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Abstract. A quenched central limit theorem is derived for the super-Brownian motion
with super-Brownian immigration, in dimension d ≥ 4. At the critical dimension d = 4,
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1 Introduction and statement of results

Super-Brownian motion with super-Brownian immigration (SBMSBI, for short), is a superpro-
cess in random environment, where the environment is determined by an immigration process
which is controlled by the trajectory of another super-Brownian motion. Many interesting limit
properties for SBMSBI were described under the annealed probability ([H02], [H03], [HL99] and
[Zh05]). In this paper, we study the central limit theorem (CLT) under the quenched probability,
that is, conditioned upon a realization of the immigration process, for d ≥ 4.

To state our results and explain our motivation, we begin by recalling the SBMSBI model
(we refer to [D93] and [P02] for a general introduction to the theory of superprocesses). Let
C(IRd) denote the space of continuous bounded functions on IRd. We fix a constant p > d and
let φp(x) := (1 + |x|2)−p/2 for x ∈ IRd. Let Cp(IRd) := {f ∈ C(IRd) : sup |f(x)|/φp(x) < ∞}.
Let Mp(IRd) be the space of Radon measures µ on IRd such that 〈µ, f〉 :=

∫
f(x)µ(dx) < ∞ for

all f ∈ Cp(IRd). We endow Mp(IRd) with the p-vague topology, that is, µk → µ if and only if
〈µk, f〉 → 〈µ, f〉 for all f ∈ Cp(IRd). Then Mp(IRd) is metrizable ([I86]). We denote by λ the
Lebesgue measure on IRd, and note that λ ∈ Mp(IRd).

Let Ss,t denote the heat semigroup in IRd, that is, for t > s and f ∈ C(IRd),

Ss,tf(x) =
1

(2π(t− s))d/2

∫

IRd
e−|y−x|2/2(t−s)f(y)dy .

We write St := S0,t and G for the corresponding potential operator, that is Gf =
∫∞
0 Stfdt,

omitting the space variable x from the notation when no confusion may occur. Given µ ∈
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Mp(IRd), a super-Brownian motion % = (%t, Pµ) is an Mp(IRd)-valued Markov process with
%0 = µ and Laplace transform given by

Eµ exp{−〈%t, f〉} = exp{−〈µ, v(t, ·)〉}, f ∈ C+
p (IRd), (1.1)

where v(·, ·) is the unique mild solution of the evolution equation
{

v̇(t) = 1
2∆v(t)− v2(t)

v(0) = f ,
(1.2)

and Eµ denotes expectation with respect to Pµ.
Given a super-Brownian motion % = (%t, Pµ) as the “environment”, we will consider an-

other super-Brownian motion with the immigration rate controlled by the trajectory of %, the
(SBMSBI) X% = (X%

t , P %
ν ) with X%

0 = ν, which is again an Mp(IRd)-valued Markov process
whose quenched probability law is determined by

E%
ν exp{−〈X%

t , f〉} = exp{−〈ν, v(t, ·)〉 −
∫ t

0
〈%s, v(t− s, ·)〉ds}. (1.3)

Again, E%
ν denotes expectations with respect to P %

ν .
In the following we take µ = ν = λ, and write P % (resp. P ) for P %

λ (resp. Pλ). We also
use E% and E for the corresponding expectations. This model was considered in [HL99] and
[H02, H03], see also [DGL02], where some interesting and new phenomena were revealed under
the annealed probability law:

P(·) :=
∫

P %(·)P (d%)

with expectation denoted by E.
Our motivation for the present study is the annealed CLT derived in [HL99], which is sum-

marized in Theorem 1.1 below.

Theorem 1.1 (Hong-Li) Set

ād(T ) =
{

T 3/4, d = 3,

T 1/2, d ≥ 4,

and with f ∈ C+
p (Rd), define

Z̄%·
T (f) := ād(T )−1

{〈X%
T , f〉 − E〈X%

T , f〉} .

Then, Z̄%·
T (f) ⇒ Z̄∞(f) in distribution under the law P as T →∞ , where Z̄∞(f) is a zero mean

Gaussian random variable of variance

var(Z̄∞(f)) =




〈λ, f〉2/6π3/2, d = 3,
〈λ, f〉2/8π2 + 〈λ, fGf〉/2, d = 4,
〈λ, fGf〉/2, d ≥ 5.

In particular, contrasting with the standard super Brownian motion ([I86, Theorem 5.5 and
Remark 6.1]), the SBMSBI exhibits smoothing of the critical dimension d = 4, since a logarithmic
term is missing in the description of the long time behavior.

In the study of motion in random media, differences exist between quenched and annealed
CLT behavior, and this difference is often tied to dimension and vanishes for dimension above
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some critical value. See [Ze04] and [RS05] for several examples. It is thus of interest to identify
whether a similar behavior occurs in the case of SBMSBI. Our main result, Theorem 1.2 below,
shows that this is indeed the case.

Define the centered functional Z%·
T (f) by

Z%·
T (f) := ad(T )−1{〈X%

T , f〉 − E%〈X%
T , f〉}, (1.4)

where
ad(T ) = T 1/2, d ≥ 4. (1.5)

The main result of this paper is the following.

Theorem 1.2 (Quenched CLT) Assume d ≥ 4 and f ∈ C+
p (IRd). Then, for P a.e. %,

Z%·
T (f) ⇒ ξ(f) in distribution under the law P % as T → ∞, where ξ(f) is a centered Gaus-

sian variable with variance
var(ξ(f)) = 〈λ, fGf〉/2.

Remarks

1. As noted above, for standard SBM in the critical dimension d = 4, it follows from [I86,
Remark 6.1] that the occupation measure CLT norming is (T log T )1/2.

2. In [H05], the fluctuation bd(T )−1(E%〈X%
T , f〉 − E〈X%

T , f〉) between the quenched and an-
nealed means is considered. It is shown there that the choice

bd(T ) =





T (6−d)/4, 3 ≤ d ≤ 5,

(log T )1/2, d = 6,
1, d ≥ 7,

leads to non-degenerate fluctuations. Comparing Theorems 1.1 and 1.2, one sees that in
dimension d = 4, the annealed fluctuations consist of quenched fluctuations (around the
quenched mean) and of fluctuations of the quenched mean, and both contribute to the
annealed variance. This is not the case for d ≥ 5: the fluctuations of the quenched mean
are of lower order and wash out in the annealed CLT.

3. For d = 3, an easy adaptation of our methods shows that the statement of Theorem 1.2
remains true with an almost sure statement being replaced by a statement in probability,
that is P %(Z%·

T (f) > x) converges in probability, as T → ∞, to P (ξ(f) > x) for all x.
Combined with the results in [H05], one concludes that for d = 3, the quenched fluctuations
around the quenched mean are of lower order than the fluctuations of the quenched mean.
Together with Theorems 1.1 and 1.2, this gives a fairly complete description of the CLT
in all dimensions d ≥ 3.

4. A functional version of Theorem 1.2 can be derived by using similar ideas. We prefer to
bring here the shorter proof for the standard CLT.

2 Proof of Theorem 1.2

Set d ≥ 4 and ft := ad(t)−1f with f ∈ C+
p (IRd). For each fixed t, the mild form vt(r, x) of

equation (1.2) with vt(0, x) = ft(x) is

vt(r, x) = Srft(x)−
∫ r

0
Sr−hvt(h, ·)2(x)dh, 0 ≤ r ≤ t . (2.1)
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From equations (1.3) and (2.1), it follows that

E%〈X%
t , ft〉 = 〈λ, Stft〉+

∫ t

0
〈%s, St−sft〉ds .

Combined with (1.4), we get

E% exp{−Z%
t (f)} = exp{〈λ,

∫ t

0
Ssv

2
t (t− s, ·)ds〉+

∫ t

0
〈%s,

∫ t−s

0
Srv

2
t (t− s− r, ·)dr〉ds}. (2.2)

The proof of Theorem 1.2 builds upon the following two propositions. The proof of Propo-
sition 2.2 will take up most of our effort in the sequel.

Proposition 2.1 With the above notation,

〈λ,

∫ t

0
Ssv

2
t (t− s, ·)ds〉 −→t→∞ 0 .

Set gt(u, x) =
∫ u
0 Srv

2
t (u− r, ·)(x)dr =

∫ u
0 Su−rv

2
t (r, ·)(x)dr.

Proposition 2.2 For P -a.e. %,

Γ(t) :=
∫ t

0
〈%s, gt(t− s)〉ds −→t→∞ 〈λ, fGf〉/2 .

Proof of Theorem 1.2 The theorem is an immediate consequence of (2.2), Proposition 2.1
and Proposition 2.2. ¤
Proof of Proposition 2.1 A direct computation shows that, for any d ≥ 3,

∫ ∞

0
ds〈λ, fS2sf〉 < ∞ . (2.3)

From (2.1), it follows that

〈λ,

∫ t

0
Ssv

2
t (t− s, ·)ds〉 = 〈λ,

∫ t

0
v2
t (t− s, ·)ds〉 ≤

∫ t

0
〈λ, (St−sft)2〉ds = t−1

∫ t

0
ds〈λ, fS2sf〉 .

Using (2.3), the result follows. ¤
Proof of Proposition 2.2 We recall from [I86, Theorem 3.2] that for any Cp(Rd)+-valued
continuous path F (s), the Laplace transform of

∫ t
0 〈%s, F (t− s)〉ds is given by

E exp{−θ

∫ t

0
〈%s, F (t− s)〉ds} = exp{−〈λ, u(t, θ; ·)〉}, θ > 0 , (2.4)

where u(s, θ;x) is the nonnegative solution of the following mild equation

u(s, θ;x) = θ

∫ s

0
Ss−rF (r)(x)dr −

∫ s

0
Ss−ru

2(r, θ)(x)dr, 0 ≤ s ≤ t . (2.5)

(In fact, (2.4) and (2.5) hold true for |θ| < c for c a small enough constant, see [H03].) Differ-
entiating with respect to θ in (2.4) and (2.5), we obtain

E

[∫ t

0
〈%s, F (t− s)〉ds

]
=

〈
λ,

∫ t

0
St−sF (s)ds

〉
=

∫ t

0
〈λ, F (s)〉ds (2.6)

4



where the invariance of λ under shifts was used in the second equality. Similarly,

var
[∫ t

0
〈%s, F (t− s)〉ds

]
= 2

∫ t

0

〈
λ, (

∫ s

0
Ss−rF (r)dr)2

〉
ds . (2.7)

In the sequel, we let A denote a constant whose value may change from line to line and which
may depend on the dimension and on f , but not on s, t, x, etc. Let us recall the useful estimate

‖Ssf‖ ≤ A · (1 ∧ s−d/2) , (2.8)

where ‖ · ‖ denotes the supremum norm.

Lemma 2.1 Let F (s) = gt(s). Then,

E

[∫ t

0
〈%s, gt(t− s)〉ds

]
−→t→∞ 〈λ, fGf〉/2 .

Proof. Note that

E

[∫ t

0
〈%s, gt(t− s)〉ds

]
=

∫ t

0
ds

∫ s

0
〈λ, v2

t (r, ·)〉dr

=
∫ t

0
ds

∫ s

0
〈λ, (Srft)2〉dr −

∫ t

0
ds

∫ s

0
〈λ, (Srft)2 − v2

t (r, ·)〉dr.

One has ∫ t

0
ds

∫ s

0
〈λ, (Srft)2〉dr = t−1

∫ t

0
ds

∫ s

0
〈λ, fS2sf)〉dr −→ 〈λ, fGf〉/2 .

On the other hand, by (2.1),
∫ t

0
ds

∫ s

0
〈λ, (Srft)2 − v2

t (r, ·)〉dr ≤ 2
∫ t

0
ds

∫ s

0
〈λ, Srft ·

∫ r

0
Sr−hv2

t (h)dh〉dr

≤ 2
∫ t

0
ds

∫ s

0
〈λ, Srft ·

∫ r

0
Sr−h(Shft)2dh〉dr

≤ At−3/2

∫ t

0
ds

∫ s

0
〈λ, (Srf)2〉dr ·

∫ t

0
(1 ∧ h−d/2)dh

= At−3/2

∫ t

0
ds

∫ s

0
〈λ, fS2rf〉dr ·

∫ t

0
(1 ∧ h−d/2)dh

≤ A√
t
· 1

t

∫ t

0
ds

∫ ∞

0
〈λ, fS2rf〉dr

which goes to 0 when d ≥ 3 as t → ∞ due to (2.3); here, we used (2.8) at the third inequality.
Substituting in (2.6), the lemma follows. ¤

We return to the proof of Proposition 2.2. In view of Lemma 2.1, it is enough to prove that
Γ(t)− EΓ(t) → 0, as t →∞, i.e.,

∫ t

0
〈%s, gt(t− s)〉ds− E

[∫ t

0
〈%s, gt(t− s)〉ds

]
−→ 0, P a.s.% . (2.9)
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For any n ≤ t1 ≤ t ≤ n + 1, let δ = t− t1, and set ∆Γ(t1, t) := Γ(t)− Γ(t1). Write ∆Γ(t1, t)) as
the sum of four terms

∆Γ(t1, t) = ∆Γ1(t1, t) + ∆Γ2(t1, t) + ∆Γ3(t1, t) + ∆Γ4(t1, t), (2.10)

where

∆Γ1(t1, t) :=
∫ t

t1

〈
%r,

∫ t−r

0
St−r−hv2

t (h)dh

〉
dr,

∆Γ2(t1, t) :=
∫ t1

0

〈
%r,

∫ t−r

t1−r
St−r−hv2

t (h)dh

〉
dr,

∆Γ3(t1, t) :=
∫ t1

0

〈
%r,

∫ t1−r

0
St−r−h[v2

t (h)− v2
t1(h)]dh

〉
dr,

∆Γ4(t1, t) :=
∫ t1

0

〈
%r,

∫ t1−r

0
[St−r−h − St1−r−h]v2

t1(h)dh

〉
dr.

We estimate separately the moments of centered versions of ∆Γi(t1, t).

Lemma 2.2
var[∆Γ1(t1, t)] ≤ Aδ2n−2 .

Proof. Recall that ∆Γ1(t1, t) =
∫ t
t1
〈%r, gt(t− r)〉 dr. We have, again from [I86, Theorem 3.2],

that for θ ≥ 0,

E exp
{
−θ

∫ t

t1

〈%r, gt(t− r)〉 dr

}
= E exp {− 〈%t1 , u(t1, t, θ; ·)〉}
= exp {− 〈λ,w(0, t1, θ; ·)〉 , }

where u(s, t, θ; ·) is the nonnegative solution of the following mild equation

u(s, t, θ;x) = θ

∫ t

s
Ss,rgt(t− r)(x)dr −

∫ t

s
Ss,ru

2(r, t, θ)(x)dr, t1 ≤ s ≤ t ,

and w(s, t1, θ;x) is the nonnegative solution of the following mild equation

w(s, t1, θ;x) = Ss,t1u(t1, t, θ; ·)(x)−
∫ t1

s
Ss,rw

2(r, t1, θ)(x)dr, 0 ≤ s ≤ t1 .

Obviously,

var[∆Γ1(t1, t)] = −∂2〈λ,w(0, t1, θ; ·)〉
∂θ2

|θ=0 .

Performing the differentiation and using that u |θ=0= w |θ=0= 0, we obtain

var[∆Γ1(t1, t)]

= 2
〈
λ,

∫ t

t1

S0,s

[ ∫ t

s
Ss,rgt(t− r)dr

]2
ds

〉
+ 2

〈
λ,

∫ t1

0
S0,s

[ ∫ t

t1

Ss,rgt(t− r)dr
]2

ds
〉

≤ 2t−2

[〈
λ,

∫ t

t1

Ss

[ ∫ t

s

∫ t−r

0
St−s−l(Slf)2dldr

]2
ds

〉
+

〈
λ,

∫ t1

0
Ss

[ ∫ t

t1

∫ t−r

0
St−s−l(Slf)2dldr

]2
ds

〉]

≤ At−2

[〈
λ,

∫ t

t1

[(t− s)St−sf ]2ds
〉

+
〈
λ,

∫ t1

0

[ ∫ t

t1

St−sfdr
]2

ds
〉]

≤ An−2δ2,
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in which (2.8) has been used several times. ¤

Lemma 2.3 With the above notation,

E[∆Γ2(t1, t)− E∆Γ2(t1, t)]4 ≤ Aδ2n−2 .

Proof. We have ∆Γ2(t1, t) =
∫ t1
0 〈%r, Ft(t1 − r)〉 dr where Ft(r) :=

∫ δ+r
r Sδ+r−lv

2
t (l)dl, then

∆Γ2(t1, t) =
∫ t1
0 〈%r, F (t1 − r)〉 dr. Let

u(i)(r, x) :=
∂iu(r, x, θ)

∂θi
|θ=0 , i = 1, 2, 3 .

Differentiating with respect to θ in (2.4) and (2.5), and using again that u |θ=0= 0, we obtain

E[∆Γ2(t1, t)− E∆Γ2(t1, t)]4

= 3
(∫ t1

0
〈λ, u(1)(r)2〉dr

)2

+ 3
∫ t1

0
〈λ, u(2)(r)2〉dr + 4

∫ t1

0
〈λ, u(1)(r)u(3)(r)〉dr

:= 3I2 + 3J + 4K, (2.11)

where for 0 ≤ r ≤ t1,

u(1)(r, x) =
∫ r

0
Sr−sFt(s)ds =

∫ r

0
Sr−s

∫ δ+s

s
Sδ+s−lv

2
t (l)dlds

≤ At−1
1

∫ r

0
Sr−s

∫ δ+s

s
Sδ+s−l(Slf)2dlds

≤ At−1
1 δ · rSδ+rf

|u(2)(r, x)| =
∣∣∣− 2

∫ r

0
Sr−su

′(s)2ds
∣∣∣ ≤ At−2

1 δ2 ·
∫ r

0
Sr−s(sSδ+sf)2ds

≤ At−2
1 δ2 · rSδ+rf

|u(3)(r, x)| =
∣∣∣− 6

∫ r

0
Sr−su

′(s)u′′(s)ds
∣∣∣ ≤ At−3

1 δ3 ·
∫ r

0
Sr−s(sSδ+sf)2ds

≤ At−3
1 δ3 · rSδ+rf .

Thus, we obtain, using that d ≥ 4,

I ≤ At−2
1 δ2 ·

∫ t1

0
〈λ, (rSδ+rf)2〉dr ≤ At−2

1 δ2 ·
∫ t1

0
r2(1 ∧ (δ + r)−d/2)dr ≤ At−1

1 δ2.

Similarly, with

J =
∫ t1

0
〈λ, u(2)(r)2〉dr ≤ At−4

1 δ4 ·
∫ t1

0
〈λ, (rSδ+rf)2〉dr ≤ At−3

1 δ4,

and

K =
∫ t1

0
〈λ, u(1)(r)u(3)(r)〉dr ≤ At−4

1 δ4 ·
∫ t1

0
〈λ, (rSδ+rf)2〉dr ≤ At−3

1 δ4.

Substituting in (2.11) completes the proof. ¤
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Lemma 2.4 With the above notation,

var[∆Γ3(t1, t)] ≤ Aδ2n−3 .

Proof. We begin by considering the difference vt(r, x)− vt1(r, x). From (2.1), we have

vt(r, x)− vt1(r, x) = Srft(x)− Srft1(x)−
∫ r

0
Sr−h[v2

t (h, ·)− v2
t1(h, ·)](x)dh. (2.12)

A direct computation reveals that ‖Srft − Srft1‖ ≤ Aδt
−3/2
1 (1∧ r−d/2). Since vt(r, x) ≤ Srft, it

follows that ‖Sr−h[v2
t (h, ·)−v2

t1(h, ·)]‖ ≤ ‖2[vt(h, ·)−vt1(h, ·)]Srft1‖ ≤ At
−1/2
1 (1∧r−d/2)‖vt(h, ·)−

vt1(h, ·)‖. Thus from (2.12) we get,

‖vt(r, ·)− vt1(r, ·)‖ ≤ Aδt
−3/2
1 (1 ∧ r−d/2) + At

−1/2
1 (1 ∧ r−d/2)

∫ r

0
‖vt(h, ·)− vt1(h, ·)‖dh .

Writing ar = ‖vt(r, ·)−vt1(r, ·)‖ ≥ 0, br = Aδt
−3/2
1 (1∧r−d/2) ≥ 0 and cr = At

−1/2
1 (1∧r−d/2) ≥ 0,

we thus have
ar ≤ br + cr

∫ r

0
asds .

By a version of Gronwall’s inequality,

ar ≤ br + cr

∫ r

0
e
R t

s cudubsds .

(This can be seen by setting zr =
∫ r
0 asds and noting that zr satisfies the differential inequality

dzr/dr ≤ br + crzr, with z0 = 0.) Thus,

‖vt(r, ·)− vt1(r, ·)‖
≤ Aδt

−3/2
1 (1 ∧ r−d/2) + A2t

−1/2
1 (1 ∧ r−d/2)

∫ r

0
δt
−3/2
1 (1 ∧ s−d/2) exp{At

−1/2
1

∫ r

s
(1 ∧ u−d/2)du}ds

≤ Aδt−1
1 (1 ∧ r−d/2).

Once more by (2.12) we have

|vt(r, x)− vt1(r, x)|
≤ |Srft(x)− Srft1(x)|+

∫ r

0
||vt(h, ·)− vt1(h, ·)|| · |Sr−h[vt(h, ·) + vt1(h, ·)](x)|dh

≤ δt
−3/2
1 Srf(x) + Aδt

−3/2
1 Srf(x) ·

∫ r

0
(1 ∧ h−d/2)dh

≤ Aδt
−3/2
1 Srf(x).

Now we can estimate the variance of Γ3(t1, t). By (2.7) with F (r) =
∫ r
0 St−t1+r−l[v2

t (l)−v2
t1(l)]dl,

var[∆Γ3(t1, t)] = 2
∫ t1

0

〈
λ,

[∫ r

0
Sr−h

∫ h

0
St−t1+h−l[v2

t (l)− v2
t1(l)]dldh

]2
〉

dr

≤ A

∫ t1

0

〈
λ,

[∫ r

0

∫ h

0
Sδ+r−l|vt(l)− vt1(l)||vt(l) + vt1(l)|dldh

]2
〉

dr

≤ Aδ2t−4
1

∫ t1

0
r2[1 ∧ (r + δ)−d/2]dr

≤ Aδ2n−3.
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This completes the proof of the lemma. ¤
Before providing an estimate on the moments of ∆Γ4(t1, t), we need an a-priori simple

estimate on time differences of the heat kernel p(t, x, y) = (2πt)−d/2 exp(−|x− y|2/2t). Since we
did not find a direct reference for it, we provide the proof.

Lemma 2.5 There is a constant A such that for any t ≥ τ > 0, we have

sup
0<s≤τ≤t

s−1 |p(t + s, x, y)− p(t, x, y)| ≤ Aτ−1[p(t + 2τ, x, y) + p(t, x, y)], (2.13)

Proof. Consider first τ = 1. Let z = |x− y|, two cases should be considered:
Case 1: z2 < 2d(t + 1). Note that

|p(t + s, x, y)− p(t, x, y)| = p(t, x, y)

∣∣∣∣∣exp
{

z2s

2t(t + s)

}(
t

t + s

)d/2

− 1

∣∣∣∣∣

and exp
{

z2s
2t(t+s)

}
= 1+sR1(s, t, z),

(
t

t+s

)d/2
=

(
1− s

t+s

)d/2
= 1+sR2(s, t, z), where R1(s, t, z),

R2(s, t, z) are bounded by a constant when z2 < 2d(t + 1), 0 < s ≤ 1 ≤ t. Thus, we get

sup
0<s≤1

sup
z2<2d(t+1)

s−1 |p(t + s, x, y)− p(t, x, y)| ≤ Ap(t, x, y) . (2.14)

Case 2: z2 ≥ 2d(t + 1). Since ∂
∂tp(t, z) = p(t, z)

[
− d

2t + z2

2t2

]
,

|p(t + s, z)− p(t, z)| =
∣∣∣∣
∫ s

0
p(t + u, z)

[
− d

2(t + u)
+

z2

2(t + u)2

]
du

∣∣∣∣

≤
∫ s

0
p(t + u, z)

z2

2(t + u)2
du ,

where the inequality uses that
∣∣∣− d

2(t+u) + z2

2(t+u)2

∣∣∣ ≤ z2

2(t+u)2
when z2 ≥ 2d(t + 1). But

z2

2(t + u)2
p(t + u, z) = p(t + 2, z)

(
t + 2
t + u

)d/2 z2

(t + u)2
exp

{
−z2

2

[
2− u

(t + u)(t + 2)

]}

≤ A · p(t + 2, z)
z2

(t + u)2
exp

{
−z2

2

[
2− u

(t + u)(t + 2)

]}
,

(note that 0 < u ≤ s ≤ 1 ≤ t) and

sup
z2≥2d(t+1)

z2

(t + u)2
exp

{
−z2

2

[
2− u

(t + u)(t + 2)

]}
< ∞.

So
sup

0<s≤1
sup

z2≥2d(t+1)

s−1 |p(t + s, x, y)− p(t, x, y)| ≤ Ap(t + 2, x, y). (2.15)

Combining (2.14) and (2.15) we obtain (2.13) when τ = 1. For general τ > 0, we use the scaling
properties of p(t, z). We have

s−1 |p(t + s, z)− p(t, z)| = τ−d/2s−1
∣∣∣p(τ−1(t + s), τ−1/2z)− p(τ−1t, τ−1/2z)

∣∣∣
= τ−d/2τ−1

[
τs−1

∣∣∣p(τ−1(t + s), τ−1/2z)− p(τ−1t, τ−1/2z)
∣∣∣
]

≤ Aτ−d/2τ−1
[
p(τ−1t + 2), τ−1/2z) + p(τ−1t, τ−1/2z)

]

≤ Aτ−1 [p(t + 2τ), z) + p(t, z)] ,
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where the third inequality follows from the case already considered because 0 < τ−1s ≤ 1 ≤ τ−1t.
This complete the proof. ¤

Lemma 2.6 With the notation above, we have

E[∆Γ4(t1, t)− E∆Γ4(t1, t)]4 ≤ Aδ2n−2

Proof. The formula for the fourth moment of ∆Γ4(t1, t) is as in the proof of Lemma 2.3,
except that the function Ft(r) is replaced by the function F̃t1(r) :=

∫ r
0 [Sδ+r−l − Sr−l]v2

t1(l)dl,
and ∆Γ4(t1, t) =

∫ t1
0 〈λ, F̃t1(r)〉dr. Recalling that δ = t− t1, we obtain for 0 ≤ r ≤ t1 that,

|u(1)(r, x)| =
∣∣∣∣
∫ r

0
Sr−sF̃t1(s)ds

∣∣∣∣ =
∣∣∣∣
∫ r

0
Sr−s

∫ s

0
[Sδ+s−l − Ss−l]v2

t1(l)dlds

∣∣∣∣

≤
∫ r

0
l
∣∣[Sδ+l − Sl]v2

t1(r − l)
∣∣ dl

≤
∫ δ

0
l[Sδ+l + Sl](S(r−l)ft1)

2dl + A

∫ r

δ
δ[S3l + Sl](S(r−l)ft1)

2dl

≤ Aδt−1
1

[
δ(Sδ+r + Sr)f +

∫ r

δ
(Sr+2l + Sr)f · (1 ∧ (r − l)−d/2)dl

]
,

where the third step is from Lemma 2.5 (with τ = t = l, s = δ there). By a similar calculation
we get

|u(2)(r, x)| =
∣∣∣∣−2

∫ r

0
Sr−su

(1)(s)2ds

∣∣∣∣

≤ At−2
1 δ2 ·

[
δ(Sδ+r + Sr)f +

∫ r

0
ds

∫ s

δ
(Sr+2l + Sr)f · (1 ∧ (s− l)−d/2)dl

]
,

|u(3)(r, x)| =
∣∣∣∣−6

∫ r

0
Sr−su

(1)(s)u(2)(s)ds

∣∣∣∣

≤ At−3
1 δ3 ·

[
δ(2r3/2 + δ)(Sδ+r + Sr)f + r1/2

∫ r

0
ds

∫ s

δ
(Sr+2l + Sr)f · (1 ∧ (s− l)−d/2)dl

]
,

and the estimate (2.8) was used many times. Then

I =
∫ t1

0
〈λ, u(1)(r)2〉dr

≤ Aδ2t−2
1

∫ t1

0

〈
λ,

[
δ(Sδ+r + Sr)f +

∫ r

δ
(Sr+2l + Sr)f · (1 ∧ (r − l)−d/2)dl

]2
〉

dr

≤ Aδ2t−1
1 ,

and J = 3
∫ t1
0 〈λ, u(2)(r)2〉dr ≤ Aδ4t−2

1 , K =
∫ t1
0 〈λ, u(1)(r)u(3)(r)〉dr ≤ Aδ4t−2

1 . So

E[∆Γ4(t1, t)− E∆Γ4(t1, t)]4 = 3I2 + 3J + 4K ≤ Aδ4n−2,

which completes the proof. ¤
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We return to the proof of Proposition 2.2. Let Γ(t) := Γ(t) − EΓ(t) denote the centered Γ(t),
and define ∆Γi similarly. For any ε > 0,

P ( max
n2≤t≤(n+1)2

∣∣Γ(t)− Γ(n2)
∣∣ > ε)

≤
∞∑

k=1

P ( max
0≤j≤n2k

∣∣∣Γ(n2 + 2−k(j + 1))− Γ(n2 + 2−kj)
∣∣∣ > εk−2/2)

=
∞∑

k=1

P ( max
0≤j≤n2k

∣∣∣∆Γ(n2 + 2−kj, n2 + 2−k(j + 1))
∣∣∣ >

ε

2k2
)

≤
∞∑

k=1

4∑

i=1

n2k max
0≤j≤n2k

P (
∣∣∣∆Γi(n2 + 2−kj, n2 + 2−k(j + 1))

∣∣∣ >
ε

8k2
) .

By Chebyshev’s inequality and Lemmas 2.2 and 2.4, for i = 1, 3,

P (
∣∣∣∆Γi(n2 + 2−kj, n2 + 2−k(j + 1))

∣∣∣ >
ε

8k2
) ≤ 64Aε−2k42−2kn−4 .

Similarly, using Lemmas 2.3 and 2.6, we obtain for i = 2, 4,

P (
∣∣∣∆Γi(n2 + 2−kj, n2 + 2−k(j + 1))

∣∣∣ >
ε

8k2
) ≤ 4096Aε−4k82−2kn−4.

Thus, adjusting the value of A,

P ( max
n2≤t≤(n+1)2

∣∣Γ(t)− Γ(n2)
∣∣ > ε) ≤ Aε−4n−3

∞∑

k=1

k82−k ≤ Aε−4n−3 .

By the Borel-Cantelli Lemma, we get maxn2≤t≤(n+1)2
∣∣Γ(t)− Γ(n2)

∣∣ → 0, P − a.s.. Thus, the
proposition follows once we prove that

Γ(n2) −→ 0 P − a.s. (2.16)

Recall that E[Γ(n2)] = 0, and by (2.7),

var[Γ(n2)] = var

[∫ n2

0
〈%s, gn2(n2 − s)〉ds

]
= 2

∫ n2

0

〈
λ, (

∫ s

0
Ss−rgn2(r)dr)2

〉
ds

≤ 2
∫ n2

0

〈
λ,

[ ∫ s

0
Ss−r(

∫ r

0
Sr−l(Slfn2)2dl)dr

]2〉
ds

≤ A · n−4

∫ n2

0

〈
λ, [sSsf ·

∫ ∞

0
(1 ∧ l−d/2)dl]2

〉
ds

≤ A · n−4

∫ n2

0
s2(1 ∧ s−d/2)ds

≤ A · n−2.

Thus for any ε > 0,
∞∑

n=1

P [|Γ(n2)| > ε] ≤ A
∞∑

n=1

ε−2n−2 < ∞,
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and (2.16) follows by the Borel-Cantelli Lemma. ¤
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