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1. Introduction and Statement of Results

As one kind of superprocess in random environment, super-Brownian motion with

super-Brownian immigration (SBMSBI, for short), where the environment is deter-

mined by an immigration process which is controlled by the trajectory of another

super-Brownian motion, has been studied recently. Many interesting limit proper-

ties for SBMSBI were described under the annealed probability (Refs. 5, 7 and 14,

etc.). Recently, a CLT has been proved in Ref. 8 under the quenched probability,

that is, conditioned upon a realization of the immigration process. In this paper,

we study the quenched large deviation for d ≥ 4.

We begin by recalling the SBMSBI model (we refer to Refs. 1 and 10 for a

general introduction to the theory of superprocesses). Let C(Rd) denote the space

of continuous bounded functions on R
d. We fix a constant p > d and let φp(x) :=

(1 + |x|2)−p/2 for x ∈ R
d. Let Cp(R

d) := {f ∈ C(Rd) : sup |f(x)|/φp(x) < ∞}. Let

Mp(R
d) be the space of Radon measures µ on R

d such that 〈µ, f〉 :=
∫

f(x)µ(dx) <

∞ for all f ∈ Cp(R
d). We endow Mp(R

d) with the p-vague topology, that is, µk → µ

if and only if 〈µk , f〉 → 〈µ, f〉 for all f ∈ Cp(R
d). Then Mp(R

d) is metrizable.9 We

denote by λ the Lebesgue measure on R
d, and note that λ ∈ Mp(R

d).

627



January 9, 2009 9:7 WSPC/102-IDAQPRT 00321

628 W. Hong

Let Ss,t denote the heat semigroup in R
d, that is, for t > s and f ∈ C(Rd),

Ss,tf(x) =
1

(2π(t − s))d/2

∫

Rd

e−|y−x|2/2(t−s)f(y)dy .

We write St := S0,t and G for the corresponding potential operator, that is Gf =
∫ ∞

0
Stfdt, omitting the space variable x from the notation when no confusion may

occur. Given µ ∈ Mp(R
d), a super-Brownian motion % = (%t, Pµ) is an Mp(R

d)-

valued Markov process with %0 = µ and Laplace transform given by

Eµ exp{−〈%t, f〉} = exp{−〈µ, v(t, ·)〉} , f ∈ C+
p (Rd) , (1.1)

where v(·, ·) is the unique mild solution of the evolution equation






v̇(t) =
1

2
∆v(t) − v2(t) ,

v(0) = f ,
(1.2)

and Eµ denotes expectation with respect to Pµ.

Given a super-Brownian motion % = (%t, Pµ) as the “environment”, we will

consider another super-Brownian motion with the immigration rate controlled by

the trajectory of %, the (SBMSBI) X% = (X%
t , P %

ν ) with X%
0 = ν, which is again an

Mp(R
d)-valued Markov process whose quenched probability law is determined by

E%
ν exp{−〈X%

t , f〉} = exp

{

−〈ν, v(t, ·)〉 −

∫ t

0

〈%s, v(t − s, ·)〉ds

}

. (1.3)

Again, E%
ν denotes expectations with respect to P %

ν .

In the following we take µ = ν = λ, and write P % (resp. P ) for P %
λ (resp. Pλ). We

also use E% and E for the corresponding expectations. This model was considered

in Refs. 7 and 5, see also Ref. 2, where some interesting and new phenomena were

revealed under the annealed probability law:

P(·) :=

∫

P %(·)P (d%)

with expectation denoted by E.

Annealed LDP was obtained in Ref. 5, in this paper we will prove a quenched

LDP for the SBMSBI, in dimension d ≥ 4. As pointed out in Ref. 8, in the study

of motion in random media, differences exist between quenched and annealed CLT

behavior for the SBMSBI, see also Refs. 13 and 12 for several examples in RWRE.

Our main result, Theorem 1.1 below, shows that this is also the case for the LDP.

The following estimation is useful in our proof, for any f ∈ C+
p (Rd),

Stf ≤ c(1 ∧ t−d/2) . (1.4)

where c = max{(2π)−d/2, ‖f‖} is a positive constant, and then a :=
∫ ∞

0
c(1 ∧

r−d/2)dr < ∞ when d ≥ 3.

We fix f ∈ C+
p (Rd) such that 〈λ, f〉 = 1 and define

W(T ) :=
1

T
〈X%

T , f〉 (1.5)
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and

Λ%
d(T, θ) := cd(T )−1 log E% exp[θcd(T )W(T )] , (1.6)

where the speed function is defined by cd(T ) = T , d ≥ 4.

For θ ≤ 0, one can rewrite (1.3) and (1.2) as follows (v ↔ −v):

E% exp{θ〈X%
t , f〉} = exp

{

〈λ, v(t, ·; θ)〉 +

∫ t

0

〈%s, v(t − s, ·; θ)〉ds

}

, f ∈ C+
p (Rd) ,

(1.7)

where v(·, ·; θ) is the unique mild solution of the evolution equation






v̇(t) =
1

2
∆v(t) + v2(t) ,

v(0) = θf .
(1.8)

An important step is to extend (1.7) and (1.8) to some positive θ, which was

proved5 by use of Dynkin’s moment method.

Lemma 1.1. (Hong, Ref. 5) Let d ≥ 3, |θ| < 1
4a , then Eq. (1.8) admits a unique

mild solution v(t, x; θ), moreover it is analytic in |θ| < 1
4a and

|v(t, x; θ)| ≤ b(θ) · Stf(x) , (1.9)

where b(θ) = (2a)−1[1 − (1 − 4a|θ|)1/2].

The main result of this paper is the following:

Theorem 1.1. (Quenched LDP) Assume d ≥ 4, |θ| < 1
4a and f ∈ C+

p (Rd). Then,

for P a.e. %, the law of Wt under P % admit the local LDP with speed function t

and rate function I(α), i.e. there exists a neighborhood O of 1 such that if U ⊂ O

is open and C ⊂ O is closed, then

lim inf
t→∞

1

t
log P %{W(t) ∈ U} ≥ − inf

α∈U
I(α) ,

lim sup
t→∞

1

t
log P %{W(t) ∈ C} ≤ − inf

α∈C
I(α) ,

where I(α) is the Legendre transform of Λ(θ), i.e.

I(α) := sup
|θ|<δ

[αθ − Λ(θ)]

and

Λ(θ) := θ +

∫ ∞

0

〈λ, [v(s, ·; θ)]2〉ds ,

where v(·, ·) is the unique mild solution of the evolution equation (1.8).
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Remarks.

(1) For d = 3, an easy adaptation of our methods shows that the statement of

Theorem 1.1 remains true with an almost sure statement being replaced by a

statement in probability, with the same speed function being t−1.

(2) In Ref. 6, a LDP for the quenched mean E%〈X%
T , f〉 is proved for d = 3 with

speed function t−1/2, and it is easy to see that there is a degenerate LDP for

the quenched mean for d ≥ 5 and a LDP upper bound for d = 4 with speed

function t−1. Recall Ref. 5, where an annealed LDP is obtained for the SBMSBI

with speed function being t−1/2 when d = 3 and t−1 for d ≥ 4. Comparing

Theorem 1.1, one sees that two kinds of randomness reflected in the annealed

LDP property: in d = 3 with speed function t−1/2, the quenched mean (or the

environment %) dominates the behavior; whereas for d ≥ 5 with speed function

being t−1, the quenched (i.e. for fixed %, the randomness of the proces SBM)

factor takes effect; and in dimension d = 4 with speed function being t−1, both

contribute to the rate of annealed LDP (i.e. the rate function of the annealed

LDP is the combination of the rate of quenched LDP and the rate of quenched

mean LDP).

(3) Only a local LDP is proved now, it is an interesting problem to prove the

steepness of Λ(·) such that the full LDP being obtained.

2. Proof of Theorem 1.1

Set d ≥ 4, |θ| < 1
4a with f ∈ C+

p (Rd). The mild solution of Eq. (1.8) is

v(r, x; θ) = θSrf(x) +

∫ r

0

Sr−hv(h, ·; θ)2(x)dh , 0 ≤ r ≤ T . (2.1)

Based on Lemma 1.1, the Laplace expression (1.7) also holds for 0 < θ < 1
4a by

properties of Laplace transform of probability measure on [0,∞) (cf. Ref. 11). Thus

from (1.6) and (1.7), we have

Λ%
d(T, θ) := T−1

[

〈λ, v(T, ·; θ)〉 +

∫ T

0

〈%s, v(T − s, ·; θ)〉ds

]

. (2.2)

Note (1.9), the estimation of v(t, x; θ), it is easy to see that as T → ∞,

T−1〈λ, v(T, ·; θ)〉 −→ 0 . (2.3)

In the sequel, we will take most of our effort to prove the following:

Proposition 2.1. d ≥ 4, |θ| < 1
4a , for P -a.e. %,

Λ%
d(T, θ) → Λ(θ) := θ +

∫ ∞

0

〈λ, [v(s, ·; θ)]2〉ds . (2.4)

Proof of Proposition 2.1. By (2.2) and (2.3), it is enough to prove the following

two claims:
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Claim 1. For P -a.e. %,

n−1

∫ n

0

〈%s, v(n − s, ·; θ)〉ds → θ +

∫ ∞

0

〈λ, [v(s, ·; θ)]2〉ds . (2.5)

Claim 2. For P -a.e. %,

max
n≤t≤n+1

∣

∣

∣

∣

t−1

∫ t

0

〈%s, v(t − s, ·; θ)〉ds − n−1

∫ n

0

〈%s, v(n − s, ·; θ)〉ds

∣

∣

∣

∣

→ 0 . (2.6)

We will prove the claims by means of Borel–Cantelli Lemma, to this end, some

estimations for the moments should be investigated. We recall from Theorem 3.2 of

Ref. 9 that for any Cp(R
d)+-valued continuous path F (s), the Laplace transform

∫ t

0
〈%s, F (t − s)〉ds is given by

E exp

{

−τ

∫ t

0

〈%s, F (t − s)〉ds

}

= exp{−〈λ, u(t, τ ; ·)〉} , τ > 0 , (2.7)

where u(s, τ ; x) is the non-negative solution of the following mild equation

u(s, τ ; x) = τ

∫ s

0

Ss−rF (r)(x)dr −

∫ s

0

Ss−ru
2(r, τ)(x)dr , 0 ≤ s ≤ t . (2.8)

Let

u(i)(r, x) :=
∂iu(r, x, θ)

∂θi
|θ=0 , i = 1, 2, 3 .

[In fact, (2.7) and (2.8) hold true for |τ | < c for c a small enough constant, see Ref. 5.]

Differentiating with respect to τ in (2.7) and (2.8), and using that u|τ=0 = 0, we

obtain

E

[
∫ t

0

〈%s, F (t − s)〉ds

]

=

∫ t

0

〈λ, F (s, ·)〉ds , (2.9)

var

[
∫ t

0

〈%s, F (t − s)〉ds

]

= 2

∫ t

0

〈

λ,

(
∫ s

0

Ss−rF (r)dr

)2
〉

ds , (2.10)

E

[
∫ t

0

〈%s, F (t − s)〉ds − E

∫ t

0

〈%s, F (t − s)〉ds

]4

= 3

(
∫ t

0

〈λ, u(1)(r)2〉dr

)2

+ 3

∫ t

0

〈λ, u(2)(r)2〉dr + 4

∫ t

0

〈λ, u(1)(r)u(3)(r)〉dr

:= 3I2 + 3J + 4K , (2.11)

where for 0 ≤ r ≤ t,

u(1)(r) =

∫ r

0

Sr−sF (s)ds , (2.12)

u(2)(r) = −2

∫ r

0

Sr−su
(1)(s)2ds , (2.13)
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u(3)(r) = −6

∫ r

0

Sr−su
(1)(s)u(2)(s)ds . (2.14)

In the sequel, we let A denote a constant whose value may change from line to

line and which may depend on the dimension and on f , but not on s, t, x, etc.

Proof of Claim 1. First of all, from (2.9) and (2.1),

E

[

t−1

∫ t

0

〈%s, v(t − s, ·; θ)〉ds

]

= t−1

∫ t

0

〈λ, v(s, ·; θ)〉ds

= t−1

∫ t

0

〈λ, θSsf +

∫ s

0

v(r, ·; θ)2dr〉ds

→ θ〈λ, f〉 +

∫ ∞

0

〈λ, v(r, ·; θ)2〉dr (2.15)

by l’Hospital’s rule, which is finite for |θ| < 1
4a when d ≥ 3 by Lemma 1.1.

Let F (s) := n−1v(s, ·; θ), from (2.12)–(2.14), combining (2.1) and (1.9), when

d ≥ 4 we have

u(1)(r) =

∫ r

0

Sr−sF (s)ds = n−1

∫ r

0

Sr−sv(s, ·; θ)ds ,

≤ n−1b(θ)

∫ r

0

Sr−sSsf(x)ds = n−1b(θ)rSrf , (2.16)

|u(2)(r)| = 2

∫ r

0

Sr−su
(1)(s)2ds ≤ 2n−2b2(θ)

∫ r

0

Sr−s(sSsf)2ds

≤ An−2b2(θ)

∫ r

0

s2(1 ∧ s−d/2)ds · Srf ≤ An−2b2(θ)(1 ∨ r) · Srf , (2.17)

u(3)(r) = −6

∫ r

0

Sr−su
(1)(s)u(2)(s)ds

≤ An−3b(θ)2
∫ r

0

Sr−s[(sSsf)(1 ∨ s)Ssf ]ds

≤ An−3b(θ)2(1 ∨ r)Srf , (2.18)

where we used (1.4) many times. So from (2.11) when d ≥ 4,

I2 =

(
∫ n

0

〈λ, u(1)(r)2〉dr

)2

≤ An−4

(
∫ n

0

〈λ, (rSrf)2〉dr

)2

≤ An−4

(
∫ n

0

r2(1 ∧ r−d/2)dr

)2

≤ An−2 , (2.19)
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J =

∫ n

0

〈λ, u(2)(r)2〉dr ≤ An−4

∫ n

0

〈λ, (1 ∨ r)2(Srf)2〉dr

≤ An−4

∫ n

0

r2(1 ∧ r−d/2))dr ≤ An−3 , (2.20)

K =

∫ n

0

〈λ, u(1)(r)u(3)(r)〉dr ≤ An−4

∫ n

0

〈λ, r(1 ∨ r)(Srf)2〉dr

≤ An−4

∫ n

0

r(1 ∨ r)(1 ∧ r−d/2)dr ≤ An−3 . (2.21)

Then,

E

[

n−1

∫ n

0

〈%s, v(n − s, ·; θ)〉ds − n−1E

∫ n

0

〈%s, v(n − s, ·; θ)〉ds

]4

= 3I2 + 3J + 4K ≤ An−2 . (2.22)

Thus by Borel–Cantelli lemma, P -a.s.,
∣

∣

∣

∣

n−1

∫ n

0

〈%s, v(n − s, ·; θ)〉ds − n−1E

∫ n

0

〈%s, v(n − s, ·; θ)〉ds

∣

∣

∣

∣

→ 0 , (2.23)

combining (2.15) we get (2.5), and the proof is complete.

Proof of Claim 2. Let

Γ(t) := t−1

∫ t

0

〈%s, v(t − s, ·; θ)〉ds .

Let n > 1, 0 < δ < 1, n ≤ t1 < t2 = t1 + δ ≤ n + 1, and

∆Γ(t1, t2) := Γ(t2) − Γ(t1)

= t−1
1

∫ t1

0

〈%s, v(t2 − s) − v(t1 − s)〉ds + t−1
2

∫ t2

t1

〈%s, v(t2 − s)〉ds

:= ∆Γ1(t1, t2) + ∆Γ2(t1, t2) . (2.24)

For ∆Γ2(t1, t2) = t−1
2

∫ t2
t1
〈%s, v(t2 − s)〉ds, let F (s) := t−1

2 v(s) ≤ t−1
2 b(θ)Ssf by

(1.9), we need a counterpart of (2.7) and (2.8) as follows, for τ ≥ 0,

E exp

{

−τ

∫ t2

t1

〈%r, F (t2 − r)〉dr

}

= E exp{−〈%t1 , u(t1, t2, τ ; ·)〉}

= exp{−〈λ, w(0, t1, τ ; ·)〉} ,

where u(s, t2, τ ; ·) is the non-negative solution of the following mild equation:

u(s, t2, τ ; x) = τ

∫ t2

s

Ss,rF (t2 − r)(x)dr −

∫ t2

s

Ss,ru
2(r, t2, τ)(x)dr , t1 ≤ s ≤ t2 ,
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and w(s, t1, τ ; x) is the non-negative solution of the following mild equation:

w(s, t1, τ ; x) = Ss,t1u(t1, t2, τ ; ·)(x) −

∫ t1

s

Ss,rw
2(r, t1, τ)(x)dr , 0 ≤ s ≤ t1 .

Obviously,

var[∆Γ2(t1, t2)] = −
∂2〈λ, w(0, t1, τ ; ·)〉

∂τ2

∣

∣

∣

∣

∣

τ=0

.

Performing the differentiation and using that u|τ=0 = w|τ=0 = 0, we obtain

var[∆Γ2(t1, t2)]

= 2

〈

λ,

∫ t2

t1

S0,s

[
∫ t2

s

Ss,rF (t2 − r)dr

]2

ds

〉

+ 2

〈

λ,

∫ t1

0

S0,s

[
∫ t2

t1

Ss,rF (t2 − r)dr

]2

ds

〉

≤ Ab(θ)2t−2
2

[〈

λ,

∫ t2

t1

S0,s[(t2 − s)St2−sf ]2ds

〉

+

〈

λ,

∫ t1

0

S0,s[δSt2−sf ]2ds

〉]

≤ Ab(θ)2t−2
2

[
∫ t2

t1

(t2 − s)2[1 ∧ (t2 − s)−d/2]ds + δ2

∫ t1

0

[1 ∧ (t2 − s)−d/2]ds

]

≤ An−2δ2 , (2.25)

in which (1.4) has been used several times. To consider ∆Γ1(t1, t2), we need the

following lemma which has been proved in Ref. 8.

Lemma 2.1. (Ref. 8) There is a constant A such that for any t ≥ τ > 0, we have

sup
0<s≤τ≤t

s−1|p(t + s, x, y) − p(t, x, y)| ≤ Aτ−1[p(t + 2τ, x, y) + p(t, x, y)] . (2.26)

Let F1(s) := t−1
1 [v(s + δ) − v(s)], we rewrite

∆Γ1(t1, t2) = t−1
1

∫ t1

0

〈%t1−s, v(s + δ) − v(s)〉ds =

∫ t1

0

〈%t1−s, F1(s)〉ds .

Note that F1 may be signed, but small in absolute value when n (so ti) is large

enough. By Lemma 2.5 of Ref. 5, (2.7)–(2.14) still hold while u is not necessarily

non-negative. From (2.12),

u(1)(r) =

∫ r

0

Sr−sF1(s)ds = t−1
1

∫ r

0

Sr−s[v(s + δ) − v(s)]ds . (2.27)
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By (2.1),

v(s + δ) − v(s)

= θ[Ss+δf − Ssf ] +

∫ s

0

[Ss+δ−l − Ss−l]v(l)2dl +

∫ s+δ

s

Ss+δ−lv(l)2dl .

Thus

|u(1)(r)| = t−1
1

∣

∣

∣

∣

∣

θr[Sr+δf − Srf ] +

∫ r

0

∫ s

0

[Sr+δ−l − Sr−l]v(l)2dlds

+

∫ r

0

∫ s+δ

s

Sr+δ−lv(l)2dlds

∣

∣

∣

∣

∣

≤ t−1
1

[

|θr[Sr+δf − Srf ]| +

∫ r

0

|l[Sl+δ − Sl]|v(r − l)2dl

+

∫ r

0

∫ s+δ

s

Sr+δ−lv(l)2dlds

]

, (2.28)

but for r > δ,
∫ r

0

|l[Sl+δ − Sl]|v(r − l)2dl

=

∫ δ

0

|l[Sl+δ − Sl]|v(r − l)2dl +

∫ r

δ

|l[Sl+δ − Sl]|v(r − l)2dl

≤

∫ δ

0

[δ[Sl+δ + Sl]]v(r − l)2dl +

∫ r

δ

[δ[Sl+δ + Sl]]v(r − l)2dl

≤ Ab(θ)2δ[Sr+δ + Sr]f ,

where the second term in the second step is from Lemma 2.1 (with τ = t = l, s = δ

there), and (1.9), (1.4) have been used several times. Note that
∫ r

0

∫ s+δ

s

Sr+δ−lv(l)2dlds ≤ Ab(θ)2δrSr+δf ,

we can continue (2.28) for r > δ,

|u(1)(r)| ≤ Ab(θ)2t−1
1 [|r(Sr+δf − Srf)| + δ(Sr+δ + Sr)f + δrSr+δf ] , (2.29)

but for r ≤ δ, from (2.27) and (1.9) it is easy to check that

|u(1)(r)| ≤ Ab(θ)t−1
1 δ[(Sr+δ + Sr)f ] . (2.30)

Recall (2.11), we have

I =

∫ t1

0

〈λ, u(1)(r)2〉dr =

∫ δ

0

〈λ, u(1)(r)2〉dr +

∫ t1

δ

〈λ, u(1)(r)2〉dr

≤ At−1
1 δ2 . (2.31)
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With (2.29) and (2.30) in hand, we can take the same calculations as in (2.17)–(2.22)

and get to

E[∆Γ1(t1, t2) − E∆Γ1(t1, t2)]
4 ≤ At−2

1 δ2 ≤ An−2δ2 . (2.32)

Now we proceed to the proof of claim 2. Let Γ̄(t) := Γ(t)−EΓ(t) denote the centered

Γ(t), and define ∆Γi similarly. For any ε > 0,

P

(

max
n≤t≤(n+1)

|Γ̄(t) − Γ̄(n)| > ε

)

≤
∞
∑

k=1

P

(

max
0≤j≤2k−1

|Γ̄(n + 2−k(j + 1)) − Γ̄(n + 2−kj)| > εk−2/2

)

=
∞
∑

k=1

P

(

max
0≤j≤2k−1

|∆Γ̄(n + 2−kj, n + 2−k(j + 1))| >
ε

2k2

)

≤

∞
∑

k=1

2
∑

i=1

2k max
0≤j≤2k

P
(

|∆Γi(n + 2−kj, n + 2−k(j + 1))| >
ε

4k2

)

.

By Chebyshev’s inequality and (2.32), for i = 1,

P
(

|∆Γ1(n + 2−kj, n + 2−k(j + 1))| >
ε

4k2

)

≤ 256Aε−4k82−2kn−2 .

Similarly, using (2.25), we obtain for i = 2,

P
(

|∆Γ2(n + 2−kj, n + 2−k(j + 1))| >
ε

4k2

)

≤ 16Aε−2k42−2kn−2 .

Thus,

P

(

max
n≤t≤(n+1)

|Γ̄(t) − Γ̄(n)| > ε

)

≤ Aε−2n−2
∞
∑

k=1

k82−k ≤ Aε−2n−2 .

By the Borel–Cantelli lemma, we get maxn≤t≤(n+1) |Γ̄(t)− Γ̄(n)| → 0, P -a.s. Com-

bining (2.15) we obtain (2.6), which complete the proof of claim 2.

Proof of Theorem 1.1. Recall Λ(θ) = θ+
∫ ∞

0 〈λ, [v(s, ·; θ)]2〉ds. From (1.7)–(1.9),

it is easy to get Λ′(0) = 1 and Λ′′(0) = 2
∫ +∞

0 〈λ, (Psf)2〉ds > 0. Then there is δ > 0

such that Λ(θ) is strictly convex, continuous differentiable in |θ| < δ < 1
4a with

Λ′(0) = 1. By Proposition 2.1, the local large deviation principles is the consequence

of Gärtner–Ellis theorem (cf. Theorem 2.3.6 of Ref. 3). The neighborhood O is

that of {Λ′(θ) : |θ| < δ < 1
4a}, the set of exposed points of I(α) whose exposing

hyperplane belong to the interior of DΛ := {θ : Λ(θ) < ∞}.
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