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Abstract

We derive a quenched moderate deviations principle for a class of random walk in random envi-

ronment, where the environment is assumed to be stationary and ergodic. The approach is based

on hitting time decomposition. As a byproduct, we also get an explicit expression of the quenched

variance of τ1, the first passage time of 1 by the walk.
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1. Introduction

Much attention has been focused on random walk in random environment (RWRE in short) in recent

years. In one dimensional case, Solomon(see [6]) has derived the law of large numbers for random walk

in i.i.d. environment, which has been generalized later to the stationary and ergodic setting , referring

to Alili [1] and Zeitouni [7], where a central limit theorem has been got in different ways. And the large

deviations principle (LDP in short) for RWRE has been proved by Grevenet et al [5] and Comets et al [2].

The main purpose of our present paper is to derive the moderate deviations principle (MDP in short) for

RWRE in transient situation, whereas Comets and Popov (see [3]) considered the recurrent case (Sinai’s

walk).

Now we describe the model of interests to us. For any integer i ∈ Z, denote the neighborhood of i

by Ni := {i − 1, i, i + 1}. A probability measure ωi on Ni is denoted by a triple (ω−
i , ω0

i , ω+
i ), where

ω−
i , ω0

i , ω
+
i ≥ 0 and ω−

i + ω0
i + ω+

i = 1. Let M1(Ni) be the collection of probability measures on Ni

and equip M1(Ni) with the weak topology of probability measure, which makes it into a Polish space.

Further this induces a Polish structure on Ω :=
∏

i∈Z
M1(Ni). Let F be the Borel σ-algebra on Ω. Given

a probability measure P on F , a random environment ω is an element of Ω distributed according to P.

We are now ready to define the class of random walks in random environment of interests to us. For

each ω ∈ Ω, we define the random walk in random environment ω as the time-homogeneous Markov chain
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{Xn} taking values in Z
N with transition probabilities

Pω (Xn+1 = j | Xn = i) =



















ω−
i , if j = i − 1,

ω0
i , if j = i,

ω+
i , if j = i + 1,

0, else.

For v ∈ Z, we use P v
ω to denote the law of {Xn} on (ZN,G), where G is the σ-algebra generated by the

cylinder sets and P v
ω(X0 = v) = 1. In this paper, we refer to P v

ω (·) as the quenched law of the random

walk {Xn}. Note that for each G ∈ G, the map ω 7→ P v
ω (G) is F -measurable. Therefore we may define

the measure P
v := P ⊗ P v

ω on (Ω × Z
N,F × G) from the relation

P
v(F × G) =

∫

F

P v
ω(G)P (dω), F ∈ F , G ∈ G.

The marginal of P
v on Z

N, denoted also by P
v whenever no confusion occurs, is called the annealed law

of random walk {Xn}.
We introduce the hitting times of the walk {Xn} which will serve us through out the paper. Let

T0 = 0, and

Tn = min{k : Xk = n}

with the usual convention that the minimum over an empty set is ∞. Set τ0 = 0 and

τn = Tn − Tn−1, n ≥ 1.

Similarly, set

T−n = min{k : Xk = −n}

and

τ−n = T−n − T−n+1, n ≥ 1,

the convention being that τ±n = ∞ if T±n = ∞. For fixed ω, whenever the walk is recurrent or transient

to the right, it is easy to see, by the Markov property, that {τn}∞n=1 is an independent sequence under

the quenched law P 0
ω(·).

Let ρi =
ω−

i

ω
+
i

. We introduce the following notations:

S̄ =

∞
∑

i=1

1

ω+
(−i)

i−1
∏

j=0

ρ(−j) +
1

ω+
0

;

F̄ =

∞
∑

i=1

1

ω−
i

i−1
∏

j=0

ρ−1
j +

1

ω−
0

;

g(ω) = E0
ω(τ1);

g̃(ω) = g(ω) −
∫

Ω
g(ω)P (dω);

τ̃k = τk − E0
ω(τk) = τk − g(θk−1ω).

In the rest of the paper {b(n)} is a sequence of numbers such that

b(n)√
n

→ ∞, and
b(n)

n
→ 0

as n → ∞. We will derive the quenched moderate deviations for Tn and Xn in the following Section 2

and Section 3 respectively.
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2. Quenched MDP for Tn

Assumption (A)

(A1) P is stationary, ergodic and uniformly elliptic, that is, P (ω+
0 ≥ ǫ)P (ω−

0 ≥ ǫ) = 1, for some ǫ > 0.

(A2) ρmax := sup[ρ : P (ρ0 > ρ) > 0)] ∈ (0, 1). �

Remark 2.1 1) It follows from (A1) that EP (log ρ0) is well defined. Then we have (see Zeitouni [6]

lemma 2.1.12) EP0(τ1) = EP

(

S̄
)

and EP0(τ−1) = EP

(

F̄
)

.

2) Under assumption (A) it follows from the definition of S̄ that P -a.s. S̄ ≤ ǫ−1(1 +
∑∞

i=1 ρi
max) =

(ǫ(1 − ρmax))−1. Therefore EP

(

S̄
)

< ∞. Then we have (see Zeitouni [6], theorem 2.1.9) P
0-a.s.,

lim
n→∞

Xn

n
=

1

EP

(

S̄
) := vP .

3) If we use a new condition “(B2) ρmin := inf[ρ : P (ρ0 < ρ) > 0)] > 1” instead of (A2), then an

argument similar to above yields that P
0-a.s.,

lim
n→∞

Xn

n
= − 1

EP

(

F̄
) := ṽP .

�

We mention here that the rate functions of the MDP for both the hitting time and the walk are related

to the second moment of τ1. Hence we calculate the quenched second moment of τ1 in the following

proposition, but for the continuity consideration of our article, whose proof will be given as an appendix

of the paper.

Proposition 2.1 Denote

A(ω) =: 1 + ρ(−1) + ρ(−1)ρ(−2) + ρ(−1)ρ(−2)ρ(−3) + · · ·, (1)

and

B(ω) =:
ω0

(−1)

ω+
(−1)

+ ρ(−1)

ω0
(−2)

ω+
(−2)

+ ρ(−1)ρ(−2)

ω0
(−3)

ω+
(−3)

+ · · ·. (2)

Then

E0
ω(τ̃2

1 ) = V 0
ω (W ) = (ρ0 + ρ2

0) (2A(ω) + B (ω))
2

+
ω0

0

ω+
0

(

1 +
ω0

0

ω+
0

)

+ (2A(ω) + B(ω))ρ0
ω0

0

ω+
0

+

∞
∑

k=0

(

k
∏

i=0

ρ(−i)

(

(

ρ(−k−1) + ρ2
(−k−1)

)(

2A(θ−(k+1)ω) + B(θ−(k+1)ω)
)2

+
ω0

(−k−1)

ω+
(−k−1)

(

1 +
ω0

(−k−1)

ω+
(−k−1)

)

+
(

2A(θ−(k+1)ω) + B(θ−(k+1)ω)
)

ρ(−k−1)

ω0
(−k−1)

ω+
(−k−1)

))

.

�

It follows from proposition 2.1 and assumption (A) that

E0
ω(τ̃2

1 ) ≤ C +
Cρmax

1 − ρmax

, where C = 2

(

2 + ǫ−1

1 + ρmax

)2

+
1

ǫ

(

1 +
1

ǫ

)

+

(

2 + ǫ−1

1 + ρmax

)

1

ǫ
.
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Therefore VP (τ1) := EP (E0
ω(τ̃2

1 )) < ∞. This enables us to define a finite function G(λ, u) := λu −
λ2

2 VP (τ1). Denote

I
τ,q
P (x) := sup

λ∈R

G(λ, x) =
x2

2VP (τ1)
. (3)

Similarly when VP (τ−1) := EP (E0
ω(τ̃2

−1)) < ∞, we define

I
−τ,q
P (x) :=

x2

2VP (τ−1)
. (4)

Theorem 2.1 Suppose that assumption (A) holds. Then

(a) for P -almost all environment ω, the random variables { 1
b(n) (Tn−E0

ω(Tn))} satisfy a LDP with speed
b(n)2

n
and a convex good rate function I

τ,q
P (x), where I

τ,q
P (x) is given in (3);

(b) furthermore, if the functional equation,

f − f ◦ θ = g̃, (5)

has a bounded solution, then for P-almost all environment ω, the random variables { 1
b(n) (Tn−nv−1

P )}
also satisfy a LDP with speed b(n)2

n
and good rate function I

τ,q
P (x);

(c) if we use condition (B2) instead of (A2), then (a) and (b) hold with T−n instead of Tn , −ṽP instead

of vP , and convex good rate function I
−τ,q
P in (4) instead of I

τ,q
P .

Note that theorem 2.1 is actually a moderate deviations principle since the speed can vary without

changing the rate function. The main tool we use to prove the theorem is Gärtner-Ellis theorem. Before

proving the theorem, we give the following lemmas for preparation.

Lemma 2.1 I
τ,q
P (x) is a convex good rate function and I

τ,q
P (0) = 0.

Proof. It is immediate from the expression of I
τ,q
P (x) in (3). �

Lemma 2.2 Under assumption (A) there exist a λcrit > 0 and a number MP < ∞ such that P -a.s.

E0
ω(eλτ1) < MP for all λ < λcrit.

Proof. For the proof of the lemma, see Comets et al [2], lemma 4. �

Lemma 2.3 For λ ∈ R and ω ∈ Ω define

Λn(λ, ω) =
n

b(n)2
log E0

ω

(

e
λb(n)

n
(Tn−E0

ω(Tn))
)

.

Suppose that assumption (A) holds. Then P -a.s.,

lim
n→∞

Λn(λ, ω) =
λ2

2
VP (τ1) =: Λ(λ).

4



Proof. Fix λ ∈ R. Recall that τi, i ≥ 1 are independent under the quenched probability P 0
ω(·). We have

that P -a.s.,

Λn(λ, ω) =
n

b(n)2
log E0

ω

(

e
λb(n)

n
(Tn−E0

ω(Tn))
)

=
n

b(n)2
log E0

ω

(

e
λb(n)

n

∑n
i=1 τ̃i

)

=
n

b(n)2
log

n
∏

i=1

E0
ω

(

e
λb(n)

n
τ̃i

)

=
n

b(n)2

n
∑

i=1

log E0
ω

(

e
λb(n)

n
τ̃i

)

=
n

b(n)2

n−1
∑

i=0

log E0
θiω

(

e
λb(n)

n (τ1−E0
θiω

(τ1))
)

.

In the remainder of the proof of this lemma, we write τ1 −E0
θiω

(τ1) as τ̄1 for simplicity. We also mention

that τ̄1 differs from τ̃1 which is τ1 − E0
ω(τ1) by definition. Then we have

Λn(λ, ω) =
n

b(n)2

n−1
∑

i=0

log E0
θiω

(

e
λb(n)

n
τ̄1

)

.

Since limn→0
b(n)

n
= 0, lemma 2.2 implies that P -a.s. Eω(e

λb(n)
n

τ1) < MP , for n large enough. Therefore

for any i ∈ Z, and n large enough there exists some ξi ∈ (0, 1) such that

E0
θiω

(

e
λb(n)

n
τ̄1

)

= E0
θiω

(

1 +
λb(n)

n
τ̄1 +

λ2b(n)2τ̄2
1

2n2
+

λ3b(n)3

6n3
τ̄3
1 e

ξiλb(n)

n
τ̄1

)

= 1 +
λ2b(n)2

2n2
E0

θiω

(

τ̄2
1

)

+
λ3b(n)3

6n3
E0

θiω

(

τ̄3
1 e

ξiλb(n)

n
τ̄1

)

.

Lemma 2.2 enables us to find a uniform bound M̄P of E0
θiω

(

|τ̄1|3e
λcrit

2 |τ̄1|
)

. Define

Λn(λ, ω) :=
n

b(n)2

n−1
∑

i=0

log

(

1 +
λ2b(n)2

2n2
E0

θiω

(

τ̄2
1

)

+
λ3M̄P b(n)3

6n3

)

and

Λn(λ, ω) :=
n

b(n)2

n−1
∑

i=0

log

(

1 +
λ2b(n)2

2n2
E0

θiω

(

τ̄2
1

)

− λ3M̄P b(n)3

6n3

)

.

Then for n large enough we have

Λn(λ, ω) ≤ Λn(λ, ω) ≤ Λn(λ, ω). (6)

Next we show that both Λn(λ, ω) and Λn(λ, ω) converge to λ2

2 VP (τ1) for P -a.s. ω as n → ∞. In fact,

∣

∣

∣
Λn(λ, ω) − λ2

2
VP (τ1)

∣

∣

∣
≤
∣

∣

∣
Λn(λ, ω) − 1

n

n−1
∑

i=0

E0
θiω(τ̄2

1 )
λ2

2

∣

∣

∣
+
∣

∣

∣

1

n

n−1
∑

i=0

E0
θiω(τ̄2

1 )
λ2

2
− λ2

2
VP (τ1)

∣

∣

∣
.

Since Birkhoff’s ergodic theorem implies that P -a.s.,
∣

∣

∣

1
n

∑n−1
i=0 E0

θiω
(τ̄2

1 )λ2

2 − λ2

2 VP (τ1)
∣

∣

∣
→ 0 as n → ∞,

it is sufficient to show that P -a.s.,

∣

∣

∣
Λn(λ, ω) − 1

n

n−1
∑

i=0

E0
θiω(τ̄2

1 )
λ2

2

∣

∣

∣
→ 0. (7)
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To see this,

∣

∣

∣
Λn(λ, ω) − 1

n

n−1
∑

i=0

E0
θiω(τ̄2

1 )
λ2

2

∣

∣

∣

≤ 1

n

n−1
∑

i=0

∣

∣

∣
log
(

1 +
λ2b(n)2

2n2
E0

θiω(τ̄2
1 ) +

λ3b(n)3

6n3
M̄P

)
n2

b(n)2 − λ2

2
E0

θiω(τ̄2
1 )
∣

∣

∣

writing
λ2b(n)2

2n2
E0

θiω(τ̄2
1 ) +

λ3b(n)3

6n3
M̄P as S(λ, θiω, n)

≤ 1

n

n−1
∑

i=0

∣

∣

∣

λ2

2
E0

θiω(τ̄2
1 )
(

log(1 + S(λ, θiω, n))
1

S(λ,θiω,n) − 1
)∣

∣

∣

+
1

n

n−1
∑

i=0

λ3b(n)

6n
M̄P log(1 + S(λ, θiω, n))

1

S(λ,θiω,n) . (8)

Since (1 + x)
1
x < e for all x > 0, then the second term in the right-hand side of (8) is less than or equal

to λ3b(n)
6n

M̄P log e which is independent of ω and converges to 0 as n → ∞.

To estimate the first term of the right-hand side of (8), note that

1

n

n−1
∑

i=0

∣

∣

∣

λ2

2
E0

θiω(τ̄2
1 )
(

log(1 + S(λ, θiω, n))
1

S(λ,θiω,n) − 1
)
∣

∣

∣

=
1

n

n−1
∑

i=0

λ2

2
E0

θiω(τ̄2
1 )
(

1 − log
(

1 + S(λ, θiω, n)
)

1

S(λ,θiω,n)

)

using the fact (1 + 1
x
)

1
x < e < (1 + 1

x
)

1
x
+1 for all x > 0

≤ 1

n

n−1
∑

i=0

λ2

2
E0

θiω(τ̄2
1 )
(

log
(

1 + S(λ, θiω, n)
)

1

S(λ,θiω,n)
+1 − log

(

1 + S(λ, θiω, n)
)

1

S(λ,θiω,n)

)

=
1

n

n−1
∑

i=0

λ2

2
E0

θiω(τ̄2
1 ) log

(

1 + S(λ, θiω, n)
)

≤ 1

n

n−1
∑

i=0

λ2

2
E0

θiω(τ̄2
1 )S(λ, θiω, n)

=
1

n

n−1
∑

i=0

λ2

2
E0

θiω(τ̄2
1 )
(λ2b(n)2

2n2
E0

θiω(τ̄2
1 ) +

λ3b(n)3

6n3
M̄P

)

,

which converges to 0 P -a.s. by Birkhoff’s ergodic theorem. Therefore (7) is proved. A similar proof

yields that P -a.s.,
∣

∣

∣
Λn(λ, ω) − 1

n

n−1
∑

i=0

E0
θiω(τ̄2

1 )
λ2

2

∣

∣

∣
→ 0

which together with (7) and (6) implies that P -a.s.,

lim
n→∞

Λn(λ, ω) =
λ2

2
VP (τ1) = Λ(λ). (9)

We emphasize that the P -null set in (9) may depend on λ. To deal with this, let Ω1 be the set of ω such

that (9) holds for all rational λ. Clearly P (Ω1) = 1. For any λ ∈ R
+, there exist rational sequences {si}

and {li} such that si converges to λ increasingly and li converges to λ decreasingly.

Then for ω ∈ Ω1,

lim
n→∞

Λn(si, ω) ≤ lim inf
n→∞

Λn(λ, ω) ≤ lim sup
n→∞

Λn(λ, ω) ≤ lim
n→∞

Λn(li, ω).

6



It follows that
s2

i

2
VP (τ1) ≤ lim inf

n→∞
Λn(λ, ω) ≤ lim sup

n→∞
Λn(λ, ω) ≤ l2i

2
VP (τ1).

Let i → ∞. We conclude that

lim
n→∞

Λn(λ, ω) =
λ2

2
VP (τ1), for ω ∈ Ω1.

We can deal with λ ∈ R
− in the same way to complete the proof of the lemma. �

Proof of Theorem 2.1

We only give the proof of part (a) and part (b) of the theorem. Part (c) can be proved similarly by

space reversal. Owning to lemma 2.1 and lemma 2.3, the proof of part (a) is just a simple application of

Gärtner-Ellis theorem. We now prove part (b). Note that,

Tn − nv−1
P =

n
∑

i=1

(τi − E0
ω(τi)) +

n
∑

i=1

(E0
ω(τi) − v−1

p ).

Let γω
n :=

∑n
i=1(E

0
ω(τi)− v−1

p ) =
∑n−1

i=0 g̃(θkω). But by assumption, (5) has a bounded solution f. Hence

γω
n can be written as

γω
n = f(ω) − f ◦ θn(ω).

This implies in particular, that for all ω, |γω
n | ≤ M for some constant M > 0. If we denote

Λ̃n(λ, ω) :=
n

b(n)2
log E0

ω

(

e
λb(n)

n
(Tn−nv

−1
P )
)

,

then

lim
n→∞

Λ̃n(λ, ω) = lim
n→∞

n

b(n)2
log E0

ω

(

e
λb(n)

n (
∑n

i=1(τi−E0
ω(τi))+

∑n
i=1(E

0
ω(τi)−v−1

p ))
)

= lim
n→∞

n

b(n)2
log E0

ω

(

e
λb(n)

n

∑n
i=1(τi−E0

ω(τi))e
λb(n)γω

n
n

)

= lim
n→∞

n

b(n)2
log E0

ω

(

e
λb(n)

n

∑n
i=1(τi−E0

ω(τi))
)

. (10)

Lemma 2.3 and (10) imply that

lim
n→∞

Λ̃n(λ) = Λ(λ) P -a.s.,

for any λ ∈ R where Λ(λ) = λ2

2 VP (τ1) by definition. Another application of Gärter-Ellis theorem yields

part (b) of the theorem. Then the theorem is proved. �

3. Quenched MDP for Xn

Since a quenched MDP is proved for the sequence {Tn}, we can derive a quenched MDP for the walk

{Xn} itself. In the present section, let b(n) = nβ particularly, where β ∈ (1
2 , 1).

Theorem 3.1 Assume that assumption (A) holds and that (5) has a bounded solution. Define

I
q
P (x) := v

2β−1
P I

τ,q
P

(

−xv
−(β+1)
P

)

=
x2

v3
P VP (τ1)

, and Ĩ
q
P (x) :=

x2

−ṽ3
P VP (τ−1)

,

where β ∈ (1
2 , 1). Then for any A ∈ B(R), P -a.s.,
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−I
q
P (A◦) ≤ lim inf

n→∞

1

n2β−1
log P 0

ω

(

Xn − nvP

nβ
∈ A

)

≤ lim sup
n→∞

1

n2β−1
log P 0

ω

(

Xn − nvP

nβ
∈ A

)

≤ −I
q
P (Ā),

where for G ∈ B(R), Go denotes the interior of G, Ḡ denotes the closure of G and I
q
P (G) = infx∈G I

q
P (x);

moreover if we use (B2) instead of (A2), the same result holds with ṽP instead of vP , and Ĩ
q
P (x) instead

of I
q
P (x).

Proof. We deal with only the first part. The second part can be proved by space reversal. Throughout,

⌊x⌋ denotes the largest integer smaller than or equal to x. As a beginning, we prove the upper tail for

the upper bound. Note that there is nothing to prove for u ≤ 0. Fix u > 0. For n large enough we have

that,

P 0
ω

(

Xn − nvP

nβ
≥ u

)

= P 0
ω

(

Xn ≥ nβu + nvP

)

≤ P 0
ω

(

T⌊nβu+nvP ⌋ ≤ n
)

= P 0
ω

(

T⌊nβu+nvP ⌋ − ⌊nβu + nvP ⌋v−1
P

(⌊nβu + nvP ⌋)β
≤ n − ⌊nβu + nvP ⌋v−1

P

(⌊nβu + nvP ⌋)β

)

≤ P 0
ω

(

T⌊nβu+nvP ⌋ − ⌊nβu + nvP ⌋v−1
P

(⌊nβu + nvP ⌋)β
≤ −(nβu − 1)v−1

P

(nβu + nvP + 1)β

)

.

Taking logarithm, we have from theorem 2.1 that, P -a.s.,

lim sup
n→∞

1

n2β−1
log P 0

ω

(

Xn − nvP

nβ
≥ u

)

≤ lim sup
n→∞

1

n2β−1
log P 0

ω

(

T⌊nβu+nvP ⌋ − ⌊nβu + nvP ⌋v−1
P

(⌊nβu + nvP ⌋)β
≤ −(nβu − 1)v−1

P

(nβu + nvP + 1)β

)

≤ lim sup
n→∞

(⌊nβu + nvP ⌋)2β−1

n2β−1

1

(⌊nβu + nvP ⌋)2β−1

× logP 0
ω

(

T⌊nβu+nvP ⌋ − ⌊nβu + nvP ⌋v−1
P

(⌊nβu + nvP ⌋)β
≤ −(nβu − 1)v−1

P

(nβu + nvP + 1)β

)

≤ −v
2β−1
P inf

x≤−uv
−(β+1)
P

I
τ,q
P (x) = − inf

x≥u
I

q
P (x),

which completes the proof of the upper tail for the upper bound. We next derive the lower bound in a

similar way. To do this, we claim first, for any u ∈ R and 0 < η < δ, that,

{n − nβη ≤ T⌊nβu+nvP ⌋ ≤ n} ⊂ {nvP + nβ(u − δ) ≤ Xn ≤ nβ(u + δ) + nvP }. (11)

Indeed, note that,

{n− nβη ≤ T⌊nβu+nvP ⌋ ≤ n} ⊂ {Xn ≥ nβu + nvP − (n − T⌊nβu+nvP ⌋)}
⊂ {Xn ≥ nβu + nvP − (n − (n − nβη))}
⊂ {Xn ≥ nvP + nβ(u − η)} ⊂ {Xn ≥ nvP + nβ(u − δ)},

and that,

{n− nβη ≤ T⌊nβu+nvP ⌋ ≤ n} ⊂ {X⌊n−nβη⌋ ≤ nβu + nvP }
⊂ {Xn ≤ nβu + nvP + nβη}
⊂ {Xn ≤ nβ(u + η) + nvP } ⊂ {Xn ≤ nβ(u + δ) + nvP }.
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Then we finish to prove (11). It follows from (11) and theorem 2.1 that, P -a.s.,

lim inf
n→∞

1

n2β−1
log P 0

ω

(

u − δ <
Xn − nvP

nβ
< u + δ

)

≥ lim inf
n→∞

1

n2β−1
log P 0

ω

(

n − nβη ≤ T⌊nβu+nvP ⌋ ≤ n
)

= lim inf
n→∞

(⌊nβu + nvP ⌋)2β−1

n2β−1

1

(⌊nβu + nvP ⌋)2β−1

× logP 0
ω

(

n − nβη − ⌊nβu + nvP ⌋v−1
P

(⌊nβu + nvP ⌋)β

≤
T⌊nβu+nvP ⌋ − ⌊nβu + nvP ⌋v−1

P

(⌊nβu + nvP ⌋)β
≤ n − ⌊nβu + nvP ⌋v−1

P

(⌊nβu + nvP ⌋)β

)

≥ −v
2β−1
P inf

x∈(−ηv
−β

P
−uv

−(β+1)
P

,−uv
−(β+1)
P

)

I
τ,q
P (x),

where the last inequality follows from the lower bound of MDP for Tn. Moreover, since η < δ is arbitrary

and since I
τ,q
P (·) is continuous, letting η → 0, we have that,

v
2β−1
P inf

x∈(−ηv
−β

P −uv
−(β+1)
P ,−uv

−(β+1)
P )

I
τ,q
P (x) → v

2β−1
P I

τ,q
P (−uv

−(β+1)
P ) = I

q
P (u).

Therefore, P -a.s.,

lim inf
n→∞

1

n2β−1
log P 0

ω

(

u − δ <
Xn − nvP

nβ
< u + δ

)

≥ −I
q
P (u),

which completes the proof of the lower bound.

Next, we prove the lower tail for the upper bound to complete the proof of the theorem. For this

purpose, we need some accurate estimation of P 0
ω

(

inf
l≥0

Xl ≤ −i

)

. Following Alili[1], lemma 5.3, we give

this estimation in next lemma.

Lemma 3.1 For all ω ∈ Ω, and all i ∈ Z,

P 0
ω

(

inf
l≥0

Xl ≤ −i

)

≤ ρ(−i+1)ρ(−i+2)...ρ0

∞
∑

k=0

ρ1...ρk−1ρk.

�

Now, we are ready to prove the lower tail for the upper bound. Note that there is nothing to prove

for u ≥ 0.

Fix u < 0. Let α := 3β−1
2 . Note that for β ∈ (1

2 , 1) we always have 2β − 1 < α < β. Then, for n large

enough,

P 0
ω

(

Xn − nvP

nβ
≤ u

)

≤ P 0
ω

(

∃l ≥ n : Xl ≤ nβu + nvP

)

≤ P 0
ω

(

T⌊nβu+nvP +nα⌋ ≥ n
)

+ P 0
ω

(

∃l ≥ n : Xl ≤ nβu + nvP , T⌊nβu+nvP +nα⌋ < n
)

≤ P 0
ω

(

T⌊nβu+nvP +nα⌋ ≥ n
)

+P 0
ω

(

inf
l≥T

⌊nβu+nvP +nα⌋

Xl ≤ nβu + nvP , T⌊nβu+nvP +nα⌋ < n

)

≤ P 0
ω

(

T⌊nβu+nvP +nα⌋ ≥ n
)

+P 0
ω

(

inf
l≥T

⌊nβu+nvP +nα⌋

Xl − ⌊nβu + nvP + nα⌋ ≤ −⌊nα⌋ + 1

)

. (12)
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Since α < β, the first probability in the right-hand side of (12) can be estimated by the MDP of Tn as

lim sup
n→∞

1

n2β−1
log P 0

ω

(

T⌊nβu+nvP +nα⌋ ≥ n
)

≤ lim sup
n→∞

1

n2β−1
log P 0

ω

(

T⌊nβu+nvP +nα⌋ − ⌊nβu + nvP + nα⌋v−1
P

(⌊nβu + nvP + nα⌋)β

≥ −(nβu + nα + 1)v−1
P

(nβu + nvP + nα + 1)β

)

≤ lim sup
n→∞

(⌊nβu + nvP + nα⌋)2β−1

n2β−1

1

(⌊nβu + nvP + nα⌋)2β−1

× log P 0
ω

(

T⌊nβu+nvP +nα⌋ − ⌊nβu + nvP + nα⌋v−1
P

(⌊nβu + nvP + nα⌋)β
≥ −(nβu + nα + 1)v−1

P

(nβu + nvP + nα + 1)β

)

= −v
2β−1
P inf

x≥−uv
−(β+1)
P

I
τ,q
P (x) = − inf

x≤u
I

q
P (x) P -a.s.. (13)

We now turn to estimate the second probability in the right-hand side of (12).

P 0
ω

(

inf
l≥T

⌊nβu+nvP +nα⌋

Xl − ⌊nβu + nvP + nα⌋ ≤ −⌊nα⌋ + 1

)

= P 0

θ⌊nβu+nvP +nα⌋ω

(

inf
l≥0

Xl ≤ −⌊nα⌋ + 1

)

.

Denote c := c(n) = ⌊nβu + nvP + nα⌋. Then it follows from lemma 3.1 that, P -a.s.,

P 0

θ⌊nβu+nvP +nα⌋ω

(

inf
l≥0

Xl ≤ −⌊nα⌋ + 1

)

= P 0
θcω

(

inf
l≥0

Xl ≤ −⌊nα⌋ + 1

)

≤ ρ(−⌊nα⌋+2+c)ρ(−⌊nα⌋+c+1)...ρ(0+c)

∞
∑

k=1

ρ(1+c)ρ(2+c)...ρ(k+c)

≤ ρ⌊n
α⌋−1

max

∞
∑

k=1

ρk
max =

ρ
⌊nα⌋
max

1 − ρmax

.

Therefore P -a.s.,

lim sup
n→∞

1

n2β−1
log P 0

ω

(

inf
l≥T

⌊nβu+nvP +nα⌋

Xl − ⌊nβu + nvP + nα⌋ ≤ −⌊nα⌋ + 1

)

≤ lim sup
n→∞

1

n2β−1
log P 0

θ⌊nβu+nvP +nα⌋ω

(

inf
l≥0

Xl ≤ −⌊nα⌋ + 1

)

≤ lim sup
n→∞

1

n2β−1
log

ρ
⌊nα⌋
max

1 − ρmax

= lim
n→∞

nα

n2β−1
log ρmax

= −∞, (14)

where the last equality holds because that 0 < 2β − 1 < α and 0 < ρmax < 1. Then it follows(see Dembo

and Zeitouni[4] lemma 1.2.15) from (12), (13) and (14) that P -a.s.,

lim sup
n→∞

1

n2β−1
log P 0

ω

(

Xn − nvP

nβ
≤ u

)

≤ max{− inf
x≤u

I
q
P (x),−∞} = − inf

x≤u
I

q
P (x),

which completes the proof of the lower tail for the upper bound. Therefore, the theorem is proved. �

We can strengthen the result of theorem 3.1 due to the strict convexity and continuity of the rate

function I
q
P (x). We state it in the next corollary.
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Corollary 3.1 Assume that the conditions of theorem 3.1 hold. Then for any u ∈ R, we have that P -a.s.,

lim
n→∞

1

n2β−1
log P 0

ω

(

Xn − nvP

nβ
≤ u

)

= − inf
x≤u

I
q
P (x),

and

lim
n→∞

1

n2β−1
log P 0

ω

(

Xn − nvP

nβ
≥ u

)

= − inf
x≥u

I
q
P (x).

�

Appendix A. On the second moment of T1

Let us fix an environment ω. Our aim is to calculate E0
ω

(

τ̃2
1

)

, the variance of the first passage time T1,

given the environment ω.

For i ≤ 0, denote

Ni := #{k ∈ [0, T1) : Xk = i},

Ui := #{k ∈ [0, T1) : Xk = i, Xk+1 = i − 1}

and

Zi := #{k ∈ [0, T1) : Xk = i, Xk+1 = i}.

Moreover set U1 = 1. Then it is easy to see that Ni = Ui + Ui+1 + Zi, and

T1 =
∑

i≤0

Ni =
∑

i≤0

Ui + Ui+1 + Zi = 1 +
∑

i≤0

2Ui + Zi.

If we denote W =
∑

i≤0 2Ui + Zi, then E0
ω

(

τ̃2
1

)

= E0
ω(
(

W − E0
ω(W | U1 = 1)

)2
) =: V 0

ω (W ). Therefore,

we need only to calculate the variance of W.

Indeed, {(Ui, Zi)}i≤1 with initial value (U1, Z1) = (1, 0) forms a special two-type branching process in

random environment with branching mechanisms

P 0
ω ((Ui, Zi) = (m, k)|Ui+1 = 1) =

(

m + k

m

)

(ω−
i )m(ω0

i )kω+
i , i ≤ 0, m, k ≥ 0.

Note that in this branching model, only type-1 particles can give birth to the next generation. Any

particle of type-2 has no offspring. It is an easy task to find the marginal distributions of Ui and Zi. In

fact we have

P 0
ω(Ui = m|Ui+1 = 1) =

( ω−
i

ω−
i + ω+

i

)m ω+
i

ω−
i + ω+

i

and

P 0
ω(Zi = k|Ui+1 = 1) =

( ω0
i

ω0
i + ω+

i

)k ω+
i

ω−
i + ω+

i

.

Therefore

E0
ω(Ui | Ui+1, · · ·, U0) = ρiUi+1,

E0
ω(Zi | Ui+1, · · ·, U0) =

ω0
i

ω+
i

Ui+1. (15)

Also by some easy calculations we have

E0
ω(UiZi|Ui+1 = 1) = 2ρi

ω0
i

ω+
i

, (16)
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and

V 0
ω (Ui|Ui+1 = 1) = ρi(1 + ρi), V 0

ω (Zi|Ui+1 = 1) =
ω0

i

ω+
i

(

1 +
ω0

i

ω+
i

)

. (17)

To prove proposition, we give the following lemma.

Lemma 3.2 For any fixed ω ∈ Ω, denote

Ũ−n = U−n − E0
ω(U−n | U−n+1),

Z̃−n = Z−n − E0
ω(Z−n | U−n+1).

Then we have that,

W − E0
ω(W | U1) =

∞
∑

n=0

(

Ũ−n

(

2A(θ−nω) + B(θ−nω)
)

+ Z̃−n

)

.

Proof. If we denote W−n =
∑∞

k=n (2U−k + Z−k) , we have for n ≥ 0

2U−n + Z−n = W−n − W−n−1 = E0
ω(W−n − W−n−1 | U−n, Z−n).

Then

W − E0
ω(W | U1, Z1) =

∞
∑

n=0

(

E0
ω(W−n | U−n, Z−n) − E0

ω(W−n | U−n+1, Z−n+1)
)

.

With A(ω) and B(ω) as in (1) and (2), it follows from (15) that

E0
ω(W−n | U−n, Z−n) = 2U−n(1 + ρ(−n−1) + ρ(−n−1)ρ(−n−2) + · · ·) + Z−n

+U−n

(

ω0
(−n−1)

ω+
(−n−1)

+ ρ(−n−1)

ω0
(−n−2)

ω+
(−n−2)

+ ρ(−n−1)ρ(−n−2)

ω0
(−n−3)

ω+
(−n−3)

+ · · ·
)

= 2U−nA(θ−nω) + U−nB(θ−nω) + Z−n

and that

E0
ω(W−n | U−n+1, Z−n+1) = 2U−n+1ρ(−n)(1 + ρ(−n−1) + ρ(−n−1)ρ(−n−2) + · · ·) + U−n+1

ω0
(−n)

ω+
(−n)

+U−n+1ρ(−n)

(

ω0
(−n−1)

ω+
(−n−1)

+ ρ(−n−1)

ω0
(−n−2)

ω+
(−n−2)

+ ρ(−n−1)ρ(−n−2)

ω0
(−n−3)

ω+
(−n−3)

+ · · ·
)

= 2U−n+1ρ(−n)A(θ−nω) + U−nρ(−n)B(θ−nω) + U−n+1

ω0
(−n)

ω+
(−n)

.

Then

W − E0
ω(W | U1, Z1) =

∞
∑

n=0

(

E0
ω(W−n | U−n, Z−n) − E0

ω(W−n | U−n+1, Z−n+1)
)

=

∞
∑

n=0

(

2A(θ−nω) + B(θ−nω)
) (

U−n − E0
ω(U−n | U−n+1)

)

+

∞
∑

n=0

(

Z−n − E0
ω(Z−n | U−n+1)

)

.

Therefore the lemma is proved. �
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Now we come to the proof of proposition 2.1. Note that

V 0
ω (W ) = E0

ω(
(

W − E0
ω(W | U1)

)2
) = V 0

ω

(

Z̃0 + Ũ0 (2A(ω) + B(ω))
)

+E0
ω

(

V 0
ω

(

∞
∑

n=1

(

Ũ−n

(

2A(θ−nω) + B(θ−nω)
)

+ Z̃−n

)

| U0, Z0

))

+2E0
ω

(

E0
ω

((

Z̃0 + Ũ0 (2A(ω) + B(ω))
)

×
∞
∑

n=1

(

Ũ−n

(

2A(θ−nω) + B(θ−nω)
)

+ Z̃−n

)

| U0, Z0

))

.

It is easy to see that the third term in the right-hand side of last equation is zero. Therefore

V 0
ω (W ) = V 0

ω

(

Z̃0 + Ũ0 (2A(ω) + B(ω))
)

+E0
ω

(

U0V
0
ω

(

∞
∑

n=1

(

Ũ−n

(

2A(θ−nω) + B(θ−nω)
)

+ Z̃−n

)

| U0 = 1

))

= (ρ0 + ρ2
0) (2A(ω) + B (ω))

2
+

ω0
0

ω+
0

(

1 +
ω0

0

ω+
0

)

+ (2A(ω) + B(ω))ρ0
ω0

0

ω+
0

+ ρ0V
0
θ−1ω(W ), (18)

where the last equality follows from (15),(16) and (17). Then it follows by induction from (18) that

E0
ω(τ̃2

1 ) = V 0
ω (W ) = (ρ0 + ρ2

0) (2A(ω) + B (ω))
2

+
ω0

0

ω+
0

(

1 +
ω0

0

ω+
0

)

+ (2A(ω) + B(ω))ρ0
ω0

0

ω+
0

+

∞
∑

k=0

(

k
∏

i=0

ρ(−i)

(

(

ρ(−k−1) + ρ2
(−k−1)

)(

2A(θ−(k+1)ω) + B(θ−(k+1)ω)
)2

+
ω0

(−k−1)

ω+
(−k−1)

(

1 +
ω0

(−k−1)

ω+
(−k−1)

)

+
(

2A(θ−(k+1)ω) + B(θ−(k+1)ω)
)

ρ(−k−1)

ω0
(−k−1)

ω+
(−k−1)

))

which proves proposition 2.1. �
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