then Q(·) is invariant under kernel P , that is

Q(B) =

∫∫

1ω′∈BP (ω, dω′)Q(dω),

and dQ
dP

=
∑

i≤0 Ni = π(ω). Then (14) is proved. Also under Q ⊗ Pω the sequence {ω(n)} is stationary
and ergodic. Define the local drift d(x, ω) = Ex,ω(X1 − x). Then

Xn =
n
∑

i=1

(Xi −Xi−1 − d(Xi−1, ω)) +
n
∑

i=1

d(Xi−1, ω)

17



:= Rn +
n
∑

i=1

d(Xi−1, ω)

where {Rn} is a Pω-martingale and P -a.s., Rn

n
→ 0. We have from the ergodicity under Q ⊗ Pω that

P -a.s.,

lim
n→∞

Xn

n
= lim

n→∞
1

n

n
∑

i=1

d(0, ω(i− 1)) = EQ(d(0, ω(0))).

But

EQ(d(0, ω(0))) =
1

E(π(ω))
E

(

π(ω)
(

ω0(1)−
L
∑

l=1

lω0(−l)
)

)

=
1

E(π(ω))
E

(

1

ω0(1)

(

1 +

∞
∑

i=1

e1M i · · ·M1e
T
1

)(

ω0(1)−
L
∑

l=1

lω0(−l)
)

)

=
1

E(π(ω))
E

(

(

1 +
∞
∑

i=1

e1M i · · ·M1e
T
1

)(

1−
L
∑

l=1

a0(l)
)

)

=
1

E(π(ω))
E

(

1 +

∞
∑

i=1

e1M i · · ·M1e
T
1 −

L
∑

l=1

a0(l)(1 +

∞
∑

i=1

e1M i · · ·M1e
T
1 )

)

. (37)

Note that
∞
∑

i=1

e1M i · · ·M1e
T
1 = (a1(1), ..., a1(L))e

T
1 +

∞
∑

i=1

(ai+1(1), ..., ai+1(L))M i · · ·M1e
T
1

D
= (a0(1), ..., a0(L))e

T
1 +

∞
∑

i=1

(a0(1), ..., a0(L))M i · · ·M1e
T
1

= a0(1) +
∞
∑

i=1

L
∑

l=1

a0(l)elM i · · ·M1e
T
1

D
=

L
∑

l=1

(

a0(l) + a0(l)

∞
∑

i=1

e1M i · · ·M1e
T
1

)

, (38)

where the last step follows similarly as (32) and (33). Substituting (38) to (37), using stationarity we
have EQ(d(0, ω(0))) =

1
E(π(ω)) . �

5 The stable limit law of Xn

To begin with, we introduce some random variables relate to the process {Z−n}n≥0. First recall
that Y−k =

∑∞
m=k+1 Z(−k,−m) is the total number of progeny of the immigrant at times −k, and

ηk :=
∑∞

m=k+1 M−k...M−m+1 is the corresponding expectation random matrix.

Next, let ν0 ≡ 0, and define recursively

νn = min{m > νn−1 : Z−m = 0} for n > 0,

being the successive regeneration times of MBPREI {Z−n}n≥0. For simplicity we write ν1 as ν.

Define also

W =
ν−1
∑

k=0

Z−k,
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the total number of offspring born before regenerating time ν.

Finally, for A > 0, we introduce the stopping time

σ = σ(A) = inf{m : |Z−m| > A}
which is the time the number of particles of the process {Zn} exceeding A.

5.1 The tail of the expectation of the total number of {Z(0,−k)}k≥0

To study the limit law of RWRE with bounded jumps {Xn}, a key step is to prove that random variable
Wx belongs to the domain of attraction of some κ-stable law. For this purpose it is crucial to show first
that xη0x0 belongs to the domain of attraction of a κ-stable law for any positive x ∈ RL. Indeed, we
have

Theorem 5.1 Suppose that γL < 0. Then under Condition C, for κ of (12) (see also (40) below) and

for some K2 = K2(x0) ∈ (0,∞), we have

lim
t→∞

tκP(xη0x0 ≥ t) = K2|xB|κ

for all x ∈ RL with positive components such that |x| > 0.

To proof Theorem 5.1, we need some classical results of random matrices in Kesten’s paper [10]. We
rewrite them in terms of {M−n}n≥0. Recall that

γL = lim
n→∞

1

n
E(log ‖M0M−1 · · ·M−n+1‖)

is the greatest Lyapunov exponent of {Mi}i≤0.

Theorem 5.2 (Kesten [10]) Suppose that Condition C holds and γL < 0. Then

1) for every α ∈ [0, κ0] the limits

log ρ(α) := lim
n→∞

1

n
logE (‖ M0M−1 · · ·M−n+1 ‖α) (39)

exist and log ρ(α) is a strictly convex function of α. Hence

2) there exists a unique κ ∈ (0, κ0], such that

log ρ(κ)= lim
n→∞

1

n
logE (‖ M0M−1 · · ·M−n+1 ‖κ) = 0. (40)

3) Let {Q−n}n≥0, with the law of Q0 being Q, be a random sequence of L-(column) vectors such that

{M−n, Q−n}n≥0 are i.i.d.. Assume also Q(Q0 = 0) < 1, Q(Q0 ≥ 0) = 1, EQ|Q0|κ < ∞ for κ of

(40), where Q0 ≥ 0 means that all components of Q0 are nonnegative. Then for each x ∈ SL−1,

with an abuse use of notation P, the limit

lim
t→∞

tκP
(

∞
∑

n=1

xM0M−1 · · ·M−n+1Q−n > t
)

exists and is finite. In particular there exist constants K1 = K1(P,M,Q) ∈ (0,∞) and r =

r(x,M) ∈ (0,∞) such that

lim
t→∞

tκP
(

∞
∑

n=1

xM0M−1 · · ·M−n+1Q−n ≥ t
)

= K1(P,M,Q)r(x,M) (41)

for x ∈ S+.
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Remark 5.1 (i) The first two parts of the theorem can be concluded from the proof of Theorem 3 (see

step 4) of Kesten [10]. The third part corresponds to Theorem 4 of Kesten [10].

(ii) We mention that |x| denotes
(

∑L
i=1 x

2
i

)
1
2

in [10]. But all proofs go through under l1-norm |x| :=
∑L

i=1 |xi|.

Now we are ready to present the proof of Theorem 5.1.

Proof of Theorem 5.1: Fix x = (x1, ..., xL) ∈ RL such that xi ≥ 0, i = 1, ..., L and |x| > 0. We have

P(xη0x0 ≥ t)=P

(

∞
∑

n=1

xM0M−1 · · ·M−n+1x0 ≥ t
)

= P

(

∞
∑

n=1

L
∑

l=1

xlelM0M−1 · · ·M−n+1x0 ≥ t
)

.

It follows from Proposition 3.2 that the rightmost-hand side of above expression equals to

P

(

L
∑

l=2

lxl +
L
∑

l=1

lxl

∞
∑

n=1

e1M0M−1 · · ·M−n+1x0 ≥ t
)

= P

(

L
∑

l=2

lxl + |xB|
∞
∑

n=1

e1M0M−1 · · ·M−n+1x0 ≥ t
)

.

Then one gets from the third part of Theorem 5.2 that

lim
t→∞

tκP(xη0x0 > t) = lim
t→∞

tκP
(

|xB|
∞
∑

n=1

e1M0M−1 · · ·M−n+1x0 ≥ t
)

= |xB|κK1(P,M, δx0
)r(e1,M) =: K2|xB|κ,

which finishes the proof of Theorem 5.1. �

5.2 The tail of the population size of MBPREI before regeneration

Recall that ν is the regeneration time of the MBPREI and W =
∑

0<n≤ν−1 Z−n is the total number of
particles born to the immigrants entering before time ν. The main purpose of this section is to find how
large the population size will be before regeneration.

Theorem 5.3 Suppose that Condition C holds and γL < 0. If κ > 2, then E((Wx0)
2) < ∞; if κ ≤ 2,

then there exists some 0 < K3 < ∞ such that

lim
t→∞

tκP (Wx0 ≥ t) = K3. (42)

To prove the theorem, we need some preparations. To begin with we show that the tail probability of
ν vanishes with exponential rate. This can follow from Theorem 4.2 of Key [14]. But for our MBPREI
condition (iii): P(Pω(Z(0,−1) = 0|Z(0, 0) = el) > 0 for l = 1, 2, ..., L) > 0, in that theorem does not
hold. However, we can prove the results directly, since we have

Lemma 5.1 Suppose that condition (C1) holds and γL < 0. Then limm→∞ P (Z−m = v) = π(v), a

probability distribution on ZL with π(0) > 0.
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Proof. The first assertion follows as Theorem 3.3 in [14]. To show that π(0) > 0 we proceed by
contradiction. If π(0) = 0, then limm→∞ P (Z−m = 0) = 0. Hence we have P-a.s.,

lim
m→∞

Pω(Z−m = 0) = 0. (43)

For v ∈ ZL, m > 0, let
q(m, v) := Pω(Z−m−L = 0|Z−m = v).

Then for each v ∈ ZL

Pω(Z−m−L = 0) ≥ Pω(Z−m = v)q(m, v). (44)

Taken together, (43) and (44) imply that for all v ∈ ZL, P-a.s.,

lim
m→∞

Pω(Z−m = v)q(m, v) = 0.

It follows by stationarity that Pω(Z−m = v)q(m, v) and Pω(Z
′
−m = v)q(0, v) have the same distribution,

where Z ′
−m =

∑m−1
k=0 Z(k, 0). Therefore for all v ∈ ZL, P-a.s.,

lim
m→∞

Pω(Z
′
−m = v)q(0, v) = 0.

Then on the event {q(0, v) > 0},
lim

m→∞
Pω(Z

′
−m = v) = 0.

If we can show that
P(q(0, v) > 0) = 1 (45)

then it follows that P-a.s.,
∑

v∈ZL

lim
m→∞

Pω(Z
′
−m = v) = 0

which will contradict that π is a probability distribution (Here we mention that Z ′
−m and Z−m have the

same limit distributions, see Lemma 2.1 and Lemma 3.2 of Key [14]). It remains to show (45). Since

max
1≤l≤L

E

(

log+
ω0(−l)

ω0(1)

)

< ∞,

P(ω0(1) > 0) = 1. Then we have P-a.s.,

Pω(Z−L = 0|Z0 = (v1, v2, ..., vL)) ≥
L−1
∏

k=0

ω−k(1)
1+

∑
L
l=k+1

vl > 0

which proves (45). �

Remark 5.2 We adopted the idea of the proof of Theorem 3.3 of Key [14] to prove this lemma. The

only difference here is that we replace condition

(iii) : P(Pω(Z(0,−1) = 0
∣

∣Z(0, 0) = el) > 0 for l = 1, 2, ..., L) > 0,

in that theorem with P(ω0(1) > 0) > 0, which is implied in condition (C1).

With Lemma 5.1 in hands, the next theorem follows verbatim as Theorem 4.2 in [14].

Theorem 5.4 (Key[14]) Suppose that γL < 0 and that condition (C3) holds. Then there exist positive

constants K4 and K5 such that

P (ν > t) < K4 exp(−K5t).
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In the following three lemmas, i.e., Lemma 5.2, Lemma 5.3 and Lemma 5.4, some estimations for the
related probabilities and moments are given. The proofs are technical and follow almost verbatim as
Kesten-Kozlov-Spitzer [11]. But the proofs will be long journeys. Therefore, for continuity consideration,
we delay the proofs of these lemmas to the Appendix section.

In Lemma 5.2, Lemma 5.3 and Lemma 5.4, we always make the assumption that all conditions of
Theorem 5.3 hold.

Lemma 5.2 If κ ≤ 2, then there exists for all ǫ > 0 an A0 = A0(ǫ) < ∞ such that

P

(

∑

σ≤k<ν

|Y−k| ≥ ǫx

)

≤ ǫx−κ for A ≥ A0(ǫ).

Lemma 5.3 If κ ≤ 2, then for fixed A

E (|Z−σ|κ;σ < ν) < ∞. (46)

If κ > 2 then

E(|W |2) < ∞.

Next we introduce

S−σ,−m = number of progeny alive at time −m of the Z−σ particles present at −σ > −m.

Let S−σ,−σ = Z−σ, and

S−σ =

∞
∑

m=σ

S−σ,−m = Z−σ + total progeny of the Z−σ particles at −σ.

Lemma 5.4 If κ ≤ 2, then there exists for all ǫ > 0 an A1 = A1(ǫ) such that for A > A1

P
(∣

∣

∣

∞
∑

m=σ

(

S−σ,−m − Z−σ

m−1
∏

i=σ

M−i

)∣

∣

∣ ≥ ǫx, σ < ν
)

≤ ǫx−κE(|Z−σ|κ;σ < ν).

Proof of Theorem 5.3: Since in Lemma 5.3 we have shown that E(|W |2) < ∞ when κ > 2, it follows
immediately that E((Wx0)

2) < 4E(|W |2) < ∞. The first part of the theorem follows. To prove the
second part, recall that W is the number of particles born before −ν. Then on the event {σ < ν} we have

W =

σ−1
∑

s=0

Z−s + S−σ +
∑

σ≤s<ν

Y−s.

As an immediate corollary of Theorem 5.4 we have for all ǫ > 0, A > 0

P (Wx0 ≥ ǫx, σ(A) ≥ ν) ≤ P (2Aν ≥ ǫx) = o(x−κ), x → ∞, (47)

since Wx0 < |2W | = |2∑ν−1
t=0 Z−t| ≤ 2Aν on the event {σ ≥ ν}. Similarly we have

P
(∣

∣

∣

σ−1
∑

t=0

Z−tx0

∣

∣

∣ ≥ ǫx, σ(A) < ν
)

≤ P (2Aν ≥ ǫx) = o(x−κ), x → ∞. (48)

Taken together (47), (48) and Lemma 5.2 imply that for sufficiently large A and x

P (σ < ν, S−σx0 ≥ x)
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≤ P (Wx0 ≥ x) = P (Wx0 ≥ x, σ < ν) + P (Wx0 ≥ x, σ ≥ ν)

≤ P (σ < ν, S−σx0 ≥ x−
σ−1
∑

s=0

Z−sx0 −
∑

σ≤s<ν

Y−sx0) + ǫx−κ

≤ P (σ < ν, S−σx0 ≥ x(1− 2ǫ)) + 3ǫx−κ. (49)

Since

P
(

σ < ν, Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−ix0 ≥ (1 + ǫ)x
)

≤ P
(

σ < ν,

∞
∑

t=σ

S−σ,−tx0 ≥ x
)

+ P
(

σ < ν,
∣

∣

∣

(

Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−i −
∞
∑

t=σ

S−σ,−t

)

x0

∣

∣

∣ ≥ ǫx
)

≤ P
(

σ < ν,

∞
∑

t=σ

S−σ,−tx0 ≥ x
)

+ P
(

σ < ν, 2
∣

∣

∣Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−i −
∞
∑

t=σ

S−σ,−t

∣

∣

∣ ≥ ǫx
)

,

and

P (σ < ν, S−σx0 > x(1− 2ǫ)) ≤ P
(

σ < ν, Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−ix0 ≥ (1− 3ǫ)x
)

+P
(

σ < ν,
∣

∣

∣

(

Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−i −
∞
∑

t=σ

S−σ,−t

)

x0

∣

∣

∣ ≥ ǫx
)

≤ P
(

σ < ν, Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−ix0 ≥ (1− 3ǫ)x
)

+P
(

σ < ν, 2
∣

∣

∣Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−i −
∞
∑

t=σ

S−σ,−t

∣

∣

∣ ≥ ǫx
)

,

then it follows from Lemma 5.4 and (49) that for sufficiently large A

P
(

σ < ν, Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−ix0 ≥ (1 + ǫ)x
)

− ǫx−κE(|Z−σ|κ;σ < ν)

≤ P (Wx0 ≥ x)

≤ P
(

σ < ν, Z−σ

∞
∑

t=σ

t−1
∏

i=σ

M−ix0 ≥ (1− 3ǫ)x
)

+ ǫx−κ(3 + E(|Z−σ|κ;σ < ν)). (50)

Since
∞
∑

t=σ

t−1
∏

i=σ

M−i = I + η−σ,

we can write (50) as

P (σ < ν, Z−σ(I + η−σ)x0 ≥ (1 + ǫ)x) − ǫx−κE(|Z−σ|κ;σ < ν)

≤ P (Wx0 ≥ x)

≤ P (σ < ν, Z−σ(I + η−σ)x0 ≥ (1− 3ǫ)x) + ǫx−κ(3 + E(|Z−σ|κ;σ < ν)).

Then, to prove (42), it suffices to prove that for each fixed A

0 < lim
x→∞

xκP (σ = σ(A) < ν,Z−σ(I + η−σ)x0 ≥ x) = K2E(|Z−σB|κ;σ < ν) < ∞. (51)
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Indeed, this follows immediately from Lemma 5.3 and Theorem 5.1 since

lim
x→∞

xκP (σ < ν, Z−σ(I + η−σ)x0 ≥ x)

= lim
x→∞

xκ

∫ ∞

|s|≥A

P (σ < ν, Z−σ ∈ ds)P (s(I + η−σ)x0 ≥ x)

= K2

∫ ∞

|s|≥A

P (σ < ν, Z−σ ∈ ds)|sB|κ

= K2E(|Z−σB|κ;σ < ν) < LκK2E(|Z−σ|κ;σ < ν) < ∞.

Also, we have

E(|Z−σB|κ;σ < ν) ≥ E(|Z−σ|κ;σ < ν) ≥ AκE(Pω(|Z−1| > A)) > AκE(ω0(−1)A+1ω0(1)) > 0.

Thus Theorem 5.3 follows. �.

Proof of Theorem 1.4: From here on the proof of Theorem 1.4 is standard. Recall that

Tn = n+
n−1
∑

i=−∞
|Un

i |+
n−1
∑

i=−∞
Un
i,1 = n+

n−1
∑

i=−∞
Un
i x0.

When the walk is transient to the right, it only takes finite steps in (−∞, 0), i.e., P -a.s.,
∑

i<0

Un
i x0 < ∞.

Therefore to determine the limit distribution of Tn, we need only to consider

n+

n−1
∑

i=0

Un
i x0,

which, by Theorem 1.1, has the same distribution with

n+

n−1
∑

t=0

Z−tx0.

In Theorem 5.3 we have proved that if κ > 2, E((Wx0)
2) < ∞ while for κ ≤ 2, P (Wx0 > x) ∼ K3x

κ,
as x → ∞. Then it follows that (see, Feller [5], Chap. XVII, Sec. 5 Theorem 2 or Gendenko-Kolmogorov
[6] Chap.7, Sec. 35, Theorem 2) Wx0 belongs to the domain of attraction of a κ-stable law. Recall that
ν0 = 0, ν1, ν2, ... are the successive regeneration times of the MBPREI. Now put

Wk =
∑

νk≤t<νk+1

Z−t,

then the pairs {(νk+1 − νk),Wk}k≥0 are independent, all with distribution of the (ν,W ) because (ν,W )
coincides with (ν1− ν0,W0). Then the proof of the theorem is standard. It follows exactly with the proof
of the theorem in Kesten-Kozlov-Spitzer [10]. We will not repeat it here. �

Appendix: Proofs of Lemma 5.2, Lemma 5.3 and Lemma 5.4

Proof of Lemma 5.2: Since that
∑∞

k=1 k
−2 = π2

6 , we have

P

(

∑

σ≤k<ν

|Y−k| ≥ ǫx

)

= P

( ∞
∑

k=1

1[σ≤k<ν]|Y−k| ≥ 6π−2ǫx

∞
∑

k=1

k−2

)
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≤
∞
∑

k=1

P

(

σ ≤ k < ν, |Y−k| ≥
1

2
ǫxk−2

)

. (52)

Note that Y−k is σ{ω−k, ω−k−1, · · · }-measurable, the event {σ ≤ k < ν} being defined in terms of
Z0, Z−1 · · · , Z−k is σ{ω0, ω−1 · · · , ω−k+1}-measurable and Y−k has the same distribution as Y0. Then

P
(

∑

σ≤k<ν

|Y−k| ≥ ǫx
)

≤
∞
∑

k=1

P (σ ≤ k < ν)P
(

|Y−k| ≥
1

2
ǫxk−2

)

=

∞
∑

k=1

P (σ ≤ k < ν)P
(

|Y0| ≥
1

2
ǫxk−2

)

.

Thus if we can prove that
P (|Y0| ≥ x) ≤ K6x

−κ (53)

for some K6 < ∞, then it follows that

P

(

∑

σ≤k<ν

|Y−k| ≥ ǫx

)

≤ x−κ2κǫ−κK6

∞
∑

k=1

k2κP (σ ≤ k < ν)

≤ x−κ2κǫ−κK6E
(

ν2κ+1;σ < ν
)

≤ ǫx−κ

for A large enough since E
(

ν2κ+1
)

< ∞ by Lemma 5.2 and σ(A) → ∞ in probability as A → ∞.

To prove (53), observe that η−m = M−m(I + η−m−1) and consequently with Z(0, 0) = 0

Y0 =

∞
∑

m=1

Z(0,−m) =

∞
∑

m=1

(Z(0,−m)− Z(0,−m+ 1)M−m+1) (I + η−m).

Let e0 = ( 1
L
, ..., 1

L
). Using the independence of (I + η−m) and M−m+1, Z(0,−m+1), Z(0,−m), similarly

as (52) we have

P (|Y0| ≥ x) ≤
∞
∑

m=1

P

(

| (Z(0,−m)− Z(0,−m+ 1)M−m+1) (I + η−m)| ≥ 1

2
m−2x

)

≤
∞
∑

m=1

∫

P (|Z(0,−m)− Z(0,−m+ 1)M−m+1| ∈ ds)

× P
(

e0(I + η0)e
T
0 ≥ (2sL2m2)−1x

)

.

From Theorem 5.2 there exists a 0 < K7 < ∞ for which

P
(

e0(I + η0)e
T
0 ≥ (2sL2m2)−1x

)

≤ K7(2sL
2m2)κx−κ. (54)

Then it follows that

P (|Y0| ≥ x) ≤ x−κ2κL2κK7

∞
∑

m=1

m2κE (|Z(0,−m)− Z(0,−m+ 1)M−m+1|κ)

≤ x−κ2κL2κK7

∞
∑

m=1

m2κE

(

Eω

(

|Z(0,−m)− Z(0,−m+ 1)M−m+1|2
)

κ
2

)

(55)

since by assumption of the lemma κ ≤ 2. We prove next the convergence of the last series in above
expression to complete the proof of the lemma. For this purpose note that

Eω

(

|Z(0,−m)− Z(0,−m+ 1)M−m+1|2|Z(0,−m+ 1)
)
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= |Z(0,−m+ 1)|
(

L
∑

l=1

(b−m+1(l) + b2−m+1(l)) + 2
∑

1≤l<k≤L

b−m+1(l)b−m+1(k)
)

=: |Z(0,−m+ 1)|R(M−m+1). (56)

Then it follows that

E

(

Eω

(

|Z(0,−m)− Z(0,−m+ 1)M−m+1|2
)

κ
2

)

= E({Eω(|Z(0,−m+ 1)|R(M−m+1)}
κ
2 ))

= E

(

|e1M0M−1...M−m+2|
κ
2 R(M−m+1)

κ
2

)

= E
(

|e1M0M−1...M−m+2|
κ
2

)

E(R(M0)
κ
2 ),

using independence and stationarity in the last step. Since κ < 2, then condition (C3) implies that
E(R(M0)

κ
2 ) < ∞, and 1), 2) of Theorem 5.2 imply that

E

(

|e1M0M−1 · · ·M−m+2|
κ
2

)

≤ L
κ
2 E

(

‖M0M−1 · · ·M−m+2‖
κ
2

)

∼ L
κ
2 e−c(m−1)

as m tends to ∞ for some constant c > 0. Thus the convergence of the last series in (55) follows. �

Proof of Lemma 5.3: We have on {σ < ν}

|Z−σ| = (|Z−σ+1|+ 1)
|Z−σ|

|Z−σ+1|+ 1
≤ (A+ 1)

|Z−σ|
|Z−σ+1|+ 1

≤ (A+ 1)
∑

1≤m≤ν

|Z−m|
|Z−m+1|+ 1

. (57)

As a matter of fact, if κ ≥ 1

(E (|Z−σ|κ;σ < ν))
1
κ ≤ (A+ 1)

(

E

[(

∑

m≥1

|Z−m|
|Z−m+1|+ 1

1[m≤ν]

)κ]
)

1
κ

≤ (A+ 1)
∑

m≥1

(

E

(

( |Z−m|
|Z−m+1|+ 1

)κ

1[m≤ν]

)

)
1
κ

. (58)

Conditioned on ω and Z−m+1 we have

|Z−m| ≤
|Z−m+1|+1
∑

j=1

(|Vj |+ 1),

where

Pω(Vj = (u1, · · · , uL)) =
(u1 + · · ·+ uL)!

u1! · · ·uL!
ω−m+1(−1)u1 · · ·ω−m+1(−L)uLω−m+1(1)

and Vj , j = 1, 2, ... are i.i.d.. Then for 1 ≤ κ ≤ 2 we have

(Eω(|Z−m|κ
∣

∣Z0, Z−1, · · · , Z−m+1))
1
κ ≤

|Z−m+1|+1
∑

j=1

(Eω((|Vj |+ 1)
2 ∣
∣Z0, Z−1, · · · , Z−m+1))

1
2

= (|Z−m+1|+ 1)
(

1 + 2
L
∑

l=1

b−m+1(l)

+

L
∑

l=1

(b−m+1(l) + 2b2−m+1(l)) + 4
∑

1≤k<l≤L

b−m+1(k)b−m+1(l)
)

1
2
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=: (|Z−m+1|+ 1)R̃(M−m+1)
1
2 . (59)

It follows that

E

(

( |Z−m|
|Z−m+1|+ 1

)κ

1[m≤ν]

)

= E
(

Eω

(( |Z−m|
|Z−m+1|+ 1

)κ∣
∣

∣Z0, Z−1 · · · , Z−m+1

)

;m ≤ ν
)

by (59) and independence and stationarity

≤ E(R(M−m+1)
κ
2 ;m ≤ ν) = E(R̃(M0)

κ
2 )P (ν > m− 1).

For 1 ≤ κ ≤ 2, since condition (C3) implies that E(R̃(M0)
κ
2 ) < ∞, then the inequality (46) follows from

(58) and Theorem 5.4. For κ < 1 we have from (57) that

E(|Z−σ|κ;σ < ν) ≤ (A+ 1)κ
∑

m≥1

E
(

( |Z−m|
|Z−m+1|+ 1

)κ

1[m≤ν]

)

≤ (A+ 1)κ
∑

m≥1

E
(

1[m≤ν](|Z−m+1|+ 1)−κ(Eω(|Z−m|
∣

∣Z0, Z−1, · · · , Z−m+1))
κ
)

≤ (A+ 1)κ
∑

m≥1

E
(

1[m≤ν]

(

1 +

L
∑

l=1

b−m+1(l)

)κ
)

= (A+ 1)κ
∑

m≥1

P (ν > m− 1)E
((

1 +

L
∑

l=1

b0(l)
)κ)

< ∞.

For κ > 2, note that

W =
∑

0≤m<ν

Y−m =

∞
∑

m=0

Y−m1[m<ν].

Then by the independence of Y−m and 1[m<ν] we have

(E|W |2) 1
2 ≤

∞
∑

m=0

(E
(

|Y−m|21[m<ν]

)

)
1
2 =

∞
∑

m=0

(E|Y0|2)
1
2 (P (ν > m))

1
2 .

Theorem 5.4 implies that E|W |2 is finite if we can show that

E|Y0|2 < ∞.

In fact,

(E
(

|Y0|2
)

)
1
2 =

(

E

(

(

∞
∑

t=1

|Z(0,−t)|
)2
)

)
1
2

≤
∞
∑

t=1

(

E|Z(0,−t)|2
)

1
2 =

∞
∑

t=1

(

E
[

Eω |Z(0,−t)|2
])

1
2

=

∞
∑

t=1

(

E
(

[Eω|Z(0,−t)|]2
)

+ E [Vω(|Z(0,−t)|)]
)

1
2

≤
∞
∑

t=1

(

E
(

[Eω|Z(0,−t)|]2
)

)
1
2

+

∞
∑

t=1

(

E [Vω(|Z(0,−t)|)]
)

1
2

. (60)

To estimate the first term in the rightmost-hand side of (60), note that

E[(Eω |Z(0,−t)|)2] = E(|e1M0M−1 · · ·M−t+1|2) ≤ L2E(‖ M0M−1 · · ·M−t+1 ‖2).
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Since κ > 2, (39) and (40) of Theorem 5.2 imply that for some β < 0

E(‖ M0M−1 · · ·M−t+1 ‖2) ∼ eβt as t → ∞. (61)

Now we estimate the second term in the rightmost-hand side of (60). Note that

Vω(|Z(0,−t)|) = Eω([|Z(0,−t)| − |Eω(Z(0,−t))|]2) ≤ Eω(|Z(0,−t)− Eω(Z(0,−t))|2)
= Eω

(

Eω

[

|Z(0,−t)− Z(0,−t+ 1)M−t+1|2
∣

∣Z(0,−t+ 1)
])

= Eω

(

|Z(0,−t+ 1)|Eω

[

|Z(0,−t)− Z(0,−t+ 1)M−t+1|2
∣

∣Z(0,−t+ 1) = e1
])

= |e1M0M−1 · · ·M−t+2|
(

L
∑

l=1

(b−t+1(l) + b−t+1(l)
2) + 2

∑

1≤k<l≤L

b−t+1(l)b−t+1(k)
)

Then we have that

E(Vω(|Z(0,−t)|))

≤ LE(‖ M0M−1 · · ·M−t+2 ‖)E
(

L
∑

l=1

(b0(l) + b0(l)
2) + 2

∑

1≤k<l≤L

b0(l)b0(k)
)

≤ CE(‖ M0M−1 · · ·M−t+2 ‖) ∼ Ceγt (62)

for some C > 0 and γ < 0 for the same reason as (61). Then (61) together with (62) implies the
convergence of the series in the rightmost-hand side of (60). Therefore E|Y0|2 < ∞. �

Recall

S−σ,−m = number of progeny alive at time −m of the Z−σ particles present at −σ > −m.

Let S−σ,−σ = Z−σ, and

S−σ =

∞
∑

m=σ

S−σ,−m = Z−σ + total progeny of the Z−σ particles at −σ.

Proof of Lemma 5.4: Observe that

S−σ,−m − Z−σ

m−1
∏

i=σ

M−i =
∑

σ+1≤l≤m

(

S−σ,−l

m−1
∏

i=l

M−i − S−σ,−l+1

m−1
∏

i=l−1

M−i

)

,

the convention being that empty product is I, and therefore

∞
∑

m=σ

(

S−σ,−m − Z−σ

m−1
∏

i=σ

M−i

)

=

∞
∑

l=σ+1

∞
∑

m=l

(

S−σ,−l

m−1
∏

i=l

M−i − S−σ,−l+1

m−1
∏

i=l−1

M−i

)

=
∞
∑

l=σ+1

(S−σ,−l − S−σ,−l+1M−l+1)
∞
∑

m=l

m−1
∏

i=l

M−i

=

∞
∑

l=σ+1

(S−σ,−l − S−σ,−l+1M−l+1)(I + η−l).

Then we have

P
(∣

∣

∣

∞
∑

m=σ

(

S−σ,−m − Z−σ

m−1
∏

i=σ

M−i

)∣

∣

∣ ≥ ǫx, σ < ν
)
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=

∞
∑

j=1

P
(∣

∣

∣

∞
∑

m=σ

(

S−σ,−m − Z−σ

m−1
∏

i=σ

M−i

)∣

∣

∣ ≥ ǫx, σ < ν, σ = j
)

=

∞
∑

j=1

P
(∣

∣

∣

∞
∑

l=σ+1

(S−σ,−l − S−σ,−l+1M−l+1)(I + η−l)
∣

∣

∣ ≥ ǫx, σ < ν, σ = j
)

≤
∞
∑

j=1

P
(

∞
∑

l=σ+1

∣

∣

∣
(S−σ,−l − S−σ,−l+1M−l+1)

∣

∣

∣
|1(I + η−l)| ≥ ǫx, σ < ν, σ = j

)

.

By a similar argument as (52), the rightmost-hand side of the last expression is less than or equal to

∞
∑

j=1

∞
∑

l=j+1

P (|S−σ,−l − S−σ,−l+1M−l+1|e0(I + η−l)e
T
0 ≥ 1

2
(l − σ)−2L−2ǫx, σ < ν, σ = j)

=

∞
∑

j=1

∞
∑

l=j+1

∫

P (|S−j,−l − S−j,−l+1M−l+1| ∈ ds, j < ν, σ = j,

e0(I + η−l)e
T
0 ≥ (2s)−1(l − j)−2L−2ǫx).

Note that {|S−j,−l − S−j,−l+1M−l+1| ∈ ds, j < ν, σ = j}, defined in term of {Z0, Z−1, ..., Z−l}, depends
only on σ(ω−i; i < l) and that {e0(I + η−l)e

T
0 ≥ (2s)−1(l − j)−2L−2ǫx} depends only on σ(ω−i; i ≥ l).

Then by the independence and stationarity of the environment, the right-hand side of the above equality
equals to

∞
∑

j=1

∞
∑

l=j+1

∫

P (|S−j,−l − S−j,−l+1M−l+1| ∈ ds, j < ν, σ = j)

×P (e0(I + η0)e
T
0 ≥ (2s)−1(l − j)−2L−2ǫx)

which, by Theorem 5.2 with K7 as in (54), is less than or equal to

x−κ(
2

ǫ
)κK7L

2κ
∞
∑

j=1

∞
∑

l=j+1

(l − j)2κ
∫

sκP (|S−j,−l − S−j,−l+1M−l+1| ∈ ds, j < ν, σ = j)

= x−κ(
2

ǫ
)κK7L

2κ
∞
∑

j=1

∞
∑

l=j+1

(l − j)2κE(|S−j,−l − S−j,−l+1M−l+1|κ; j < ν, σ = j)

= x−κ(
2

ǫ
)κK7L

2κE
(

∞
∑

l=σ+1

(l − σ)2κ|S−σ,−l − S−σ,−l+1M−l+1|κ;σ < ν
)

= x−κ(
2

ǫ
)κK7L

2κE
(

∞
∑

l=σ+1

(l − σ)2κ

×E
(

|S−σ,−l − S−σ,−l+1M−l+1|κ;σ < ν
∣

∣

∣ω, σ, Z0, Z−1, · · · , Z−σ

))

.

Recalling that κ ≤ 2, Jensen’s inequality implies that the rightmost-hand side of above expression is less
than or equal to

x−κ(
2

ǫ
)κK7L

2κE
(

∞
∑

l=σ+1

(l − σ)2κ ×

{

E
(

|S−σ,−l − S−σ,−l+1M−l+1|2;σ < ν
∣

∣

∣ω, σ, Z0, Z−1, · · · , Z−σ

)}
κ
2
)

. (63)
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Again as in (56) we have

E
(

|S−σ,−l − S−σ,−l+1M−l+1|2
∣

∣ω, σ, Z0, Z−1, · · · , Z−σ, S−σ,−l+1

)

= |S−σ,−l+1|
(

L
∑

j=1

(b−l+1(j) + b2−l+1(j)) + 2
∑

1≤i<j≤L

b−l+1(i)b−l+1(j)
)

=: |S−σ,−l+1|R(M−l+1)

and

(E
(

|S−σ,−l − S−σ,−l+1M−l+1|2
∣

∣ω, σ, Z0, Z−1, · · · , Z−σ

)

)
κ
2

= (E
(

|S−σ,−l+1|
∣

∣ω, σ, Z0, Z−1, · · · , Z−σ

)

)
κ
2 R(M−l+1)

κ
2

=
∣

∣

∣Z−σ

l−2
∏

i=σ

M−i

∣

∣

∣

κ
2

R(M−l+1)
κ
2 .

Substituting to (63), we get that

P
(∣

∣

∣

∞
∑

m=σ

(

S−σ,−m − Z−σ

m−1
∏

i=σ

M−i

)∣

∣

∣ ≥ ǫx;σ < ν
)

≤ x−κ(
2

ǫ
)κK7L

2κE
(

∞
∑

l=σ+1

(l − σ)2κ
∣

∣

∣Z−σ

l−2
∏

i=σ

M−i

∣

∣

∣

κ
2

R(M−l+1)
κ
2 ;σ < ν

)

≤ x−κ(
2

ǫ
)κK7L

2κ
∞
∑

m=1

∞
∑

l=m+1

(l −m)2κE
(

|Z−m|κ2
∥

∥

∥

l−2
∏

i=m

M−i

∥

∥

∥

κ
2

R(M−l+1)
κ
2 ;m = σ < ν

)

.

Again, using independence and stationarity, the rightmost-hand side of the above expression

= x−κ(
2

ǫ
)κK7L

2κ

×
∞
∑

m=1

∞
∑

l=m+1

(l −m)2κE
(∥

∥

∥

l−m−2
∏

i=0

M−i

∥

∥

∥

κ
2
)

E
(

R(M0)
κ
2

)

E
(

|Z−m|κ2 ;m = σ < ν
)

= x−κ(
2

ǫ
)κK7L

2κ

×
∞
∑

m=1

∞
∑

l=1

l2κE
(∥

∥

∥

l−2
∏

i=0

M−i

∥

∥

∥

κ
2
)

E
(

R(M0)
κ
2

)

E
(

|Z−m|κ2 ;m = σ < ν
)

using 1) and 2) of Theorem 5.2 and condition (C3)

≤ K8(ǫx)
−κE(|Z−σ|

κ
2 ;σ < ν) ≤ K8(ǫx)

−κA−κ
2 E(|Z−σ|κ;σ < ν)

≤ ǫx−κE(|Z−σ|κ;σ < ν)

for A ≥ A1(ǫ), and some K8 > 0. �
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