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1. Introduction and Statement of Results

Let C(Rd) denote the space of continuous bounded functions on R
d. We fix a con-

stant p > d and let φp(x) := (1 + |x|2)−p/2 for x ∈ R
d. Let Cp(R

d) := {f ∈

C(Rd) : |f(x)| ≤ const·φp(x)}. In duality, let Mp(R
d) be the space of Radon mea-

sures µ on R
d such that 〈µ, f〉 :=

∫

f(x)µ(dx) < ∞ for all f ∈ Cp(R
d). We endow

Mp(R
d) with the p-vague topology, i.e. µk → µ if and only if 〈µk, f〉 → 〈µ, f〉 for

all f ∈ Cp(R
d). Then Mp(R

d) is metrizable. Throughout this paper, λ denotes the

Lebesgue measure on R
d.

Suppose that W = (wt, t ≥ 0) is a standard Brownian motion in R
d with

semigroup (St)t≥0. A super-Brownian motion % = (%t, Pµ) is an Mp(R
d)-valued

Markov process with %0 = µ and the transition probabilities given by

Pµ exp{−〈%t, f〉} = exp{−〈µ, v(t, ·)〉} , f ∈ C+
p (Rd) , (1.1)
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where v(·, ·) is the unique mild solution of the evolution equation

{

v̇(t) = ∆v(t) − v2(t) ,

v(0) = f .
(1.2)

Given a super-Brownian motion % = (%t, Pµ), we will consider another super-

Brownian motion with the immigration rate controled by the trajectory of %, the

so-called super-Brownian motion with super-Brownian immigration (SBMSBI, for

short) X% = (X%
t , P %

ν ) with X%
0 = ν, whose transition probabilities is given by

P %
ν exp{−〈X%

t , f〉} = exp

{

−〈ν, v(t, ·)〉 −

∫ t

0

〈%s, v(t − s, ·)〉ds

}

. (1.3)

In the following we take µ = ν = λ, and write P % (resp. P ) for P %
λ (resp. Pλ). This

model was considered by Hong and Li9 and Hong,6–8 where some interesting and

new phenomena were revealed under the annealed probability law:

P(·) :=

∫

P %(·)P (d%) ,

i.e. the random immigration “smooth” the critical dimension in the sense that the

“log” term does not appear in the norming for the longtime behavior.

In this paper, we will study the limiting behavior of the process SBMSBI under

the quenched probability law P %
λ . For any f ∈ Cp(R

d), the expectation of the

process X%
t under the quenched law P %〈X%

t , f〉 is the functional of %. To consider

the central limit behavior, we define the centered functional F (%·, T ; f) by

F (%·, T ; f) := ad(T )−1{P %〈X%
T , f〉 − P [P %〈X%

T , f〉]} , (1.4)

where

ad(T ) =











T (6−d)/4 , 3 ≤ d ≤ 5 ,

(log T )1/2 , d = 6 ,

1 , d ≥ 7 .

Then we have

Theorem 1.1. For d ≥ 3, f ∈ C+
p (Rd), as T → ∞, F (%·, T ; f) ⇒ ξ(f) in distri-

bution under the law P, ξ(f) is determined by

P exp{−θξ(f)} = exp{F (θ, f)} , θ ≥ 0

where

F (θ, f) =











Cdθ
2〈λ, f〉

2
, 3 ≤ d ≤ 6

∫ ∞

0

〈λ, u2
θ(s, ·)〉ds , d ≥ 7 .
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Cd = (4π)−d/2
∫ 1

0
s2−d/2ds for 3 ≤ d ≤ 5, C6 = (4π)−3; and uθ(t, x) is the mild

solution of equation

uθ(t, x) = θtStf(x) −

∫ t

0

St−su
2
θ(s, ·)(x)ds .

Remark 1.1. (a) The limiting variable is Gaussian for 3 ≤ d ≤ 6, whereas it is

non-Gaussian in higher dimensions d ≥ 7.

(b) Recall that under the annealed probability9
P the norm is

ād(T ) =

{

T 3/4 , d = 3 ,

T 1/2 , d ≥ 4 ,

and both of them are different from that of Iscoe,10 where the occupation time

process of the ordinary super-Brownian motion was considered.

For d = 2, we prove a weak ergodic theorem.

Theorem 1.2. d = 2, as T → ∞

T−1P %〈X%
T , f〉 −→ ξ · 〈λ, f〉 weakly (with respect to P ) ,

where ξ is a non-negative, infinitely divisible random variable whose Laplace trans-

form is given by

P exp{−θξ} = exp{−〈λ, w(1, ·; θ)〉} , θ ≥ 0 (1.5)

where w ≡ w(t, x; θ) is the mild solution of the evolution equation

w(t, x; θ) = θtp(t, x) −

∫ t

0

St−sw
2(s, ·; θ)ds ,

where p(s, x) is the transition density function of the standard Brownian motion.

For d = 3, we will prove a local large deviation. Fix f ∈ C+
p (Rd) satisfying

〈λ, f〉 = 1 and let

W(t) :=
1

t
P %〈X%

t , f〉 (1.6)

and

Λ(T, θ) := T−1/2 log P exp[θT 1/2W(T )] . (1.7)

For d = 3, we will proved in Lemma 3.8 that the equation

w(t, x; θ) = θtp(t, x) +

∫ t

0

St−sw
2(s, ·; θ)ds

admit unique mild solutions w(t, ·; θ) ∈ C([0, 1], L2(R3)) for |θ| < 1
4a , where a :=

2
3 (2π)−3/2, p(t) = p(t, x) is the transition density function of the Brownian motion.

Moreover, we will prove that there is δ > 0 such that

Λ(θ) := lim
T→∞

Λ(T, θ) = 〈λ, w(1, ·; θ)〉 ,
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which is continuous differential and strictly convex in |θ| < δ < 1
4a with Λ′(0) = 1.

Let I(α) be the Legendre transform of Λ(θ), i.e.

I(α) := sup
|θ|<δ

[αθ − Λ(θ)] . (1.8)

Then we have

Theorem 1.3. For d = 3, the law of W(T ) under P admit the LDP with speed

function T−1/2 and rate function I(α), i.e. there exists a neighborhood O of 1 such

that if U ⊂ O is open and C ⊂ O is closed, then

lim inf
T→∞

T−1/2 log P{W(T ) ∈ U} ≥ − inf
α∈U

I(α) ,

lim sup
T→∞

T−1/2 log P{W(t) ∈ C} ≤ − inf
α∈C

I(α) .

Remark 1.2. It should be interesting to consider the LDP for d > 3, but for now

we have only obtained this result for d = 3 and the steepness has not been given

yet. We leave it as an open problem and will be considered further.

Theorem 1.1 will be proved in Sec. 2. By considering the convergence of the so-

lutions of the evolution equation, one proves Theorem 1.2 in Sec. 3. Using Dynkin’s

moment method to prove the existence of the solution of the equation and extend

the Laplace transformation to some positive range, we obtained a local LDP for

d = 3 in Sec. 4.

2. Proof of Theorem 1.1

The mild solution of Eq. (1.2) is

v(t, x) = Stf(x) −

∫ t

0

St−sv(s, ·)2(x)ds , t ≥ 0 f ∈ C+
p (Rd) . (2.1)

From Eq. (1.3) we get

P %〈X%
T , f〉 = 〈λ, f〉 +

∫ T

0

〈%s, ST−sf〉ds , (2.2)

which is the functional of the process % = (%t, P ) and is determined by the Laplace

functional

P exp{−P %〈X%
t , f〉} = exp{−〈λ, f〉 − 〈λ, u(t, ·)〉} , (2.3)

where u(t, x) is the mild solution of the following evolution equation,
{

u̇(t) = ∆u(t) − u2(t) + Stf 0 < t ≤ T

u(0) = 0 ,
(2.4)

i.e.

u(t, x) = tStf(x) −

∫ t

0

St−su
2(s, ·)(x)ds , t ≥ 0 , (2.5)
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see Iscoe.10 Let fT := ad(T )−1f , from (1.4) and (2.3) we get

P exp{−F (%·, T ; f)} = exp

{

∫ T

0

〈λ, u2
T (t, ·)〉dt

}

, (2.6)

where uT (t, x) is the mild solution of Eq. (2.5) with f replaced by fT .

Lemma 2.1. Let 3 ≤ d ≤ 6,

Ad(T, f) :=

∫ T

0

〈λ, (tStfT )2〉dt . (2.7)

We have

lim
T→∞

Ad(T, f) = Cd〈λ, f〉
2
, (2.8)

where Cd = (4π)−d/2
∫ 1

0 s2−d/2ds for 3 ≤ d ≤ 5, C6 = (4π)−3.

Proof. From (2.7)

Ad(T, f) = ad(T )−2

∫ T

0

〈λ, (tStf)2〉dt

= ad(T )−2

∫ T

0

t2dt

∫ ∫

p(2t, y, z)f(y)f(z)dydz .

When 3 ≤ d ≤ 5,

lim
T→∞

Ad(T, f) = lim
T→∞

ad(T )−2T 3−d/2

∫ 1

0

t2dt

∫ ∫

(4πt)−d/2e−
|y−z|2

2T t f(y)f(z)dydz

= Cd〈λ, f〉
2

by dominated convergence theorem. When d = 6,

lim
T→∞

Ad(T, f) = lim
T→∞

ad(T )−2

∫ T

1

t2dt

∫ ∫

p(2t, y, z)f(y)f(z)dydz

= lim
T→∞

ad(T )−2 log T

∫ 1

0

T 3sds

∫ ∫

(4πT s)−3e−
|y−z|2

2T s f(y)f(z)dydz

= Cd〈λ, f〉
2

by dominated convergence theorem, where we have taken the transformation t = T s

at the second step. Completes the proof.

Lemma 2.2. Let 3 ≤ d ≤ 6,

εd(T, f) :=

∫ T

0

〈λ, (tStfT )2〉dt −

∫ T

0

〈λ, u2
T (t, ·)〉dt . (2.9)

We have

lim
T→∞

εd(T, f) = 0 . (2.10)
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Proof. From Eq. (2.7),

0 ≤ [tStfT (x)]2 − u2
T (t, x) ≤ 2[tStfT (x)]

∫ t

0

St−su
2
T (s, ·)(x)ds .

Let C denotes a positive constant and it may be different values at different line.

Recall the useful inequality Stf(x) ≤ C(1 ∧ t−d/2),

0 ≤ lim
T→∞

εd(T, f) ≤ lim
T→∞

2

∫ T

0

〈λ, [tStfT ]

∫ t

0

St−s(sSsfT )2ds〉dt

≤ C lim
T→∞

ad(T )−3

∫ T

0

t〈λ, (Stf)2
∫ t

0

s2(1 ∧ s−d/2)ds〉dt

≤ C lim
T→∞

ad(T )−3

∫ T

0

t(1 ∧ t−d/2)dt ·

∫ T

0

s2(1 ∧ s−d/2)dt

= 0 ,

completes the proof.

Proof of Theorem 1.1. By Lemmas 2.1 and 2.2, when 3 ≤ d ≤ 6,

lim
T→∞

∫ T

0

〈λ, u2
T (t, ·)〉dt = Cd〈λ, f〉

2
. (2.11)

When d ≥ 7,
∫ T

0 〈λ, u2
T (t, ·)〉dt =

∫ T

0 〈λ, u2(t, ·)〉dt is increasing in T and note that
∫ ∞

0

〈λ, u2(t, ·)〉dt ≤

∫ ∞

0

〈λ, (tStf)2〉dt ≤ C

∫ ∞

0

t2(1 ∧ t−d/2)dt < ∞ .

So

lim
T→∞

∫ T

0

〈λ, u2
T (t, ·)〉dt =

∫ ∞

0

〈λ, u2(t, ·)〉dt . (2.12)

Combining (2.11) and (2.12) with (2.6), and the bilateral Laplace transform dis-

cussed by Iscoe (Theorem 5.4 of Ref. 10), the proof is complete.

3. Proof of Theorem 1.2

In this section, we assume 1 ≤ d ≤ 3. Let bd(T ) = T 2−d/2, fT = b−1
d (T )f , and

uT (t, x) be the mild solution of Eq. (2.4) with f being replaced by fT (for simplicity,

we consider f ∈ Cp(R
d)+ such that 〈λ, f〉 = 1),

{

u̇T (t) = ∆uT (t) − u2
T (t) + StfT , 0 < t ≤ T

uT (0) = 0 .
(3.1)

Let wT (t, x) := TuT (T t, T 1/2x), it is easy to verify that wT (t, x) satisfy the follow-

ing equation
{

ẇT (t) = ∆wT (t) − w2
T (t) + T 2STtfT (T 1/2·) , 0 < t ≤ 1

wT (0) = 0 ,
(3.2)
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i.e.

wT (t, x) = tT 2StfT (T 1/2·)(x) −

∫ t

0

St−sw
2
T (s, ·)(x)ds . (3.3)

In what follows, we will prove that wT (t, x) converges in L2(Rd, λ) uniformly in

t ∈ [0, 1], and pointwise for each t ∈ [0, 1] to w(t, x) as T → ∞, which is the mild

solution of the following equation,
{

ẇ(t, x) = ∆w(t, x) − w2(t, x) + p(s, x) , 0 < t ≤ 1

w(0, x) = 0 ,
(3.4)

where p(s, x, y) = p(s, x− y) is the transition density function of Brownian motion,

i.e.

w(t, x) = tp(t, x) −

∫ t

0

St−sw
2(s, ·)(x)ds . (3.5)

Lemma 3.1. If 1 ≤ d ≤ 3, then

lim
T→∞

tT 2StfT (T 1/2·)(x) = tp(t, x) ,

in L2(Rd, λ) uniformly in t ∈ [0, 1], and pointwise for each t ∈ [0, 1].

Proof. First of all, we note that

tT 2StfT (T 1/2·)(x) = tT 2b−1
d (T )

∫

p(t, x, z)f(T 1/2z)dz

= tT 2b−1
d (T )T−d/2

∫

p(s, x, T−1/2z)f(z)dz

= t

∫

p(t, x, T−1/2z)f(z)dz ,

which converges pointwise to tp(t, x) as T → ∞ by Lebesgue’s dominated conver-

gence theorem.

Noting 〈λ, f〉 = 1 we have

∥

∥

∥

∥

t

∫

p(t, x, T−1/2z)f(z)dz − tp(t, x)

∥

∥

∥

∥

2

L2

= t2
∫

Rd

[
∫

Rd

[p(t, x − T−1/2z) − p(t, x)]f(z)dz

]2

dx

= t2
∫

Rd

f(y)dy

∫

Rd

f(z)

[

p(2t, T−1/2y − T−1/2z) − p(2t, T−1/2y)

− p(2t, T−1/2z) + p(2t, 0)

]

dz
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= t2−d/2

∫

Rd

f(y)dy

∫

Rd

f(z)

[

p(2, T−1/2y − T−1/2z) − p(2, T−1/2y)

− p(2, T−1/2z) + p(2, 0)

]

dz

≤

∫

Rd

f(y)dy

∫

Rd

f(z)

[

p(2, T−1/2y − T−1/2z) − p(2, T−1/2y)

− p(2, T−1/2z) + p(2, 0)

]

dz

−→ 0 ,

uniformly in t ∈ [0, 1] as T → ∞ by Lebesgue’s dominated convergence theorem,

because the integrand is dominated by 4p(2, 0).

Lemma 3.2. If 1 ≤ d ≤ 3, wT (t, x) be the mild solution of Eq. (3.3), then w(t, x) :=

limT→∞ wT (t, x) exists in C([0, +∞), L2(λ)), and pointwise for each t ∈ [0, 1] and

w(t, x) is the mild solution of Eq. (3.5).

Proof. From Eq. (3.3), it is easy to see that

‖wT (t, x)‖2
L2 ≤

∫

Rd

[

t

∫

Rd

p(t, x, T−1/2z)f(z)dz

]2

dx

= t2
∫

Rd

∫

Rd

p(2t, T−1/2y, T−1/2z)f(y)f(z)dydz

≤ C · t2−d/2 ,

also note that

St−sw
2
T (s, ·)(x) ≤

∫

Rd

p(t − s, x, y)

[

s

∫

Rd

p(s, y, T−1/2z)f(z)dz

]2

dy

≤ C · s2−d/2

∫

Rd

p(t, x, T−1/2z)f(z)dz

≤ C · s2−d/2p(t, 0) ,

which is integrable on [0, t] when 1 ≤ d ≤ 3. With these two estimations and

Lemma 3.1 in hand, the remaining proof is similar to that of Proposition 3.9 in

Iscoe11: firstly, we can prove that the limit w(t, x) exists in C([0, +∞), L2(λ)).

Then, the limit is taken in pointwise and satisfies (3.5). Finally, the mild solution

of (3.5) is unique. We omit the details here.

Lemma 3.3. limT→∞ 〈λ, wT (t, ·)〉 = 〈λ, w(t, ·)〉, for t ≥ 0.
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Proof. From Eqs. (3.3) and (3.5), we have

〈λ, wT (t, ·)〉 = t −

∫ t

0

〈λ, w2
T (s, ·)〉ds (3.6)

and

〈λ, w(t, ·)〉 = t −

∫ t

0

〈λ, w2(s, ·)〉ds . (3.7)

By Lemma 3.2, the second term on the right-hand side of (3.6) converge to that of

(3.7), we are done.

Proof of Theorem 1.2. From (2.3) we know the the Laplace functional of

T−1P %〈X%
T , f〉 is

P exp{−T−1P %〈X%
T , f〉} = exp{−〈λ, fT 〉 − 〈λ, uT (T, ·)〉} (3.8)

and uT (t, x) is the mild solution of Eq. (2.4) with f being replaced by fT = T−1f .

By time and space transformation, wT (t, x) := TuT (T t, T 1/2x), we have for

d = 2

〈λ, uT (T, ·)〉 = 〈λ, wT (1, x)〉 (3.9)

and wT (t, x) satisfies Eq. (3.3). By Lemma 3.3, as T → ∞, we get

〈λ, uT (T, ·)〉 −→ 〈λ, w(1, ·)〉 ,

where w(·, ·) is the mild solution of (3.5), i.e.
{

ẇ(t, x) = ∆w(t, x) − w2(t, x) + p(s, x) , 0 < t ≤ 1

w(0, x) = 0 .
(3.10)

For the unnormalized case, we can replace f with θf , where θ > 0 and 〈λ, f〉 = 1,

and obtain
{

ẇ(t, x; θ) = ∆w(t, x) − w2(t, x; θ) + θpt(x) ,

w(0) = 0 .
(3.11)

It follows that

lim
T→∞

P exp{−T−1P %〈X%
T , f〉} = exp(−〈λ, w(1, ·; θ)〉) ,

where w(t, x; θ) is given by (3.11), and the rest of the proof is similar to Iscoe.11

4. Proof of Theorem 1.3

From (1.6) and (2.3) we know the Laplace transition functional of W(t) (in which

−θ ↔ θ, −u ↔ u, θ ≤ 0) is given by

P exp[θT 1/2W(t)] = exp{θ〈λ, fT 〉 + 〈λ, uT (t, ·; θ)〉} , (4.1)



August 31, 2005 16:48 WSPC/102-IDAQPRT 00202

392 W. Hong

where fT := T−1/2f (let 〈λ, f〉 = 1) and uT (t, ·; θ) is the mild solution of the

following evolution equation,
{

u̇T (t) = ∆uT (t) + u2
T (t) + θStfT , 0 < t ≤ T

u(0) = 0 .
(4.2)

Let wT (t, x; θ) := TuT (T t, T 1/2x; θ), it is easy to verify that wT (t, x; θ) satisfy the

following equation
{

ẇT (t) = ∆wT (t) + w2
T (t) + θT 2STtfT (T 1/2·) , 0 < t ≤ 1

wT (0) = 0 ,
(4.3)

i.e.

wT (t, x; θ) = θtT 2StfT (T 1/2·)(x) +

∫ t

0

St−sw
2
T (s, ·; θ)(x)ds . (4.4)

The key step in this section is to prove that the mild solution of (4.3) converges

to that of
{

ẇ(t, x) = ∆w(t, x) + w2(t, x) + θp(t, x) , 0 < t ≤ 1

w(0, x) = 0 ,
(4.5)

as t → ∞, where p(t, x) is the transition density function of Brownian motion.

The existence of the solutions of Eqs. (4.3) and (4.5) is well known when θ ≤ 0.

Here we need the existence of the solutions in |θ| < δ for some δ > 0, and we will

use the Dynkin’s moment method as in Hong7,8 to prove the existence and some

properties. Once the existence is established with some estimation for the solutions,

the convergence is followed as we in Sec. 3. And by the properties of the solutions

of (4.3) and (4.5), we can extend (4.1) to 0 < θ < δ.

For any functions g(t, ·), h(t, ·) ∈ Cp(R
d), ∀ t ≥ 0, p > 1, we define the convo-

lution

g(t, x) ∗ h(t, x) :=

∫ t

0

Ss[g(t − s, ·) · h(t − s, ·)](x)ds . (4.6)

Let














g∗1(t, x) := g(t, x) ,

g(t, x)∗n :=

n−1
∑

k=1

g(t, x)∗k ∗ g(t, x)∗(n−k)
(4.7)

and {Bn, n ≥ 1} is a sequence of positive numbers determined by














B1 = B2 = 1 ,

Bn =

n−1
∑

k=1

BkBn−k ,
(4.8)

see Dynkin5 and Wang.14
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Lemma 4.1. Let d = 3 and FT (t, x) = tT 2StfT (T 1/2·)(x), 0 ≤ t ≤ 1, then

FT (t, x)∗n ≤ Bnan−1 · t

∫

p(t, x, T−1/2z)f(z)dz (4.9)

where a := 2
3 (2π)−3/2.

Proof. We will prove (4.9) by induction in n. As we have seen in Lemma 3.1

FT (t, x) = t

∫

p(t, x, T−1/2z)f(z)dz .

It is trivial for n = 1. When n = 2, from the definition we have

FT (t, x)∗2 =

∫ t

0

Ss

[

(t − s)

∫

p(t − s, ·, T−1/2z)f(z)dz

]2

(x)ds

≤

∫ t

0

(t − s)2p(t − s, 0)Ss

[
∫

p(t − s, ·, T−1/2z)f(z)dz

]

(x)ds

= a · t

∫

p(t, x, T−1/2z)f(z)dz ,

as desired. If (4.9) is true for all k < n, by (4.7) and (4.8) we get

FT (t, x)∗n ≤

n−1
∑

1

Bkak−1 · t

∫

p(t, x, T−1/2z)f(z)dz ∗ Bn−kan−k−1

· t

∫

p(t, x, T−1/2z)f(z)dz

= Bnan−2 · FT (t, x)∗2

≤ Bnan−1 · t

∫

p(t, x, T−1/2z)f(z)dz ,

and then the proof is complete by induction.

Lemma 4.2. Let d = 3, |θ| < 1
4a , then Eq. (4.3) admits a unique mild solution

wT (t, x; θ), moreover it is analytic in |θ| < 1
4a and

|wT (t, x; θ)| ≤ b(θ) · t

∫

p(t, x, T−1/2z)f(z)dz , (4.10)

where b(θ) = (2a)−1[1 − (1 − 4a|θ|)1/2].

Proof. We can rewrite Eq. (4.4) by convolution as

wT (t, x; θ) = θFT (t, x) + wT (t, x; θ) ∗ wT (t, x; θ) . (4.11)

Then one gets the solution of (4.11)

wT (t, x; θ) =

∞
∑

n=1

FT (t, x)∗nθn (4.12)
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by Dynkin5 (see also Wang14) while the convergence of the series on the right is

proved, where FT (t, x) is given in Lemma 4.1. By Lemma 4.1, the series is dominated

by

|wT (t, x; θ)| ≤
∞
∑

n=1

Bnan−1|θ|n · t

∫

p(t, x, T−1/2z)f(z)dz . (4.13)

On the other hand, we know (see Dawson,1 also Dynkin5 and Wang14) that the

function g(z) = 1
2 [1 − (1 − 4z)1/2] can be expanded as a power series

g(z) =
1

2
[1 − (1 − 4z)1/2] =

∞
∑

n=1

Bnzn ,

when |z| < 1/4, where Bn is given in (4.8). So the series (4.12) is absolutely con-

vergence for |θ| < 1
4a , and from (4.13) we get

|wT (t, x; θ)| ≤ (2a)−1[1 − (1 − 4a|θ|)1/2] · t

∫

p(t, x, T−1/2z)f(z)dz ,

as desired.

By the same method as above, we can also prove the existence of the solution

of Eq. (4.5) for |θ| < 1
4a when d = 3.

Lemma 4.3. Let d = 3, |θ| < 1
4a , wT (t, x; θ) and w(t, x; θ) are the mild solutions

of Eq. (4.3) and that of (4.5) respectively, then

wT (t, x; θ) → w(t, x; θ) , (4.14)

pointwise and in L2(R3, λ) uniformly for 0 ≤ t ≤ 1 as T → ∞. Moreover,

lim
t→∞

〈λ, wT (t, ·; θ)〉 = 〈λ, w(t, ·; θ)〉 . (4.15)

Proof. By Lemma 4.2 and similar result for Eq. (4.5), the convergence result (4.14)

and (4.15) can be proved similar as in Sec. 3, we omit the details.

Lemma 4.4. Let d = 3, |θ| < 1
4a ,

Λ(θ) := lim
T→∞

Λ(T, θ) = lim
T→∞

T−1/2 log P exp[θT 1/2W(T )] , (4.16)

then

Λ(θ) = 〈λ, w(1, ·; θ)〉 , (4.17)

where w(s, x; θ) is the mild solution of Eq. (4.5). And there is δ > 0 such that Λ(θ)

is strictly convex, continuous differentiable in |θ| < δ < 1
4a with Λ′(0) = 1.

Proof. Recall (4.1) we know

P exp[θT 1/2W(T )] = exp{θ〈λ, fT 〉 + 〈λ, uT (T, ·; θ)〉} (4.18)



August 31, 2005 16:48 WSPC/102-IDAQPRT 00202

Quenched Mean Limit Theorems for the Super-Brownian Motion 395

for θ ≤ 0, where fT := T−1/2f and uT (t, ·; θ) is the mild solution of the evolution

Eq. (4.2). By the transformation wT (t, x; θ) := TuT (T t, T 1/2x; θ), one gets (note

that d = 3),

〈λ, uT (T, ·; θ)〉 = T 1/2〈λ, wT (1, ·; θ)〉 (4.19)

and wT (t, x; θ) is the mild solution of Eq. (4.3), it is analytic in |θ| < 1
4a by

Lemma 4.2, then (4.18) also holds for 0 < θ < 1
4a by properties of Laplace transform

of probability measure on [0,∞) (cf. Ref. 15).

From (4.16), (4.18) and (4.19), it follows that

Λ(θ) := lim
T→∞

Λ(T, θ) = lim
T→∞

T−1/2 log P exp[θT 1/2W(T )] ,

= lim
T→∞

T−1/2[θ〈λ, fT 〉 + T 1/2〈λ, wT (1, ·; θ)〉]

= 〈λ, w(1, ·; θ)〉 ,

by Lemma 4.3, where w(t, x; θ) is the mild solution of (4.5).

The mild solution of Eq. (4.5) is

w(t, x; θ) = θtp(t, x) +

∫ t

0

Pt−rw(r, ·; θ)2(x)dr ,

then

Λ(θ) = θ +

∫ 1

0

〈λ, w(r, ·; θ)2〉dr .

We have Λ′(0) = 1 and Λ′′(0) = (π)−3/2/6, and then there is an δ > 0 such that

Λ(θ) is strictly convex in |θ| < δ < 1
4a .

Proof of Theorem 1.3. Based on Lemma 4.4, Theorem 1.3 followed from the

general large deviation result Gärtner–Ellis Theorem (cf. Dembo & Zeitouni4). The

neighborhood O is that of {Λ′(θ) : |θ| < δ}.
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