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Light-tailed behavior of stationary distribution for

state-dependent random walks on a strip∗

Wenming Hong†, Meijuan Zhang‡ and Yiqiang Q. Zhao§

Abstract: In this paper, we consider the state-dependent reflecting random walk
on a half-strip.We provide explicit criteria for (positive) recurrence, and an explicit
expression for the stationary distribution. As a consequence, the light-tailed be-
havior of the stationary distribution is proved under appropriate conditions. The
key idea of the method employed here is the decomposition of the trajectory of the
random walk and the main tool is the intrinsic branching structure buried in the
random walk on a strip, which is different from the matrix-analytic method.

Keywords: random walk on a strip, stationary distribution, light-tailed behavior,
branching process, recurrence, state-dependent.
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1 Introduction and Main results

Let d ≥ 1 be any integer and denote D = {1, 2, · · · , d}. We consider the reflecting
space-inhomogeneous and state-dependent reflecting random walk on a half-strip S =
{0, 1, 2, . . .} ×D . This model is often referred to as the state-dependent quasi-birth-and-
death (QBD) process in queueing theory. Studies on the state-dependent QBD process
has been centered at its stationary distribution such as properties of the rate matrices,
efficient algorithms for computations, often through the matrix-analytic approach or the
censoring techniques (e.g. [12], [2] and [16]). In this paper, we propose a different method
to decompose the trajectory of the random walk on the strip using the intrinsic branching
structure ( [8]), through which, we provide criteria for (positive) recurrence, obtain an
expression for the stationary distribution of the walk, and characterize the exponential
tail asymptotic behavior of the stationary distribution for the walk.
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We consider the random walk Xn = (ξn, Yn), n = 0, 1, . . ., on a half-strip, which is a
Markov chain with ξn ∈ {0, 1, 2, . . .}, referred to as the layer (or level), and Yn ∈ D . Let
Li = {(i, r); r = 1, 2, · · · , d}. Then, the half-strip S can be expressed as S = ∪+∞

i=0Li.
The transition probability of the walk is given by

P̆ =




0 P0

Q1 R1 P1

Q2 R2 P2

Q3 R3 P3

. . .
. . .

. . .




, (1.1)

where P0 is a d × d stochastic matric and {(Pn, Qn, Rn), n ∈ Z
+ = {1, 2, . . .}}, satisfies

(Pn + Qn + Rn)1 = 1 with 1 being a column vector of ones. For a matrix A, its (i, j)th
component is denoted by A(i, j), 1 ≤ i, j ≤ d. Following [1], we assume the following
conditions, under which the process is irreducible:

C1. log(1− ‖Rn + Pn‖)
−1 < ∞ and log(1− ‖Rn +Qn‖)

−1 < ∞;

C2. For any n and any j,
∑d

i=1 Pn(i, j) > 0 and
∑d

i=1Qn(i, j) > 0;

C3. The layer 0 is in one communication class.

To state the main results, we introduce the following notation or definitions: ei =
(0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

ith component

); IA is the indicator function of the set A; B′ and b′ are the transposes

of matrix B and vector b, respectively; 1 = (1, 1, · · · , 1)
′

; Pµn
(·) represents the probability

given that the random walk starts from layer n with the distribution µn; P(n,i)(·) means
the probability given that the walk starts from the site (state) (n, i); Eµn

(·) and E(n,i)(·)
are similarly defined.

Define the hitting times Tn and T+
n by Tn = inf{t ≥ 0 : Xt ∈ Ln} and T+

n = inf{t ≥

1 : Xt ∈ Ln}, respectively. Define f
(n)
x,y and fx,y respectively as f

(n)
x,y = Px(T

+
y = n) =

Px(Xn ∈ Ly, Xm /∈ Ly, 1 ≤ m < n) and fx,y =
∑+∞

n=1 f
(n)
x,y . Also, define

Ex(T
+
y ) =

{∑+∞
n=1 nf

(n)
x,y if fx,y = 1,

+∞ if fx,y < 1.

Definition 1. The layer y is (layer) recurrent if fy,y = 1, otherwise it is (layer) transient.
If Ey(T

+
y ) < +∞, the layer y is called (layer) positive recurrent.

Define recursively for n ∈ {0, 1, 2, . . .},

ζ+0 = P0 and ζ+n = (I −Qnζ
+
n−1 − Rn)

−1Pn, n = 1, 2, . . . . (1.2)

The existence of (I − Qnζ
+
n−1 − Rn)

−1 is a consequence of assumption (C2). Note that
P0 is stochastic, so is ζ+n (see [1]). Define also u+

0 = 1, and for n ≥ 1,

A+
n = (I −Qnζ

+
n−1 − Rn)

−1Qn and u+
n = (I −Qnζ

+
n−1 − Rn)

−11. (1.3)
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Remark 1.1 ζ+n (i, j) has an interpretation as the probability of the random walk starting
from (n, i) and with the reflection at layer 0 reaches layer n + 1 at point (n + 1, j),
often referred to as the exit probability and denoted as ηn as well in our model. Also,
A+

n (i, j) can be interpreted as the expected number of steps from (n, i) to (n − 1, j)
caused by a step from layer n + 1 to (n, i) (see (2.3), i.e., the mean offspring of the
“father” step from layer n+1 to (n, i)). It is worthwhile to mention that the rate matrix
and the fundamental period matrix are key probabilistic quantities in studying the level-
independent QBD process, They are generalized into two matrix sequences R+

n and G−
n ,

respectively, when the method is used to study the level-dependent QBD process (e.g., [12]
and [16]). Their dual versions R−

n and G+
n also play an important role in the study using

the matrix-analytic method (e.g. [13]). The matrix ζ+n is the same as G+
n , while A+

n is a
unique quantity from the branching process method, which is not a usual measure used in
the matrix-analytic method.

The first group of results are conditions for recurrence and positive recurrence of the
walk.

Theorem 1.1 For the random walk starts from layer 0 with an initial distribution µ,
define

β+ =

+∞∑

k=0

µkA
+
k A

+
k−1 · · ·A

+
1 1,

where µk = µζ+0 ζ
+
1 · · · ζ+k−1. Then the random walk is recurrent if and only if β+ = ∞.

Remark 1.2 Actually, β+ in the Theorem is the expectation number of the visiting times
by the random walk at layer 0 , which can be calculated by the means of the intrinsic
branching structure within the walk.

To state the criteria for the positive recurrence, we need the “exit probability” from
the other direction. Let Z = {0,±1,±2, . . .} and a ∈ Z. For n ≤ a, define recursively

ζ−a,a = ρ and ζ−n,a = (I − Pnζ
−
n+1, a − Rn)

−1Qn, n < a, (1.4)

where ρ is stochastic, i.e., ρ1 = 1. Then under condition C, the limit ζ−n = lima→∞ ζ−n,a
exist and satisfy the following equation (Theorem 1, [1]),

ζ−n = (I − Pnζ
−
n+1 − Rn)

−1Qn, n ∈ Z. (1.5)

Define for n ≥ 1,

A−
n = (I − Pnζ

−
n+1 − Rn)

−1Pn and u−
n = (I − Pnζ

−
n+1 − Rn)

−11. (1.6)

Remark 1.3 ζ−n (i, j) has an interpretation as the probability of the random walk starting
from (n, i) reaches layer n−1 at point (n−1, j), which is the same as G−

n . Also, A
−
n (i, j)

is the same as A+
n (i, j) but from the other direction, can be interpreted as the expected

number of steps from (n, i) to (n + 1, j) caused by a step from layer n − 1 to (n, i),
which is unique to the branching process method.
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For convenience, let u−
0 = 1.

Theorem 1.2 For the random walk starting from layer 0 with an initial distribution µ,
define

̺+1 = 1′P0

(∑

k≥1

A−
1 A

−
2 · · ·A−

k−1u
−
k

)
+ d.

Then the random walk is positive recurrent if and only if ̺+1 < ∞.

Remark 1.4 Actually, ̺+ = µP0

(∑
k≥1A

−
1 A

−
2 · · ·A−

k−1u
−
k

)
+µ1 is the expectation of the

first return time of the random walk start at layer 0 , which can be calculated by means
of the intrinsic branching structure within the walk. Note that ̺+ ≤ ̺+1 , the criteria is
independent of the initial distribution of the walk start at layer 0.

When the walk is state-independent, i.e., (Pn, Qn, Rn) = (P,Q,R) for n > 0, we denote
the walk as {Xn, n ≥ 0}, and have correspondingly

ζ− = (I − Pζ− − R)−1Q,

and
A− = (I − Pζ− −R)−1P, u− = (I − Pζ− − R)−11. (1.7)

Corollary 1.3 Suppose that the random walk {Xn, n ≥ 0} starts from layer 0 with an
initial distribution µ̄. Then

(1) The random walk is positive recurrent if and only if

¯̺+1 = 1′P (
∑

k≥1

(A−)k−1 u−) + d < ∞,

(2) Denote the maximum eigenvalues of A− as λA−. Then λA− < 1 whenever ¯̺+1 < ∞.

We now state the main result for the stationary distribution. We assume that the walk
is positive recurrent and start from layer 0 with a “proper” distribution. The so called
“proper” distribution is the “censored measure”, a terminology borrowed from queueing
theory (e.g. [16]). Define P̆1 by

P̆1 =




R1 P1

Q2 R2 P2

Q3 R3 P3

. . .
. . .

. . .


 .

Let S0 = L0 and let S1 = S/S0 be a partition of the state space S. Then P̆ can be
partitioned according to S0 and S1 as

P̆ =

(
P̆ 0 U

D P̆1

)
,
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where P̆ 0 = R0, U = (P0, O,O, . . .) and D = (Q1, O,O, . . .)T .

The censored matrix P̆ (S0) of P̆ with the censoring set S0 is defined by

P̆ (S0) = P̆ 0 + U
̂̆
P 1D,

where
̂̆
P 1 =

∑+∞
k=0(P̆

1)k is called the fundamental matrix of P̆ 1. P̆ (S0) is a d × d matric,

and the censored matrix P̆ (S0) has a probabilistic interpretation: it is the probability that
the next state visited in S0 is j, given that the process starts in state i ∈ S0.

A measure µ̆0 which satisfies
µ̆0P̆

(S0) = µ̆0 (1.8)

is called as censored measure with censoring set S0.

Theorem 1.4 If ̺+1 < ∞ and the walk starts from layer 0 with the censored measure
µ̆0, then the stationary distribution {νn, n = 0, 1, 2, . . .} exists and unique, which can be
expressed explicitly as

νn =
µ̆0P0A

−
1 A

−
2 · · ·A−

n−1ũ
−
n

µ̆0P0(
∑

k≥1A
−
1 A

−
2 · · ·A−

k−1u
−
k ) + µ̆01

, n > 0; (1.9)

and

ν0 =
µ̆0

µ̆0P0(
∑

k≥1A
−
1 A

−
2 · · ·A−

k−1u
−
k ) + µ̆01

, (1.10)

where µ̆0P0(
∑

k≥1A
−
1 A

−
2 · · ·A−

k−1u
−
k ) + µ̆01 < ̺+1 < ∞ and ũ−

n = (I − Pnζ
−
n+1 − Rn)

−1.

Remark 1.5 We can show that the expression in Theorem 1.4 is consistent with the
matrix-product form solution given by the matrix-analytic method:

νn = ν0R
+
1 R

+
2 · · ·R+

n .

To see it, we notice that ũ−
n = (I − Pnζ

−
n+1 − Rn)

−1 is the entry P̂
(n)
n,n of the fundamental

matrix. Then, according to
R+

n = Pn−1P̂
(n)
n,n ,

we can have the equivalence. For details, readers may refer to [12], [15] and [16].

The expression of the stationary distribution for the state-dependent walk in Theo-
rem 1.4 enable us to obtain the following asymptotic behavior. Let D = {(P,Q,R) : (P+
Q+R)1 = 1, ¯̺+1 < ∞}.

Theorem 1.5 For the random walk on a strip,

(1) If (P,Q,R) ∈ D, we have λA− < 1.
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(2) Suppose that the random walk starts from layer 0 with the censored measure µ̆0,
and the transition probabilities satisfy (Pn, Qn, Rn) → (P,Q,R) as n → ∞ with
(P,Q,R) ∈ D. Then the random walk is positive recurrent and the stationary
distribution {νn, n ≥ 0} defined in (1.9) is light-tailed, with the decay rate 0 <
λA− ≤ 1 along the layer direction, that is, for each fixed 1 ≤ j ≤ d,

lim
n→∞

log νn(j)

n
= log λA−, (1.11)

where λA− is the maximum eigenvalues of A− (given in(1.7)).

Example 1.6 (A retrial queue with a state-dependent retrial rate) This model is
a modification of the standard M/M/c retrial queue (for example, see Falin and Temple-
ton [5]). In the modified model, instead of the retrial rate nθ, we assume the total retrial
rate is θn, where n is the number of customers in the retrial orbit. For this model, let N(t)
and C(t) be the number of retrial customers in the orbit and the number of busy servers at
time t, respectively. Then, it is easy to see that (N(t), C(t)) is a continuous-time Markov
chain. We show how to apply Theorem 1.5 to obtain the exponential decay rate. For this
purpose, assume that θn → θ < ∞ as n → ∞. Then, the generator of the limiting chain
is given by

Q =




B0 A
C B A

C B A
. . .

. . .
. . .


 , (1.12)

where

B =




−(λ+ θ) λ
µ −(λ + µ+ θ) λ

. . .
. . .

. . .

(c− 1)µ −[λ + (c− 1)µ+ θ] λ
cµ −(λ + cµ)




,

A =




0
0

. . .

0
λ




and C =




0 θ
0 θ

. . .
. . .

0 θ
0




.

Without loss of generality, we assume λ + cµ + θ = 1. Upon uniformization, we can
convert the generator to a transition matrix P̆ = I −Q to have (P,Q,R). To determine
the condition for positive recurrence and λA−, we use Theorem 1.4 and (1.7), respectively.
First, (1.7) is equivalent to the equation R+ = P +R+R+R+2

Q. To solve this equation,
we notice that

R+ =




0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
r1 r2 · · · rc


 ,
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which greatly simplify the calculations. Also, we can find that the chain is positive
recurrent if and only if rc < 1. For example, when c = 1, λA− = rc = λ(λ + θ)/µθ and
when c = 2,

λA− = rc =
λ

θµ

(λ+ θ)2 + θµ

3λ+ 2µ+ 2θ
.

As c gets larger, the formula becomes cumbersome and is less interesting.

We arrange the remainder of this paper as follows. As the main tool of this paper,
the intrinsic branching structure within random walk on a strip is briefly reviewed in
Section 2; and then the proofs for the Theorems are followed in Section 3.

2 A brief review for the intrinsic branching structure

within random walk on a strip

The intrinsic branching structure within a random walk is a very powerful tool in the
research on the limit property about random walk. For the neighborhood nearest random
walk on the line, Dwass ([4], 1975) and Kesten et al. ([10], 1975) observed a Galton-
Watson process with a geometric offspring distribution hidden in it. Kesten et al. ([10])
proved a stable law by using the branching structure for the random walk in a random
environment. For other random walks, e.g., the random walk with bounded jumps, the
branching structure were revealed by Hong & Wang ([6], 2009) for the (L, 1)-case and
Hong & Zhang ([7], 2010) for the (1, R)-case.

The intrinsic branching structure within random walk on a strip has been revealed by
Hong & Zhang ([8], 2012), which enables us to provide explicit criteria for (positive)
recurrence and to obtain an explicit expression for the stationary distribution. As a
consequence, it allows us to consider the tail asymptotic of the stationary distribution.
The key point is the trajectory decomposition for the random walk. If the walk starts
from layer n > 0, the trajectory has the “upper” and “lower” parts, which are introduced
in the following subsections.

2.1 The “lower” branching structure

Assume that X0 ∈ Lk, the random walk starts from layer k with initial distribution µk

or µk(i) = P (ξ0 = k, Y0 = i). For 0 < n ≤ k and i ∈ {1, 2, · · · , d}, define U i
n as the

number of steps from layer n to (n − 1, i) before the hitting time Tk+1, and Z i
n as the

number of steps from layer n to (n, i) before Tk+1. Define

Un = (U1
n, U

2
n, · · · , U

d
n), Zn = (Z1

n, Z
2
n, · · · , Z

d
n),

and |Un| = Un1, |Zn| = Zn1.

Theorem 2.1 (Hong & Zhang, 2012) Suppose that Condition C is satisfied, and the
random walk starts from layer k with initial distribution µk. Then {|Un|, 1 < n ≤ k}
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and {|Zn|, 1 < n ≤ k} are inhomogeneous branching processes with immigration. The
offspring distribution (1 < n ≤ k) is given as:

P
(
|Un| = m

∣∣Un+1 = ei
)

= ei[(I − Rn)
−1Qnζ

+
n−1]

m(I −Rn)
−1Pn1,

P
(
|Zn| = K

∣∣Un+1 = ei
)

= ei[(I −Qnζ
+
n−1)

−1Rn]
K(I −Qnζ

+
n−1)

−1Pn1,

with immigration
P
(
Uk+1 = ei

)
= µk(i), i ∈ D .

✷

The key idea in the construction of the branching mechanism is that the position of
the walk corresponds to the time of the branching process. |Un| as the number of steps
from layer n to n− 1 layer is indeed the (k − n)-th generation of the branching process.
The condition Tk+1 < ∞ is obviously satisfied in our reflecting model.

Proposition 2.2 Denote N i
n as the number of steps visited at (n, i) before time Tk+1,

and Nn = (N1
n, N

2
n, · · · , N

d
n) with |Nn| = Nn1. Suppose that Condition C is satisfied,

and the random walk starts from layer k with initial distribution µk. Then for any 0 <
n ≤ k,

Eµk
(Nn) = µkA

+
k A

+
k−1 · · ·A

+
n+2A

+
n+1(I −Qnζ

+
n−1 −Rn)

−1,

Eµk
(|Nn|) = µkA

+
k A

+
k−1 · · ·A

+
n+2A

+
n+1u

+
n , (2.1)

and for n = 0,

Eµk
(N0) = µkA

+
k A

+
k−1 · · ·A

+
1 , Eµk

(|N0|) = µkA
+
k A

+
k−1 · · ·A

+
1 1. (2.2)

Proof. We provide key steps here and readers may refer to [8] for details. Note that

E(Un|Un+1) = Un+1

+∞∑

m=1

[(I − Rn)
−1Qnζ

+
n−1]

m−1(I − Rn)
−1Qn = Un+1A

+
n , (2.3)

E(Zn|Un+1) = Un+1

+∞∑

K=1

[(I −Qnζ
+
n−1)

−1Rn]
m−1(I −Qnζ

+
n−1)

−1Rn

= Un+1(I −Qnζ
+
n−1 −Rn)

−1Rn.

With the help of the branching structure in Theorem 2.1, we have for any 0 < n ≤ k,

Eµk
(Nn) = Eµk

(Unζ
+
n−1 + Zn +Un+1) (2.4)

= Eµk

[
Eµk

(Un

∣∣Un+1)ζ
+
n−1 + Eµk

(Zn

∣∣Un+1) + Eµk
(Un+1

∣∣Un+1)
]

= Eµk
(Un+1)(I −Qnζ

+
n−1 − Rn)

−1,

and then Eµk
(|Nn|) = Eµk

(Un+1)un.

For n = 0, the expected number of steps visiting the reflecting layer 0 before time Tk+1

is Eµk
(N0) = Eµk

(Z0 +U1) = Eµk
(U1), and then Eµk

(|N0|) = Eµk
(U1). Together with

Eµk
(Un+1) = Eµk

[Eµk
(Un+1|Un+2)] = Eµk

(Un+2)A
+
n+1 = · · · = µkA

+
k A

+
k−1 · · ·A

+
n+2A

+
n+1,

the proof is finished. We usually denote u+
0 = 1 to make the expression uniform. ✷
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2.2 The “upper” branching structure

Assume that X0 ∈ Lk, the random walk starts from layer k with initial distribution µk

or µk(i) = P (ξ0 = k, Y0 = i). Similarly, For n ≥ k + 1 and i ∈ {1, 2, · · · , d}, define

Wn = (W 1
n ,W

2
n , · · · ,W

d
n), and Z−

n = (Z−,1
n , Z−,2

n , · · · , Zd
−,n),

where W i
n is the number of steps from layer n to (n + 1, i) before the hitting time Tk−1;

and Z−,i
n is the number of steps from layer n to (n, i) before the hitting time Tk−1.

Define |Wn| = Wn1 and |Z−
n | = Z−

n 1.

Theorem 2.3 (Hong & Zhang, 2012) Suppose that Condition C is satisfied, and
the random walk starts from layer k with initial distribution µk and Tk−1 < +∞. Then
{|Wn|, n ≥ k + 1} and {|Z−

n |, n ≥ k + 1} are inhomogeneous branching processes with
immigration. The offspring distribution (n ≥ k + 1) is given by

P
(
|Wn| = m

∣∣Wn−1 = ei
)

= ei[(I − Rn)
−1Pnζ

−
n+1]

m(I − Rn)
−1Qn1,

P
(
|Z−

n | = K
∣∣Wn−1 = ei

)
= ei[(I − Pnζ

−
n+1)

−1Rn]
K(I − Pnζ

−
n+1)

−1Qn1,

with immigration
P
(
Uk−1 = ei

)
= µk(i), i ∈ D .

✷

In parallel, for n ≥ k + 1, denote

N−,i
n = ♯{k ∈ [0, T−1) : Xk = (n, i)},

where N−,i
n is the number of steps visited at (n, i) before the hitting time Tk−1. Define

N−
n = (N−,1

n , N−,2
n , · · · , N−,d

n ) and |N−
n | = N−

n1.

Proposition 2.4 Suppose that Condition C is satisfied, and the random walk starts
from layer k with initial distribution µk. Then for any n ≥ k + 1,

Eµk
(N−

n ) = Eµk
(Wn−1)(I − Pnζ

−
n+1 − Rn)

−1

= µkA
−
k A

−
k+1 · · ·A

−
n−2A

−
n−1(I − Pnζ

−
n+1 −Rn)

−1,

Eµk
(|N−

n |) = Eµk
(Wn−1)(I − Pnζ

−
n+1 − Rn)

−11 = µkA
−
k A

−
k+1 · · ·A

−
n−2A

−
n−1u

−
n .

(2.5)
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3 Proofs

3.1 Criteria for recurrence—Proof of Theorem 1.1

Let T 0
y = 0, and let T k

y = inf{n > T k−1
y : Xn ∈ Ly} for k ≥ 1, or T k

y is the time of
the k-th return to layer y. Note that T 1

y > 0. Hence, a possible visit at time 0 does not
count, and T 1

y equals to T+
y defined above.

We firstly extend a basic property about Markov chains to the random walk on a
strip, which is stated in the following lemma.

Lemma 3.1 Layer y is recurrent if and only if Ey(|Ny|) = +∞.

Proof. Denote fx,y = Px(T
+
y < ∞). Then,

Px(T
k
y < ∞) = fx,yf

k−1
y,y .

This is clear, since in order to visit layer y for exactly the k-th time, the walk has to go
from layer x to layer y first, and then return to layer y k − 1 times. A detailed formal
proof is similar to that for Theorem 3.1 in [3] for the random walk on a line.

Recall that |Ny| = Ny1 =
∑+∞

m=1 I{Xm∈Ly} is the number of visits to layer y at positive
times. By the definition, layer y is transient if and only if fy,y < 1. Suppose that layer
y is transient, then

Ex(|Ny|) =
+∞∑

k=1

Px(Ny1 ≥ k) =
+∞∑

k=1

Px(T
k
y < ∞)

=

+∞∑

k=1

fx,yf
k−1
y,y =

fx,y
1− fy,y

< +∞.

Thus, layer y is recurrent if and only if Ey(|Ny|) = +∞. ✷

Proof of Theorem 1.1 Because the random walk is irreducible, we only need to
calculate the Eµ(|N0|), where the walk starts at layer 0 with distribution µ, and |N0| =∑∞

i=0 1(Xi∈L0) is the occupation time of the walk at layer 0. We can decompose the
trajectory of the walk as the summation of infinite “pieces”, each “piece” is an immigration
(“lower”) branching structure as considered in Theorem 2.1. In fact, by recalling the
definition of the hitting times Tk = inf{i : Xi ∈ Lk} for layer k and denoting X(τk) =
{Xi, Tk < i ≤ Tk+1}, we can write

{Xi, i > 0} =
+∞⋃

k=0

{Xi, Tk < i ≤ Tk+1} =
+∞⋃

k=0

X(τk), (3.1)

and as a consequence,

|N0| =
+∞∑

i=0

1(Xi∈L0) =
+∞∑

k=0

Tk+1∑

i=Tk

1(Xi∈L0) =
+∞∑

k=0

|N0|
(τk), (3.2)
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where the superscript is used to emphasize that the process starts at Tk. For k = 0, 1,
. . . , each trajectory “piece” X(τk) = {Xi, Tk < i ≤ Tk+1} formulates a branching
structure with immigration P

(
Uk+1 = ei

)
= µk(i), where µk = µζ−0 ζ

+
1 · · · ζ+k−1. By (2.2)

of Proposition 2.2 we have,

Eµk
(|N0|

(τk)) = µkA
+
k A

+
k−1 · · ·A

+
1 1.

Combining with (3.2),

Eµ|N0| =
+∞∑

k=0

Eµk
|N0|

(τk) =
+∞∑

k=0

µkA
+
k A

+
k−1 · · ·A

+
1 1 = β+.

The proof is complete. ✷

3.2 Criteria for positive recurrence—Proof of Theorem 1.2

Define T
n

n as the return time of layer n when the random walk starting from layer n,

T
(n−1,j)

n the hitting time of layer n when the random walk starting from (n− 1, j), and

T
(n+1,j)

n the hitting time of layer n when the random walk starting from (n+1, j). Then
by the path decomposition,

T
n

n =
∑

j

IX1=(n−1,j)T
(n−1,j)

n +
∑

j

IX1=(n+1,j)T
(n+1,j)

n +
∑

j

IX1=(n,j),

and therefore,

Eµn
(T+

n ) = Eµn
(T

n

n)

= Eµn
(
∑

j

IX1=(n−1,j)(T
(n−1,j)

n + 1) +
∑

j

IX1=(n+1,j)(T
(n+1,j)

n + 1) +
∑

j

IX1=(n,j))

=
∑

j

Pµn
(X1 = (n− 1, j))(E(n−1,j)T

+
n + 1)

+
∑

j

Pµn
(X1 = (n + 1, j))(E(n+1,j)T

+
n + 1) +

∑

j

Pµn
(X1 = (n, j)).

Note that

E(n−1,j)(T
+
n ) =

n−1∑

k=0

E(n−1,j)(|Nk|) and E(n+1,j)(T
+
n ) =

+∞∑

k=n+1

E(n+1,j)(|N
−
n |).

It follows from (2.1) and (2.5) that

E(n−1,j)(T
+
n ) = ej

n−1∑

k=0

A+
n−1A

+
n−2 · · ·A

+
k+2A

+
k+1u

+
k ,

E(n+1,j)(T
+
n ) = ej

+∞∑

k=n+1

A−
n+1A

−
n+2 · · ·A

−
k−1u

−
k .

11



Hence we have

Eµn
(T+

n ) = µnQn(
n−1∑

k=0

A+
n−1A

+
n−2 · · ·A

+
k+1u

+
k ) +

∑

j

Pµn

(
X1 = (n− 1, j)

)

+µnPn(
+∞∑

k=n+1

A−
n+1A

−
n+2 · · ·A

−
k−1u

−
k ) +

∑

j

Pµn

(
X1 = (n + 1, j)

)

+
∑

j

Pµn

(
X1 = (n, j)

)

= µnQn(
n−1∑

k=0

A+
n−1A

+
n−2 · · ·A

+
k+1u

+
k ) + µnPn(

+∞∑

k=n+1

A−
n+1A

−
n+2 · · ·A

−
k−1u

−
k ) + µn1.

Particularly, if the random walk starts from layer 0 with an initial distribution µ, we
have

Eµ(T
+
0 ) = µP0(

∑

k≥1

A−
1 A

−
2 · · ·A−

k−1u
−
k ) + µ1. (3.3)

Thus the reflecting random walk on a strip is positive recurrent (independent of the initial
distribution µ) if and only if ̺+1 < ∞ . ✷

3.3 Stationary distribution—Proof of Theorem 1.4

Suppose that the random walk starts from layer 0 with a censored measure µ̆0, which
satisfies

µ̆0P̆
(S0) = µ̆0.

The following lemma modifies Thm 5.4.3 in [3] about a stationary measure of a general
Markov chain on Zd to our model, and defines a stationary measure for the random walk
on a strip.

Lemma 3.2 Suppose that the random walk starts from layer 0 with a censored measure
µ̆0, and layer 0 is a recurrent layer. Then {νn, n ∈ N} defines a stationary measure,
where

νn(i) = Eµ̆0




T+

0
−1∑

m=0

I{Xm=(n,i)}


 =

+∞∑

m=0

Pµ̆0
(Xm = (n, i), m < T+

0 ). (3.4)

Proof. The key idea of the proof is to use the “cycle trick”. νn(i) is the expected number
of visits to (n, i) at times 0, 1, . . . , T+

0 − 1. And
∑

y,j νy(j)p
[
(y, j), (n, i)

]
is the expected

number of visits to (n, i) at times 1, 2, . . . , T+
0 , which equals to νn(i) since XT+

0
∼ µ̆0 if

X0 ∼ µ̆0 based on the property of µ̆0P̆
(S0) = µ̆0.

The goal is to prove that νn defined in (3.4) is a stationary measure, that is,

∑

y,j

νy(j)p
[
(y, j), (n, i)

]
= νn(i). (3.5)

12



By Fibini’s theorem, we get

∑

y,j

νy(j)p
[
(y, j), (n, i)

]
=

+∞∑

m=0

∑

y,j

Pµ̆0
(Xm = (y, j), m < T+

0 )p
[
(y, j), (n, i)

]
.

Case 1: n 6= 0. In this case, we have
∑

y,j

Pµ̆0
(Xm = (y, j), m < T+

0 )p
[
(y, j), (n, i)

]

=
∑

y,j

Pµ̆0
(Xm = (y, j), m < T+

0 , Xm+1 = (n, i))

= Pµ̆0
(T+

0 > m+ 1, Xm+1 = (n, i)),

and then

∑

y,j

νy(j)p
[
(y, j), (n, i)

]
=

+∞∑

m=0

∑

y,j

Pµ̆0
(Xm = (y, j), m < T+

0 )p
[
(y, j), (n, i)

]

=
+∞∑

m=0

Pµ̆0

(
T+
0 > m+ 1, Xm+1 = (n, i)

)
.

=

+∞∑

m=0

Pµ̆0
(Xm = (n, i), m < T+

0 ) = νn(i), (3.6)

because Pµ̆0
(T+

0 > 0, X0 = (n, i)) = 0.

Case 2: n = 0. At first, note that the process starts from layer 0 with the initial
distribution µ̆0, i.e., the right hand side of (3.5) is µ̆0. For the left hand side of (3.5),
we calculate

∑

y,j

Pµ̆0

(
Xm = (y, j), m < T+

0

)
p
[
(y, j), (n, i)

]

=
∑

y,j

Pµ̆0

(
Xm = (y, j), m < T+

0 , Xm+1 = (n, i)
)

= Pµ̆0

(
T+
0 = m+ 1, Xm+1 = (0, i)

)
,

and then

∑

y,j

νy(j)p
[
(y, j), (n, i)

]
=

+∞∑

m=0

∑

y,j

Pµ̆0
(Xm = (y, j), m < T+

0 )p
[
(y, j), (n, i)

]

=

+∞∑

m=0

Pµ̆0
(T+

0 = m+ 1, Xm+1 = (0, i)).

Note that T+
0 ≥ 1. Therefore, Pµ̆0

(T+
0 = 0, X0 = (0, i)) = 0, and we have

+∞∑

m=0

Pµ̆0

(
T+
0 = m+ 1, Xm+1 = (0, i)

)
=

+∞∑

m=0

Pµ̆0

(
T+
0 = m, Xm = (0, i)

)
= µ̆0,
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because µ̆0 is the censored measure. The proof is complete now. ✷

Proof of Theorem 1.4 First, we can calculate the stationary measure in (3.4) by using

the branching structure. The stationary measure is given by νn(i) = Eµ̆0

(∑T+

0
−1

m=0 I{Xm=(n,i)}

)
,

which is the expected number of visits to (n, i) before time T+
0 (but not contains the time

T+
0 ). So, νn(i) (n > 0) equals to E1N

−
n obtained by the branching structure in (2.5).

The stationary measure {ν̄n, n ∈ Z} can be expressed as

ν̄n =

{
µ̆0P0A

−
1 A

−
2 · · ·A−

n−1(I − Pnζ
−
n+1 −Rn)

−1 n > 0,

µ̆0 n = 0.

Note that
∑

n,i

νn(i) =

+∞∑

m=0

Pµ̆0
(T0 > m) = Eµ̆0

T+
0 .

The condition ̺+1 < ∞ ensures that

∑

n,i

νn(i) = E0(T
+
0 ) = µ̆0P0

(∑

k≥1

A−
1 A

−
2 · · ·A−

k−1u
−
k

)
+ µ̆01 = ̺+ < ̺+1 < ∞.

As a consequence the stationary distribution equals

νn(i) =
νn(i)

E0T
+
0

=
µ̆0P0A

−
1 A

−
2 · · ·A−

n−1ũ
−
n

µ̆0P0(
∑

k≥1A
−
1 A

−
2 · · ·A−

k−1u
−
k ) + µ̆01

n > 0,

where ũ−
n = (I − Pnζ

−
n+1 − Rn)

−1, and

ν0(i) =
µ̆0

µ̆0P0(
∑

k≥1A
−
1 A

−
2 · · ·A−

k−1u
−
k ) + µ̆01

.

✷

3.4 Light-tailed behavior—Proof of Theorem 1.5

It is well-known that the stationary distribution for the state-independent random walk (or
a QBD process) on a half-strip is matrix-geometric. Therefore, the tail has a geometric (or
exponential) decay. For the state-dependent random walk on a half-strip, the stationary
tail does not always have an exponential decay. In this paper, we provide a criterion for
this case, which is proved here.

3.4.1 Preliminaries

Let B = (bi,j) > 0 (which is called a positive matrix) if all bi,j > 0; and B ≥ 0 if
all bi,j ≥ 0. The spectrum of n × n matrix B is denoted as σ(B) = {λ1, λ2, · · ·λn},
where σ(B) is the set of all eigenvalues λi ∈ C. Define the spectral radius of B as
ρ(B) = max{|λi| : λi ∈ σ(B), 1 ≤ i ≤ n}.
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Proposition 3.3 ( Perron’s Theorem in [9]) If B > 0 is an n× n matrix, then

(1) ρ(B) > 0;

(2) ρ(B) is an eigenvalue of B, and it is the unique eigenvalue of maximum modulus;

(3) ρ(B) is algebraically (and hence geometrically) simple;

(4)

lim
m→∞

(
B

ρ(B)

)m

= L > 0.

Define ‖ · ‖ as the maximum column sum matrix norm, i.e. ‖B‖ = max1≤i≤n

∑n

j=1 |bi,j|
for B = (bi,j).

Proposition 3.4 (Krause ([11], 94), Ostrowski ([14], 73)) Denote σ(A) = {λ1, λ2, · · ·λn}
where λi are eigenvalues of A, and σ(B) = {µ1, µ2, · · ·µn}, where µi are eigenvalues of
B. Define d(σ(A), σ(B)) as the optimal matching distance between the spectrums σ(A)
and σ(B), that is,

d(σ(A), σ(B)) = min
θ∈Sn

max
1≤i≤n

|λi − µθi|,

where Sn is denoted as the group of all permutations on sets {1, 2, · · · , n}. Then, for any
two matrices A,B ∈ Rn×n, we have

d(σ(A), σ(B)) ≤ 4(2K)1−
1

n‖A− B‖
1

n ,

where K = max{‖A‖, ‖B‖}.

Simply speaking, Proposition 3.4 tells us that there exists a permutation θ ∈ Sn, such
that the maximum distance between the corresponding eigenvalues is small enough.

3.4.2 Spectral radius

Consider the state-independent random walk {Xn, n ≥ 0} with transition probability
block (P,Q,R), starting from layer 0 with an initial distribution µ̄. Let ζ− be the unique
sequence of stochastic matrices satisfying

ζ− = (I − Pζ− − R)−1Q,

and
A− = (I − Pζ− − R)−1P, u− = (I − Pζ− −R)−11.

Denote the spectral radius of A− as ρ(A−), and the maximum eigenvalues of A− as
λA−. Assume that the random walk is positive recurrent (¯̺+1 < ∞).

15



Proof of (2) in Corollary 1.3 By Perron’s Theorem in Proposition 3.3, we have
ρ(A−) = λA−. The condition says ¯̺+1 = 1′P (

∑
k≥1 (A−)k−1 u−) + d < ∞, i.e.,

1′P ·

(∑

k≥1

(λA−)k−1(
A−

λA−

)k−1

)
· u− < ∞. (3.7)

On the other hand, from (4) of Proposition 3.3, we know

lim
k→∞

(
A−

λA−

)k−1 = L > 0 (3.8)

which, together with (3.7), leads to λA− < 1. ✷

Let

E =




1 1 · · · 1
1 1 · · · 1

. . .

1 1 · · · 1




d×d

.

Denote the maximum eigenvalues of (A− − εE) as λ−
ε , and the maximum eigenvalues

of (A− + εE) as λ+
ε . We then have

ρ(A− − εE) = λ−
ε and ρ(A− + εE) = λ+

ε .

Lemma 3.5 Suppose that λA− < 1, and for A− = (a−i,j),

ε < min{min
i,j

a−i,j ,
1

Cd
(1− λA−)d}.

Let C = 4(2‖A− + E‖)1−
1

dd
1

d . Then,

λA− − Cε
1

d < λ−
ε < 1, and λ+

ε < λA− + Cε
1

d < 1. (3.9)

Proof. For such ε > 0, both A− − εE and A− + εE are positive matrices, and the
definitions of λ−

ε and λ+
ε are meaningful. By Proposition 3.3, λ−

ε and λ+
ε are real-valued.

By Proposition 3.4, it is not hard to get that

d(σ(A−), σ(A− − εE)) ≤ 4(2K)1−
1

dd
1

d ε
1

d ≤ Cε
1

d ,

and
d(σ(A−), σ(A− + εE)) ≤ 4(2K)1−

1

dd
1

d ε
1

d ≤ Cε
1

d ,

where C = 4(2K)1−
1

dd
1

d , K = ‖A− + E‖.

Note that 0 < A− − εE ≤ A− ≤ A− + εE, then

1 > λA− = ρ(A−) ≥ ρ(A− − εE) = λ−
ε and λA− = ρ(A−) ≤ ρ(A− + εE) = λ+

ε ,

16



—colorredand λA− + Cε
1

d < 1 for such ε > 0.

It is obvious that λA− − Cε
1

d < λ−
ε < 1. Otherwise if λ−

ε < λA− − Cε
1

d , then for λA−,

there exists no permutation such that d(σ(A−), σ(A−−εE)) ≤ Cε
1

d , due to the fact that
λ−
ε is the largest eigenvalue of A− − εE.

Similarly, λ+
ε < λA− + Cε

1

d < 1 holds. Otherwise if λ+
ε > λA− + Cε

1

d , then for λε+
A−,

there exists no permutation such that d(σ(A−), σ(A− − εE)) ≤ Cε
1

d holds, due to the
fact that λA− is the largest eigenvalue of A−. ✷

3.4.3 Light-tailed behavior— proof of Theorem 1.5

Recall D = {(P,Q,R) : (P +Q +R)1 = 1, ¯̺+1 < ∞}.

Proof of Theorem 1.5 Part (1) of the theorem has been proved in (2) of Corollary 1.3.
Now, we focus on part (2). The random walk {Xn, n ∈ Z} starts from layer 0 with an
censored measure µ̆0, and the transition probabilities: (Pn, Qn, Rn) → (P,Q,R) ∈ D as
n → ∞. It is easy to find that the random walk {Xn, n ∈ Z} is positive recurrent. To
this end, recall that A−

n = (I − Pnζ
−
n+1 − Rn)

−1Pn and A− = (I − Pζ− − R)−1P . Then,
A−

n → A− as n → +∞ because that (Pn, Qn, Rn) → (P,Q,R) as n → ∞; and ̺+1 < ∞
follows from ¯̺+1 < ∞ as (P,Q,R) ∈ D.

Also we have λA− < 1 as (P,Q,R) ∈ D. For each ε > 0 defined in Lemma 3.5, there
exists N , such that when n > N ,

0 < A− − εE ≤ A−
n ≤ A− + εE,

and then
(A− − εE)k ≤ A−

N+1A
−
N+2 · · ·A

−
N+k ≤ (A− + εE)k.

Let
Φn(i) = µP0A

−
1 A

−
2 · · ·A−

n−1ũ
−
n (i). (3.10)

Now we consider the first inequality. Notice

A−
N+1A

−
N+2 · · ·A

−
N+k ≥ (λ−

ε )
k(
A− − εE

λ−
ε

)k,

for the given N , therefore we have

ΦN+k(i) = µP0A
−
1 A

−
2 · · ·A−

N+k−1u
−
N+k = µD1(N) ·

(
A−

N+1A
−
2 · · ·A−

k+N−1

)
· ũ−

N+k(i)

≥ µD1(N)(λ−
ε )

k(
A− − εE

λ−
ε

)k ũ−
N+k(i),

where D1(N) = P0A
−
1 A

−
2 · · ·A−

N and ũ−
N+k = (I − PN+kζ

−
N+k+1 −RN+k)

−1. Hence,

log ΦN+k(i)

N + k
≥

k log λ−
ε

N + k
+

logµD1(N)(A
−−εE

λ−

ε
)k ũ−

N+k(i)

N + k
. (3.11)
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By Proposition 3.3, there exists a positive matrix W−
ε , such that

lim
k→∞

(
A− − εE

λ−
ε

)k = W−
ε .

Together with lim
k→∞

ũ−
N+k(i) = ũ−(i) = (I − Pζ− − R)−1(i), as a consequence,

log µD1(N)(A
−−εE

λ−

ε
)k ũ−

N+k(i) is bounded in k. Thus from (3.11),

lim inf
k→∞

log ΦN+k(i)

N + k
≥ log λ−

ε .

Note that from Lemma 3.5, λA− − Cε
1

d < λ−
ε < 1, so

lim inf
k→∞

log ΦN+k(i)

N + k
≥ log(λA− − Cε

1

d ). (3.12)

Similarly, for the second inequality, notice

A−
N+1A

−
N+2 · · ·A

−
N+k ≤ (λ+

ε )
k(
A− − εE

λ+
ε

)k,

therefore we have

lim sup
k→∞

log ΦN+k(i)

N + k
≤ log λ+

ε .

Note that from Lemma 3.5, λ+
ε < λA− + Cε

1

d < 1, so

lim sup
k→∞

log ΦN+k(i)

N + k
≤ log(λA− + Cε

1

d ). (3.13)

Combine (3.12) and (3.13) to have

log(λA− − Cε
1

d ) ≤ lim inf
k→∞

log Φk(i)

k
≤ lim sup

k→∞

log Φk(i)

k
≤ log(λA− + Cε

1

d ).

Let ε → 0, we get

lim
k→∞

log Φk(i)

k
= log λA−.

If (Pn, Qn, Rn) → (P,Q,R), (P,Q,R) ∈ D, the stationary distribution {νn, n ≥ 0} is
given by

νn =
µ̆0P0A

−
1 A

−
2 · · ·A−

n−1ũ
−
n

µ̆0P0(
∑

k≥1A
−
1 A

−
2 · · ·A−

k−1u
−
k ) + µ̆01

, n > 0,

where the denominator µ̆0P0(
∑

k≥1A
−
1 A

−
2 · · ·A−

k−1u
−
k ) + µ̆01 < ̺+1 < +∞.

Thus for the stationary distribution {νn, n ≥ 0}, we have

lim
n→∞

log νn(i)

n
= lim

k→∞

log Φk(i)

k
= log λA−,

i.e., the stationary distribution is light-tailed, with the decay rate 0 ≤ λA− < 1 along the
layer direction. ✷
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