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Abstract

We derive a new proof of a recurrence and transience criteria for a class of random walks in random

environment with bounded jumps, where the environment is assumed to be stationary and ergodic.

Martingale convergence method is used in this paper, comparing the original one (Brémont (2002))

by the method of computing the exit probability.
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1. Introduction

Random walks in random environment (RWRE, for short) have attracted much intention in recent
years, we refer for example Zeitouni ([9], 2004) or Sznitman ([8], 2004) as a general introduction. In one
dimension, many results have been obtained, especially for the recurrence and transience criteria. Solomon
([7], 1975) has derived the recurrence and transience criterion for random walks in i.i.d environment with
nearest jump, and has been generalized later to the case that the environment is stationary and ergodic,
referring, for example, to Alili ([1],1999) and Zeitouni [9]. Key ([6], 1975) proved a recurrence criterion
for random walks in i.i.d environment with bounded jump, involving the Rth and (R + 1)th Lyapunov
exponents with respect to a random matrix M of dimension (R+L)×(R+L) built with the environment.
In ([3]), Brémont (2002) proved a recurrence criterion for RWRE with bounded jump ( one nearest step to
the right) only involving the largest Lyapunov exponent with respect to a random matrix M of dimension
L × L by the method of computing the exit probability. In this note, we will give a new proof for the
Brémont’s recurrence criterion by martingale convergence method, which is stimulated by Sznitman ([8],
2002) in the case of nearest jump. The key step is to construct a martingale, we get it intuitively from
the point of view “resistor” of the electric networks.
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We introduce the model briefly at first, and we adapt the notation as in Brémont ([3]). Let (Ω,F , µ, T )
be an invertible dynamical system, that is, a probability space (Ω,F , µ) with an invertible transformation
T, measurable as well as its inverse and preserving µ. We suppose that T is ergodic with respect to µ.
The space Ω is interpreted as the space of environments.

Let L ≥ 1 and R ≥ 1 be two fixed integers and introduce the set of consecutive integers Λ =
{−L, · · · , R} which will be the set of possible jumps of the random walks. Let (pz)z∈Λ be a collection of
positive random variables on (Ω,F) satisfying

∑
z∈Λ pz(ω) = 1, µ-a.e., and an ellipticity condition:

∃ε > 0,∀z ∈ Λ and z 6= 0, (pz/pR) ≥ ε, µ− a.e. (1)

For a fixed medium ω, let {Xn}n≥0 be the Markov chain on Z defined by X0 = 0 and the transition
probabilities

∀x ∈ Z, Pω(Xn+1 = x + z|Xn = x) := pz(T xω).

Let P x
ω be the measure induced by Xn(ω)n≥0 with X0 = x on the space of jumps ΛN , called the

“quenched” probability, in contrast to the “annealed” probability
∫
Ω

Pωdµ(ω). Ex
ω denote the expectation

under the probability P x
ω , and write Pω (respectively Eω) when x = 0.

We present a few conventions. In the rest of the paper the dependence on ω will always be implicit.
Any expression of the form f(T kω) will simply be denoted by T kf or f(k).

In what follows, we will restrict R = 1. For 1 ≤ i ≤ L, introduce the quantities

ai = (p−i + · · ·+ p−L)/p1. (2)

We define the following invertible nonnegative random matrices of size L× L that will play a central
role in this paper:

M :=




a1 · · · aL−1 aL

1 · · · 0 0
. . . . . . . . . . . . . . . . . . .
0 · · · 1 0




For k ≥ l ∈ Z, denote M(k, l) = M(k) · · ·M(l), recall that M(k) = T kM . We write (ei)1≤i≤L for the
canonical basis of RL. And introduce the notation:

δ(0, k) :=




〈e1, M(k, 0)e1〉, if k ≥ 0,

1, if k = −1
(3)

Let γ(M, T ) be the largest Liapounov exponents of M with respect to (Ω,F , µ, T ). Consider RL with its
canonical basis and 1-norm, that is, ‖x‖ =

∑L
i=1 |xi|, for x = (xi)1≤i≤n. Introduce the cone C = {x ∈

RL, xi > 0} and its intersection with the sphere: B = C ∩ {x ∈ RL, ‖x‖ = 1}.
We note that the product of L matrices of the same form as M has strictly positive entries. Many

properties of nonnegative matrices were stated in Brémont ([3]), we summarize it as following

Proposition 1.1 (Brémont ([3]))
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(i)∀x ∈ B, µ-a.e.

γ(M, T ) = lim
n→∞

1
n

log ||M(n− 1, 0)x||.

(ii)There is a unique random vector V in B and a unique scalar map λ such that MV = λTV .
Moreover M(n− 1, 0)V = (Tn−1λ · · ·λ)TnV , and

γ(M, T ) =
∫

log(λ)dµ.

(iii) There exists a constant C > 0 such that (“¹” for the partial order on RL)

1
C

M(L− 1, 0)e1 ¹ M(L− 1, 0)V ¹ CM(L− 1, 0)e1

(iv) The vector V is strictly in the interior of the positive cone of RL,uniformly on ω; that is,there
exists a constant δ > 0 such that 〈ei, V 〉 ≥ δ for 1 ≤ i ≤ L. Consequently, there exists a constant C > 0
such that, for all k ≥ 0,

1
C

(T kλ · · ·T 0λ) ≤ δ(0, k) ≤ C(T kλ · · ·T 0λ)

¤

A recurrence and transience criterion for the RWRE with bounded jumps has been proved in Brémont
([3]) by computing the exit probability.

Theorem 1.1 (Brémont ([3])) The asymptotic behavior of random walks is the following:

(i) If E log λ < 0, then lim
n→∞

Xn(ω) = +∞, Pω-a.e., µ-a.e.

(ii) If E log λ > 0, then lim
n→∞

Xn(ω) = −∞, Pω-a.e., µ-a.e.

(iii) If E log λ = 0, then −∞ = lim inf
n→∞

Xn(ω) < lim sup
n→∞

Xn(ω) = +∞, Pω-a.e., µ-a.e.

2. Alternative proof of Theorem 1.1

Brémont ([3]) introduced δ(0, k) in (3) for k ≥ −1. To formulate the martingale, we will first extend the
definition of δ(0, k) in (3) from k ≥ −1 to the whole line, this is the key step in our proof. Intuitively,
δ(0, k) is the “resistor” between k and k + 1 in the electric networks for k ≥ −1, from this point of view
it is natural to extend δ(0, k) to the whole line as following,

δ(0, k) :=





〈e1, M(k, 0)e1〉, if k ≥ 0,

1, if k = −1

〈e1, M(−1, k + 1)−1e1〉, if k ≤ −2,

(4)

We note that the product of L matrices of the same form as M−1 has strictly positive entries. Thus
we can prove some properties of δ(0, k) for k ≤ −2.

Proposition 2.1 (i) For −L ≤ k ≤ −2,
δ(0, k) = 0

(ii) For k < −L,
1
C

(T kλ−1 · · ·T−1λ−1) ≤ δ(0, k) ≤ C(T kλ−1 · · ·T−1λ−1)
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PROOF. (i) By simple calculation we can get the form of M−1 :



0 1 0 · · · 0
0 0 1 · · · 0
. . . . . . . . . . . . . . . .
0 0 0 · · · 1
∗ ∗ ∗ · · · ∗




where * is positive.

So the product of two matrices of the same form as M−1 has the following form:



0 0 1 · · · 0
. . . . . . . . . . . . . . . .
0 0 0 · · · 1
∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗




where * is positive.

Then we can get that the top left corner of the product of |k| matrices of the same form as M−1 should
always be 0 when −L ≤ k ≤ −2, that is δ(0, k) = 0.

(ii) At first note that for k < −L, δ(0, k) > 0. Since MV = λTV , let V ′ = TV , so we have
M−1V ′ = λ−1T−1V ′. Replace V ′ by V , that is, M−1V = λ−1T−1V . We can then obtain some
properties for (M−1, T−1) as in Proposition 1.1 for (M, T ) . Then we can get

1
C

(T kλ−1 · · ·T−1λ−1) ≤ δ(0, k) ≤ C(T kλ−1 · · ·T−1λ−1). ¤

Next lemma was proved in Atkinson [2], which will be used in proving the recurrent situation.

Lemma 2.1 Let (Ω,F , µ, T ) be an ergodic dynamical system and φ ∈ L1(µ). If
∫

φ dµ = 0, then µ-a.e.

∃ ni(ω) → +∞,

ni(ω)−1∑

k=0

φ(T kω) → 0 as i → +∞.

2.1 Construction of a proper martingale

Stimulated by Sznitman ([8]) in the case of nearest jump. For ∀ environment ω ∈ Ω, we define

f(x, ω) :=





−
x−1∑

z=−1
δ(0, z), if x ≥ −1,

−2∑
z=x

δ(0, z), if x ≤ −2,

.

By convention
∑s

r = 0 when s < r. Then we have the following conclusion which will play an important
role when we prove the recurrence and transience property of RWRE.

Proposition 2.2 For any fixed environment ω ∈ Ω, f(Xn, ω) is a martingale under Pω, where Xn is the
random walk determined by ω.

PROOF. To prove f(Xn, ω) is a martingale, i.e., Eω[f(Xn+1, ω)|Fn] = f(Xn, ω). It suffices to prove
E

f(x,ω)
ω [f(X1, ω)] = f(x, ω) because of the Markov property and homogeneous. That is,
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p1(x)f(x + 1, ω) +
L∑

j=1

p−j(x)f(x− j, ω) = f(x, ω), (5)

which is

p1(x)[f(x + 1, ω)− f(x, ω)] +
L∑

j=1

p−j(x)[f(x− j, ω)− f(x, ω)] = 0, (6)

by the definition of f and a simple calculation, (6) is equivalent to

p1(x)δ(0, x) = (p−1(x)+· · ·+p−L(x))δ(0, x−1)+· · ·+(p−L+1(n)+p−L(x))δ(0, x−L+1)+p−L(x)δ(0, x−L)

By the definition in (2), it suffice to prove

δ(0, x) = a1(x)δ(0, x− 1) + · · ·+ aL(x)δ(0, x− L). (7)

proof of (7): a) For x > −1,

(a1) we can first consider x = n ≥ L,

δ(0, n) = 〈e1,M(n, 0)e1〉
= 〈e1,M(n)M(n− 1, 0)e1〉

= 〈e1,







a1(n) 0 · · · 0
1 0 · · · 0

. . . . . . . . . . . . . . . . .
0 0 · · · 0


 +




0 a2(n) · · · 0
0 0 · · · 0
0 1 · · · 0
. . . . . . . . . . . . . . . . .
0 0 · · · 0




+ · · ·+




0 0 · · · aL(n)
0 0 · · · 0
. . . . . . . . . . . . . . . . .
0 0 · · · 0







· M(n− 1, 0)e1〉

= a1(n)δ(0, n− 1) + 〈e1,




0 a2(n) · · · 0
0 0 · · · 0
0 1 · · · 0
. . . . . . . . . . . . . . . . .
0 0 · · · 0




M(n− 1) ·M(n− 2, 0)e1〉 (8)

+ · · ·+ 〈e1,




0 0 · · · aL(n)
0 0 · · · 0
. . . . . . . . . . . . . . . . .
0 0 · · · 0


 ·M(n− 1, 0)e1〉

= a1(n)δ(0, n− 1) + 〈e1,




a2(n) 0 · · · 0
0 0 · · · 0
1 0 · · · 0

. . . . . . . . . . . . . . . . .
0 0 · · · 0




M(n− 2, 0)e1〉 (9)

+ · · ·+ 〈e1,




0 0 · · · aL(n)
0 0 · · · 0
. . . . . . . . . . . . . . . . .
0 0 · · · 0


 ·M(n− 1, 0)e1〉 (10)

= · · · · · ·
= a1(n)δ(0, n− 1) + a2(n)δ(0, n− 2) + · · ·+ aL(n)δ(0, n− L). (11)
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Conclusion (11) is due to the multiplying operations of matrices as the form of M , which can drag ai

to the left top corner position.
(a2) If −1 < x = n < L, then we can also prove (7) similarly as the above because of (i) in Proposition
2.1.
b) For x ≤ −2, x ∈ Z.
We can rewrite δ(0, x) as the following,

δ(0, x) = 〈e1, (M−1 · · ·Mx+1)−1e1〉
= 〈e1,MxMx−1 · · ·Mx−L(M−1 · · ·Mx−L)−1e1〉 (12)

δ(0, x− 1) = 〈e1, (M−1 · · ·Mx)−1e1〉
= 〈e1,Mx−1 · · ·Mx−L(M−1 · · ·Mx−L)−1e1〉 (13)

· · · · · · · · ·
δ(0, x− L) = 〈e1, (M−1 · · ·Mx−L+1)−1e1〉

= 〈e1,Mx−L(M−1 · · ·Mx−L)−1e1〉. (14)

Then we can also decompose δ(0, x) by the same procedures as in a) to get (7), for example,

δ(0, x) = 〈e1,Mx ·Mx−1 · · ·Mx−L(M−1 · · ·Mx−L)−1e1〉

= 〈e1,







a1(x) 0 · · · 0
1 0 · · · 0

. . . . . . . . . . . . . . . . .
0 0 · · · 0


 +




0 a2(x) · · · 0
0 0 · · · 0
0 1 · · · 0
. . . . . . . . . . . . . . . . .
0 0 · · · 0




+ · · ·+




0 0 · · · aL(x)
0 0 · · · 0
. . . . . . . . . . . . . . . . .
0 0 · · · 0







· Mx−1 · · ·Mx−L(M−1 · · ·Mx−L)−1e1〉
· · · · · · · · ·

= a1(x)δ(0, x− 1) + a2(x)δ(0, x− 2) + · · ·+ aL(x)δ(0, x− L).

c) For x = −1, we need only to note that δ(0,−1 − L) = 〈e1, M(−1,−L)−1e1〉 = 1
aL(−1) . Thus (7) is

proved. ¤

2.2. Proof of Theorem 1.1

PROOF. (i)When E log λ < 0. For large x > 0, f(x, ω) is nonincreasing in x,

f(x, ω) = −
x−1∑

z=−1

δ(0, z)

≥ −C(
x−1∑
z=0

T zλ · · ·T 0λ + 1)

= −C(
x−1∑
z=0

e
∑z

i=0 log T iλ + 1)

= −C(
x−1∑
z=0

ez(E log λ+o(1)) + 1), (15)

µ− a.s.ω, where the inequality is due to Proposition 1.1 and (15) is due to Birkhoff’s ergodic theorem.
The series converge as x → +∞ when E log λ < 0, then f is lower-bounded. Thus, ∃ finite K(ω) > 0,
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such that µ− a.s.ω,
lim

x→+∞
f(x, ω) = −K(ω).

Similarly, µ− a.s.ω,

lim
x→−∞

f(x, ω) = lim
x→−∞

−2∑
z=x

δ(0, z)

≥ lim
x→−∞

1
C

(
−2∑
z=x

T zλ−1 · · ·T−1λ−1)

= lim
x→−∞

1
C

(
−2∑
z=x

e
∑z

i=1 log T−iλ−1
)

= lim
x→−∞

1
C

−2∑
z=x

e−|z|(E log λ+o(1)) (16)

= +∞. (17)

With Proposition 2.2, we know f(Xn, ω) is a martingale under Pω. By martingale convergence theorem,
we have f(Xn, ω) converges to a finite limit, Pω-a.e., thus Xn must has a limit (maybe ∞), as n → +∞,
Pω-a.e., µ-a.e, because of the explicit expression of f(x, ω). We can conclude that Xn → +∞, Pω-
a.e., µ-a.e. (If Xn → −∞, Pω-a.e., µ-a.e., it contradicts (17). If Xn → a finite limit, Pω-a.e., µ-a.e., it
contradicts (1)).

(ii) Analogously we obtain the conclusion as the discussion in (i) when E log λ > 0.

(iii) When E log λ = 0 ,

lim
x→+∞

f(x, ω) = − lim
x→+∞

x−1∑
z=−1

δ(0, z)

≤ − 1
C

lim
x→+∞

x−1∑
z=0

T zλ · · ·TλT 0λ

= − 1
C

lim
x→+∞

x−1∑
z=0

e
∑z

i=0 log T iλ,

where the inequality is due to Proposition 1.1. Since E log λ = 0, by Lemma 2.1, µ a.e. ∃ z(i) → +∞, s.t.

z(i)∑

i=1

log T iλ → 0, as i → +∞

Hence lim
x→+∞

f(x, ω) = −∞, µ-a.e.. Similarly, lim
x→−∞

f(x, ω) = ∞, µ-a.e..

For ∀A ≥ 0, Let

T = inf{k ≥ 0, Xk ≥ A} and S = inf{k ≥ 0, Xk ≤ −A}.
Since f(Xn∧T , ω) is a martingale, by martingale convergence theorem, Pω-a.e.,

f(xn∧T , ω) → a finite limit, as n →∞.
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As discussed in (i), we get Xn∧T → a finite limit, Pω-a.e. as n →∞. If T = +∞, that is, xn → a finite
limit. So ∃ large n, s.t. pj(n)|j∈Λ = o, which contradicts (1). Hence T < +∞. Similarly, S < +∞. That
is, Pω(T < +∞ and S < +∞) = 1, µ-a.e. Letting A → +∞, one gets

−∞ = lim inf
n→∞

Xn(ω) < lim sup
n→∞

Xn(ω) = +∞, Pω − a.e., µ− a.e. ¤
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