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1 Introduction

A number of large and moderate deviation principles (LDPs and MDPs) for superprocesses
with and without immigration have been established in recent years. Particularly, Iscoe and Lee
(1993) and Lee (1993) obtained LDPs for occupation times of super Brownian motions. Deuschel
and Rosen (1998) proved an accurate LDP for the occupation times weighted by a testing
function with zero average, improving the results of Lee and Remillard (1995). Schied (1996)
proved LDPs of Freidlin-Wentzell type for rescaled super-Brownian motions, and Schied (1997)
derived MDPs and used the result to establish a Strassen-type law of the iterated logarithm.
Hong (2002, 2003) proved LDPs and MDPs for super-Brownian motion with randomly controlled
immigration. LDPs and MDPs for a super-Brownian motion with uniform immigration were
obtained in Zhang (2004a, b). Most of those results and their variants concentrate on super
Brownian motions and related processes. On the other hand, Fleischmann and Kaj (1994)
proved a LDP for rescaled superprocesses with a good convex rate functional on the measure
state space. They considered a general underlying spatial motion and characterized the rate
functional in terms of solutions of an explosive reaction-diffusion equation.

In this paper, we study the asymptotics of the occupation times of a subcritical branching
superprocess with immigration. We shall consider a general underlying motion and prove a
LDP and a MDP. The proofs of those results are easier than the corresponding results for other
models.

1Supported by NSFC (Grant No. 10101005 and No. 10121101) and the Scientific Research Foundation for the
Returned Overseas Chinese Scholars, State Education Ministry.
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2 Immigration superprocesses

Let b > 0 be a fixed constant and (Pt)t≥0 a conservative Borel right semigroup on a Lusin
topological space E. Let B(E)+ denote the set of bounded non-negative Borel functions on
E. Then for each f ∈ B(E)+, there is a unique locally bounded solution Vtf to the evolution
equation

Vtf(x) = Ptf(x)−
∫ t

0
Pt−s[(Vsf)2 + bVsf ](x)ds, t ≥ 0. (2.1)

Let M(E) be the space of finite Borel measures on E endowed with the topology of weak
convergence. Write 〈µ, f〉 =

∫
E fdµ for f ∈ B(E)+ and µ ∈ M(E). For any λ ∈ M(E),

∫

M(E)
e−〈ν,f〉Qλ

t (µ, dν) = exp
{
− 〈µ, Vtf〉 −

∫ t

0
〈λ, Vsf〉ds

}
, f ∈ B(E)+, (2.2)

defines the transition semigroup (Qλ
t )t≥0 of a diffusion process in M(E), which is the so-called

immigration superprocess; see, e.g., [8, 11].
Let X = (Ω ,G,Gt, Xt,Q

λ
µ) be a diffusion realization of (Qλ

t )t≥0 and define the occupation
time process {Yt : t ≥ 0} by

〈Yt, f〉 =
∫ t

0
〈Xs, f〉ds, f ∈ B(E)+. (2.3)

A characterization of this process is given by

Qλ
µ exp{−〈Yt, f〉} = exp

{
− 〈µ,Utf〉 −

∫ t

0
〈λ,Usf〉ds

}
, f ∈ B(E)+, (2.4)

where Utf is the solution of

Utf(x) =
∫ t

0
Psf(x)ds−

∫ t

0
Pt−s[(Usf)2 + bUsf ](x)ds, t ≥ 0. (2.5)

Observe that (2.5) is equivalent to

Utf(x) =
∫ t

0
P b

s f(x)ds−
∫ t

0
P b

t−s[(Usf)2](x)ds, t ≥ 0, (2.6)

where P b
s = e−bsPs. For notational convenience, we write

Gbf(x) =
∫ ∞

0
P b

s f(x)ds and Gb
tf(x) =

∫ t

0
P b

s f(x)ds. (2.7)

In view of (2.4) we have the canonical representation

Utf(x) = 〈lt(x), f〉+
∫

M(E)◦
(1− e−〈ν,f〉)Lt(x, dν), f ∈ B(E)+, (2.8)

where lt(x) ∈ M(E) and (1 ∧ 〈ν, 1〉)Lt(x, dν) is a finite measure on M(E)◦ := M(E) \ {0}.
We first show the following central limit theorem.
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Theorem 2.1 Assume λ ∈ M(E) is an invariant measure of (Pt)t≥0. Fix f ∈ B(E)+ and let

ST (f) =
1√
T

[
〈YT , f〉 −

∫ T

0
〈λ,Gb

sf〉ds

]
. (2.9)

Then as T → ∞, the distribution of ST (f) under Qλ
µ converges as T → ∞ to the Gaussian

distribution with mean zero and variance 2b−1〈λ, (Gbf)2〉.

Proof. Write fT = T−1/2f . By (2.4) and (2.6) it is not hard to show that

Qλ
µ exp{−ST (f)} = Qλ

µ exp
{
− 〈YT , fT 〉+

∫ T

0
〈λ,Gb

sfT 〉ds

}

= exp
{
− 〈µ,UT fT 〉 −

∫ T

0
〈λ,UsfT 〉ds +

∫ T

0
〈λ,Gb

sfT 〉ds

}

= exp
{
− 〈µ,UT fT 〉 −

∫ T

0
ds

∫ s

0
〈λ, P b

s−r[(UrfT )2]〉dr

}
.

From (2.6) it is easy to see that

〈µ,UT fT 〉 ≤ T−1/2〈µ,Gb
T f〉 → 0

as T →∞. By similar estimates one finds that
∫ T

0
ds

∫ s

0

〈
λ, P b

s−r

[( ∫ r

0
P b

r−s[(UsfT )2]ds

)2]〉
dr → 0

and
∫ T

0
ds

∫ s

0

〈
λ, P b

s−r

[
Gb

rfT

∫ r

0
P b

r−s[(UsfT )2]ds

]〉
dr → 0.

Then, using the (Pt)t≥0-invariance of λ we have easily
∫ T

0
ds

∫ s

0
〈λ, P b

s−r[(UrfT )2]〉dr =
∫ T

0
ds

∫ s

0
〈λ, P b

s−r[(G
b
rfT )2]〉dr + o(1)

→ b−1〈λ, (Gbf)2〉
as T →∞. Combining the above gives

lim
T→∞

Qλ
µ exp{−ST (f)} = exp{b−1〈λ, (Gbf)2〉},

so the theorem follows. ¤

3 Extension of the Laplace functional

In this section, we shall give an extension for the characterization of the Laplace transform of
the immigration superprocess. This is realized by a power series expansion of the solution of
(2.6) following a similar argument used in Hong [5, 6]. For f ∈ B(E)+ and θ ∈ IR define

v(t, x; θf) = 〈lt(x), θf〉+
∫

M(E)◦
(e〈ν,θf〉 − 1)Lt(x, dν), t ≥ 0, x ∈ E (3.1)
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with values in (−∞,∞]. In view of (2.4) and (2.8) we have

Qλ
µ exp{θ〈Yt, f〉} = exp

{
〈µ, v(t, ·; θf)〉+

∫ t

0
〈λ, v(s, ·; θf)〉ds

}
. (3.2)

For any functions g(t, ·) and h(t, ·) ∈ B(E)+, we define the convolution

g(t, x) ∗ h(t, x) =
∫ t

0
P b

t−s[g(s, ·)h(s, ·)](x)ds. (3.3)

Define the sequence of positive numbers {Bn : n ≥ 1} by B1 = B2 = 1 and

Bn =
n−1∑

k=1

BkBn−k. (3.4)

Let g∗1(t, x) = g(t, x) and

g(t, x)∗n =
n−1∑

k=1

g(t, x)∗k ∗ g(t, x)∗(n−k); (3.5)

see [3, 14].

Lemma 3.1 Fix f ∈ B(E) and write F (t, x) = Gb
tf(x). Then

|F (t, x)∗n| ≤ Bnb1−2n‖f‖n. (3.6)

Proof. By the definition it is immediate that

|F (t, x)| ≤
∫ t

0
e−bs||f ||ds = b−1‖f‖.

If (3.6) is true for all k < n, we have

|F (t, x)∗n| ≤
n−1∑

k=1

∫ t

0
e−b(t−s)BkBn−kb

2−2n‖f‖nds

≤
n−1∑

k=1

BkBn−kb
1−2n‖f‖n

= Bnb1−2n‖f‖n.

Then the result follows by induction. ¤

Lemma 3.2 When |θ| < b2/4‖f‖, the equation

u(t, x; θ) = θ

∫ t

0
P b

r f(x)dr +
∫ t

0
P b

s [u(t− s, ·; θ)2](x)ds, (3.7)

admits an unique solution u(t, x; θ) = uf (t, x; θ). Moreover, uf (t, x; θ) is analytic in θ and

|uf (t, x; θ)| ≤ b

2
[1− (1− 4b−2‖f‖|θ|)1/2] ≤ 2b−1‖f‖θ. (3.8)
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Proof. In terms of the convolution defined by (3.3), we can rewrite (3.7) as

u(t, x; θ) = θF (t, x) + u(t, x; θ) ∗ u(t, x; θ). (3.9)

As observed in [3, 14], a formal solution of (3.9) is given by the series

u(t, x; θ) =
∞∑

n=1

F (t, x)∗nθn. (3.10)

By Lemma 3.1 we have

∞∑

n=1

|F (t, x)∗nθn| ≤
∞∑

n=1

Bnb1−2n‖f‖n|θ|n.

It is elementary to see that

∞∑

n=1

Bnzn =
1
2
[1− (1− 4z)1/2], |z| < 1/4.

Then (3.10) is absolutely convergence when |θ| < b2/4‖f‖. Consequently, the series really defines
a function u(t, x; θ) which solves (3.9) and is analytic in θ. The estimates in (3.8) are immediate.
¤.

Lemma 3.3 If f(·) ≡ 1, for |θ| < b2/4 we have

u1(t, x; θ) ≡ 2θ(1− e−γt)
(b + γ)− (b− γ)e−γt

, x ∈ E, (3.11)

where γ =
√

b2 − 4θ.

Proof. From (3.10) we see that u1(t; θ) := u1(t, ·; θ) is actually independent of x ∈ E. Then
(3.7) implies that

d

dt
u1(t; θ) = u1(t; θ)2 − bu1(t; θ) + θ. (3.12)

Solving this differential equation gives (3.11). ¤

Theorem 3.1 For θ < b2/4‖f‖, we have

uf (t, x; θ) = v(t, x; θf), t ≥ 0, x ∈ E. (3.13)

Proof. From (2.6) and the representations (2.8) and (3.1) we see that v(t, x; θf) satisfies
(3.7). Then (3.13) holds for −b2/4‖f‖ < θ ≤ 0. By Lemma 3.2, uf (t, x; θ) is analytic in
θ ∈ (−b2/4‖f‖, b2/4‖f‖). In view of (3.2), we also have (3.13) for 0 ≤ θ < b2/4‖f‖ by the
property of Laplace transforms; see, e.g., [15]. ¤
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4 A large deviation principle

Assume λ ∈ M(E) is an invariant measure of (Pt)t≥0. We shall establish a long time large
deviation principle for the occupation time of the immigration superprocess. Let f ∈ B(E)+ be
fixed and let v(t, x; θf) and u(t, x; θ) be respectively given by (3.1) and (3.7).

Lemma 4.1 For any x ∈ E and θ ∈ IR, the limit uf (x; θ) := limt→∞ v(t, x; θf) exists in
(−∞,∞]. Moreover, uf (x; θ) is finite when θ < b2/4‖f‖.

Proof. As a special case of (3.2) we have

Q0
µ exp

{
θ

∫ t

0
〈Xs, f〉ds

}
= exp{〈µ, v(t, ·; θf)〉}. (4.1)

Then v(t, x; θf) is monotonous in t ≥ 0, so the limit uf (x; θ) := limt→∞ v(t, x; θf) exists. By
Theorem 3.1, for θ < b2/4‖f‖ we have

0 ≤ |v(t, x; θf)| ≡ |uf (t, x; θ)| ≤ u1(t, x; θ‖f‖) =
2|θ|‖f‖(1− e−γt)

(b + γ)− (b− γ)e−γt
,

where γ =
√

b2 − 4θ‖f‖. As t →∞, u1(t, x; θ‖f‖) increases to (b−
√

b2 − 4θ‖f‖)/2. Then the
limit uf (x; θ) is finite when θ < b2/4‖f‖. ¤

Lemma 4.2 For any x ∈ E and θ ∈ (−∞, b2/4‖f‖), we have uf (x; θ) := limt→∞ uf (t, x; θ).
Moreover, uf (x; θ) is strictly convex in θ ∈ (−∞, b2/4‖f‖).

Proof. By the proof of the last lemma we have

Q0
µ exp

{
θ

∫ ∞

0
〈Xs, f〉ds

}
= exp{〈µ, uf (x; θ)〉} (4.2)

Clearly, the random variable
∫∞
0 〈Xs, f〉ds under Q0

δx
has an infinitely divisible distribution.

Then we have the canonical representation

uf (x; θ) = l(x)θ +
∫ ∞

0
(eθu + 1)L(x, du),

where l(x) ≥ 0, and the Lévy measure L(x, du) is nontrivial. (Otherwise, (4.2) defines a degen-
erate distribution.) It follows that

d2

dθ2
uf (x; θ) =

∫ ∞

0
u2eθuL(x, du),

which is finite and strictly positive when θ < b2/4‖f‖. Thus uf (x; θ) is strictly convex in θ. ¤
Now we have the following large deviation principle for the occupation time of the immigra-

tion superprocess.
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Theorem 4.1 Let f ∈ B(E)+ be fixed and note δ = b2/4‖f‖. Then

a := lim
θ→δ−

d

dθ
〈λ, uf (·; θ)〉 >

d

dθ
〈λ, uf (·; 0)〉 = b−1〈λ, f〉. (4.3)

For any open set U ⊂ (0, a) and any closed set L ⊂ (0, a), we have

lim inf
T→∞

T−1 log Qλ
µ{T−1〈YT , f〉 ∈ U} ≥ − inf

x∈U
I(x), (4.4)

and

lim sup
T→∞

T−1 log Qλ
µ{T−1〈YT , f〉 ∈ L} ≤ − inf

x∈L
I(x), (4.5)

where

I(x) = sup
θ<δ

[xθ − 〈λ, uf (·; θ)〉], 0 ≤ x < a. (4.6)

Proof. By Lemma 4.1, 〈λ, uf (·; θ)〉 is finite and strictly convex in θ ∈ (−∞, δ). By Theorem 3.1
we have uf (t, x; θ) = v(t, x; θf). Recall that λ is an invariant measure of (Pt)t≥0. Then we may
differentiate both sides of a special form of (3.2) in θ to see that

Q0
λ

[ ∫ t

0
〈Xs, f〉ds exp

{
θ

∫ t

0
〈Xs, f〉ds

}]
=

d

dθ
〈λ, uf (t, ·; θ)〉.

The above value is bounded below by

Q0
λ

[ ∫ t

0
〈Xs, f〉ds

]
=

d

dθ
〈λ, uf (t, ·; 0)〉 =

∫ t

0
e−bs〈λ, f〉ds,

where the second equality follows by (3.7). Then (4.3) follows. For any θ ∈ IR we have

Λ(T, θ) := T−1 log Qλ
µ exp[θ〈YT , f〉]

= T−1

[
〈µ, v(T, ·; θf)〉+

∫ T

0
〈λ, v(s, ·; θf)〉ds

]
.

It follows that limT→∞ Λ(T, θ) = 〈λ, uf (·; θ)〉. Observe that

lim
θ→−∞

d

dθ
〈λ, uf (·; θ)〉 = 0.

Then for any x ∈ (0, a) there is some θx < δ such that

d

dθ
〈λ, uf (t, ·; θx)〉 = x

and hence

I(x) := sup
θ∈IR

[xθ − 〈λ, uf (·; θ)〉] = sup
θ<δ

[xθ − 〈λ, uf (·; θ)〉] = xθx − 〈λ, uf (t, ·; θx)〉.

That is, I is well-defined in (0, a) by (4.6). Then the result follows from the Gärtner-Ellis
Theorem; see, e.g., [1, p. 44]. ¤
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Remark If f ≡ 1, we have

u1(θ) := lim
t→∞u1(t; ·, θ) ≡ 1

2
[b−

√
b2 − 4θ]. (4.7)

Note that

d

dθ
u1(θ) =

1√
b2 − 4θ

→∞

as θ increases to 4−1b2. Then the proof of Theorem 4.1 gives a full large deviation principle.
Moreover, from (4.6) and (4.7) it is not hard to get that

I(x) =
b2

4x
(x− b−1〈λ, 1〉)2, x ≥ 0. (4.8)

5 A moderate deviation principle

Assume λ ∈ M(E) is an invariant measure of (Pt)t≥0. Let c(T ) be such that c(T ) → ∞ and
Tc(T )−1 →∞ as T →∞. Fix f ∈ B(E)+ and let

ZT (f) =
1√

Tc(T )

[
〈YT , f〉 −

∫ T

0
〈λ,Gb

sf〉ds

]
. (5.1)

Then we have the following

Theorem 5.1 For any open set U ⊂ IR and closed set L ⊂ IR,

lim inf
T→∞

c(T )−1 log Qλ
µ{ZT (f) ∈ U} ≥ − inf

x∈U
I(x), (5.2)

and

lim sup
T→∞

c(T )−1 log Qλ
µ{ZT (f) ∈ L} ≤ − inf

x∈L
I(x), (5.3)

where

I(x) =
bx2

4〈λ, (Gbf)2〉 . (5.4)

Proof. For θ ∈ IR let

Λ(T, θ) = c(T )−1 log Qλ
µ exp{θc(T )ZT (f)}. (5.5)

We shall prove

Λ(T, θ) → Λ(θ) := b−1〈λ, (Gbf)2〉θ2. (5.6)

as T →∞. It is easy to show that I(x) is the Legendre transform of Λ(θ), that is,

I(x) = sup
θ∈IR

[θx− Λ(θ)].
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Consequently, once (5.6) is proved, the theorem is an application of the Gärtner-Ellis Theorem;
see, e.g., [1, p. 44]. To establish (5.6), let l(T ) =

√
T/c(T ) and let uT (t, ·; θ) be the solution of

(3.7) with f replaced by fT := f/l(T ). When |θ| < b2l(T )/4‖f‖,

Λ(T, θ) = c(T )−1〈µ, uT (T, ·; θ)〉+ c(T )−1

∫ T

0
ds

∫ s

0
〈λ, P b

s−r[uT (r, ·; θ)2]〉dr, (5.7)

By Lemma 3.2 we get

uT (t, x; θ) ≤ 2b−1θl(T )−1‖f‖. (5.8)

It then follows that

I := c(T )−1〈µ, uT (T, ·; θ)〉 ≤ 2b−1θc(T )−1l(T )−1〈µ, 1〉‖f‖ → 0

as T →∞. On the other hand,

II := c(T )−1

∫ T

0
ds

∫ s

0
〈λ, P b

s−r[uT (r, ·; θ)2]〉dr

= c(T )−1

∫ T

0
ds

∫ s

0
〈λ, eb(s−r)Ps−ruT (r, ·; θ)2〉dr

= c(T )−1

∫ T

0
dr

∫ T−r

0
ebs〈λ, uT (r, ·; θ)2〉ds

= b−1c(T )−1

∫ T

0
〈λ, uT (r, ·; θ)2〉dr − b−1c(T )−1

∫ T

0
e−b(T−r)〈λ, uT (r, ·; θ)2〉dr.

Let II1 and II2 denote respectively the absolute values of the first and the second terms on the
right hand side. By (5.8),

II2 ≤ 4b−3θ2c(T )−1l(T )−2〈λ, 1〉||f ||2
∫ T

0
e−b(T−r)dr → 0

as T →∞. By l’Hospital’s rule,

II ′1 := b−1c(T )−1

∫ T

0

〈
λ, θ2

[ ∫ r

0
P b

s fT ds

]2〉
dr

= θ2b−1c(T )−1l(T )−2

∫ T

0
〈λ, (Gb

rf)2〉dr

= θ2b−1T−1

∫ T

0
〈λ, (Gb

rf)2〉dr

→ θ2b−1〈λ, (Gbf)2〉

as T →∞. In view of (3.7),

uT (r, x; θ)2 = θ2

[ ∫ r

0
P b

s fT (x)ds

]2

+
[ ∫ r

0
P b

s [uT (r − s, ·; θ)2](x)ds

]2

+2θ

∫ r

0
P b

s fT (x)ds

∫ r

0
P b

s [uT (r − s, ·; θ)2](x)ds.
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It follows that

|II1 − II ′1| ≤ b−1c(T )−1

∫ T

0

〈
λ,

∣∣∣∣uT (r, ·; θ)2 − θ2

( ∫ r

0
P b

s fT ds

)2∣∣∣∣
〉

dr

≤ b−1c(T )−1

∫ T

0

〈
λ,

( ∫ r

0
P b

s [uT (r − s, ·; θ)2]ds

)2〉
dr

+2b−1θc(T )−1

∫ T

0

〈
λ,

∫ r

0
P b

s fT (x)ds

∫ r

0
P b

s [uT (r − s, ·; θ)2](x)ds

〉
dr

≤ 16b−5θ4c(T )−1l(T )−4〈λ, 1〉‖f‖4

∫ T

0

( ∫ r

0
e−bsds

)2

dr

+8b−4θ3c(T )−1l(T )−3〈λ, 1〉‖f‖3

∫ T

0

( ∫ r

0
e−bsds

)
dr

≤ 16b−5θ4T−2c(T )〈λ, 1〉‖f‖4

∫ T

0

( ∫ r

0
e−bsds

)2

dr

+8b−4θ3T−3/2c(T )1/2〈λ, 1〉‖f‖3

∫ T

0

( ∫ r

0
e−bsds

)
dr

→ 0.

Combining the above gives (5.6). ¤
The above theorem is frequently referred to as the moderate deviation principle. Roughly

speaking, the central limit theorem proved in Section 2 corresponds to the extremal case c(T ) ≡
1, and the large deviation principle established in Section 4 corresponds to the case c(T ) ≡ T .
In this sense, the moderate deviation principle fills up the gap between the central limit theorem
and the large deviation principle.
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