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Abstract. We prove some central limit theorems for a 2-level super-Brownian
motion with random immigration, which lead to limiting Gaussian random fields.
The covariance of those Gaussian fields are explicitly characterized.
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1. Introduction and statement of main results

Measure-valued processes whose dynamics is given by a random reproduction of mass

(producing mass fluctuations) together with a mass flow (partly smoothing out the fluc-

tuation) are an interesting object of study. In this paper, as a mass reproduction, we

will consider 2-level branching, with a critical reproduction on the individual as well as

on the family level; the mass flow is that of Brownian motion, leading to so called 2-level

super-Brownian motion. Those 2-level superprocesses have been studied by many authors

including Dawson, Gorostiza, Hochberg, Wakobinger and Wu ([5], [7], [12], [13]) etc. Wu

([13]) confirmed Dawson’s conjecture about extinction in lower dimensions d ≤ 4; whereas

Gorostiza et al ([7]) proved the persistent property in higher dimensions d > 4 and thus

established that d = 4 is the critical dimension. For 1-level superprocesses, as we known,

this important property was proved by Dawson in the famous paper [1] in which the

critical dimension is d = 2.

The aim of this note is to consider the central limit behavior of the 2-level super-

Brownian motion. The long-time fluctuations of the occupation time of 1-level super-

Brownian motion were studied by Iscoe ([11]). Those of (aggregated) 2-level branching

particle systems (with a more general class of particle motion) by Dawson et al ([4]).

In [4] it was indicated which terms in the covariance functional of the occupation time
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fluctuations drop out in the superprocess limit. We shall actually establish the central

limit theorem for the occupation time process of the 2-level super-Brownian motion for

d > 4 (Theorem 1), which is parallel to the result of [4].

Our interest is focused on the 2-level super-Brownian motion with 2-level super-

Brownian immigration, where the random path of a 2-level super-Brownian motion acts

as a source of “family” level immigration for another 2-level super-Brownian motion. In

this model, the immigration “families” involve two kind of evolution

a) the variability inherent in the immigration source,

b) the variability produced by the family branching after the immigration.

The fluctuation limit theorems for itself (Theorem 2) and its occupation time (Theorem

3) are proved (d > 4), we will see that in lower dimensions a) makes contribution to the

fluctuation limits, and in higher dimensions b) makes contribution. Interestingly, in the

critical dimension both of them make contributions. A similar phenomenon has been

observed for the 1-level super-Brownian motion by Hong & Li ([10]) and Hong ([9]).

Moreover, it reveals that the random immigration “smooths” the critical dimension in

the sense that there is no “ log ” term in the normalization for the critical dimension.

We first recall some background material and notations. Let C(IRd) denote the space

of continuous bounded functions on IRd. We fix a constant p > d and let φp(x) :=

(1 + |x|2)−p/2 for x ∈ IRd. Let Cp(IR
d) := {f ∈ C(IRd) : |f(x)| ≤ const·φp(x)}. In duality,

let Mp(IR
d) be the space of Radon measures µ on IRd such that 〈µ, f〉 :=

∫
f(x)µ(dx) < ∞

for all f ∈ Cp(IR
d). Throughout this paper, λ denotes the Lebesgue measure on IRd.

Suppose that W = (wt, t ≥ 0) is a standard Brownian motion in IRd with semigroup

(Pt)t≥0. Let (Tt)t≥0 be the semigroup of the (one-level) super-Brownian motion which was

determined by

E exp{−〈Xt, f〉} = exp{−〈µ, n(t, ·)〉}, f ∈ C+
p (IRd), (1)

where n(·, ·) is the unique mild solution of the evolution equation

{
ṅ(t) = ∆n(t)− n2(t)
n(0) = f.

(2)

From this it is easy to obtain the following

Proposition 1. Let (Tt)t≥0 be the semigroup of the super-Brownian motion. Then for

f ∈ C+
p (IRd) we have

Tt(〈·, f〉)(µ) = 〈µ, Ptf〉 (3)
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and

Tt(〈·, f〉2)(µ) = 〈µ, Ptf〉2 + 2〈µ,
∫ t
0 Ps(Pt−sf)2ds〉. (4)

2

Let (Tt)t≥0 be the semigroup of the super-Brownian motion. Let p > d and let

M2
p (IRd) :=

{
ν ∈ M(Mp(IR

d))) :
∫ ∫

φp(x)µ(dx)ν(dµ) < ∞
}

.

The 2-level superprocess with branching rate α > 0 is an M2
p (IRd)-valued continuous

homogenous Markov process X ≡ {X (t), t ≥ 0} such that

E [exp(−〈〈X (t), F 〉〉|X (0) = ν] = exp(−〈〈ν, vF (t)〉〉) (5)

for F of the form F (µ) = h(〈µ, f〉) with f ∈ Cc(IR
d)+ and h ∈ Cb(IR

d), where vF (t, µ) is

the solution of the non-linear integral equation

v(t, µ) = Ttv(0, ·)(µ)− α
∫ t

0
Tt−s(v(s, ·))2(µ)ds, v(0, µ) = F (µ), (6)

where 〈〈ν, F 〉〉 :=
∫

F (µ)ν(dµ). See [7], [13]; and [3] or [12].

As pointed out in [7], the 2-level superprocess X can be thought of as a “super-

superprocess”. We will consider the occupation time process Y ≡ {Y(t), t ≥ 0} of the

2-level superprocess X , where Y(t) :=
∫ t
0 X (s)ds is determined by the Laplace transition

functional

E [exp(− ∫ t
0〈〈X (s), F 〉〉ds|X (0) = ν] = exp(−〈〈ν, uF (t)〉〉), (7)

where uF (t, µ) is the solution of the non-linear integral equation

u(t, µ) =
∫ t

0
TsF (µ)ds− α

∫ t

0
Tt−s(u(s, ·))2(µ)ds, u(0, µ) = 0. (8)

Let X (0) = R∞, which is the canonical equilibrium measure of the 1-level superprocess

non-trivial equilibrium state X(∞) for d ≥ 3 (see Dawson & Perkins [6], Gorostiza et al

[7]). Consider the centered process Z(t),

〈〈Z(t), F 〉〉 := ad(t)
−1[〈〈Y(t), F 〉〉 − E 〈〈Y(t), F 〉〉], (9)

where the normalizing factor ad(t) is given by

ad(t) =





t
3
4 , d = 5,

(t log t)
1
2 , d = 6,

t
1
2 , d ≥ 7.

(10)
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The Green potential operator G of the Brownian motion is defined by

Gf =
∫ ∞

0
Ptfdt, f ∈ Cc(IR

d)+,

and that the (operator) powers of G are given by

Gkf =
1

(k − 1)!

∫ ∞

0
tk−1Ptfdt, k ≥ 2.

Then we obtained the following central limit theorem

Theorem 1 Let d ≥ 5 and X (0) = R∞. Then as t →∞, Z(t) converges in distribution

to a centered Gaussian field Z(∞) with covariance

Cov(〈Z(∞), F 〉, 〈Z(∞), H〉) =

{
αCd〈λ, f〉〈λ, h〉, d = 5, 6
α〈f, G3h〉, d ≥ 7.

where C5 = 16
9
(2 − √

2)(2π)−5/2, C6 = (2π)−3/4, λ is the Lebesgue measure on IRd,

F (µ) = 〈µ, f〉 and H(µ) = 〈µ, h〉 for f ∈ Cc(IR
d)+ and h ∈ Cc(IR

d)+. 2

This result was indicated by Dawson et al (see 2.6 and Theorem 3.2.1 of [4]), we omit

the details of the proof.

Now we consider the 2-level superprocess with random immigration. Hong and Li

([10]) studied this model in the 1-level situation, where some interesting phenomenon in

asymptotic behavior is revealed. Let ϑ ≡ (ϑt, t ≥ 0) be a critical 2-level superprocess

with branching rate β > 0. Taking the path of ϑ as the immigration rate, we get another

2-level superprocess X ϑ with immigration, which is determined by

E exp
{
−〈〈X ϑ

t , F 〉〉
}

= E
[
E exp{−〈〈X ϑ

t , F 〉〉}
∣∣∣∣{σ(ϑs, s ≤ t)}

]

= E exp
{
−〈〈X0, v(t, ·)〉〉 − ∫ t

o 〈〈ϑs, v(t− s, ·)〉〉ds
}

= exp {−〈〈X0, v(t, ·)〉〉 − 〈〈ϑ0, v(t, ·)〉〉} .

(11)

where v(·, ·) is the solution of the non-linear integral equation

v(t, µ) =
∫ t
0 Tt−sv(s, µ)ds− β

∫ t
0 Tt−s(v(s, ·))2(µ)ds, v(0, µ) = 0 (12)

and v(·, ·) is the solution of the equation (6). Consider the centered process X ϑ(t),

〈〈X ϑ(t), F 〉〉 := bd(t)
−1[〈〈X ϑ(t), F 〉〉 − E 〈〈X ϑ(t), F 〉〉] , (13)

where the normalizing factor bd(t) is given by

bd(t) =

{
t

3
4 , d = 5

t
1
2 , d ≥ 6.

(14)
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We shall prove the following central limit theorem:

Theorem 2 Let d ≥ 5, X (0) = a1R∞, ϑ(0) = a2R∞ and a1, a2 > 0. Then as t → ∞,

X ϑ(t) converges in distribution to a centered Gaussian field X ϑ(∞) with covariance

Cov(〈〈X ϑ(∞), F 〉〉, 〈〈X ϑ(∞), H〉〉)

=





a2βCd〈λ, f〉〈λ, h〉, d = 5,
a2βCd〈λ, f〉〈λ, h〉+ 1

2
a2α〈f, G2h〉, d = 6,

1
2
a2α〈f, G2h〉, d ≥ 7.

for F (µ) = 〈µ, f〉 and H(µ) = 〈µ, h〉 with f ∈ Cc(IR
d)+ and h ∈ Cc(IR

d)+, where

Cd = (4π)−d/2
∫ 1

0
s2ds

∫ ∞

0
(s + r)−d/2dr,

for d = 5, 6. 2

Let Yϑ ≡ (Yϑ
t , t ≥ 0) be the occupation time of the 2-level process with random

immigration. That is, Yϑ(t) :=
∫ t
0 X ϑ(s)ds. We have

E exp{−〈〈Yϑ
t , F 〉〉} = exp{−〈〈X0, u(t, ·)〉〉 − 〈〈ϑ0, u(·)〉〉} (15)

where u(·, ·) is the solution of the non-linear integral equation

u(t, µ) =
∫ t
0 Tt−su(s, ·)(µ)ds− β

∫ t
0 Tt−s(u(s, ·))2(µ)ds, v(0, µ) = 0 (16)

and u(·, ·) is the solution of the equation (8). Consider the centered process Yϑ(t),

〈〈Yϑ(t), F 〉〉 := cd(t)
−1[〈〈Yϑ(t), F 〉〉 − E 〈〈Yϑ(t), F 〉〉], , (17)

where the normalizing factor cd(t) is given by

cd(t) =

{
t

12−d
4 , 5 ≤ d ≤ 7

t, d ≥ 8.
(18)

Theorem 3 Let d ≥ 5, X (0) = a1R∞ and ϑ(0) = a2R∞. Then as t → ∞, Yϑ(t)

converges in distribution to a centered Gaussian field Yϑ(∞) with covariance

Cov(〈〈Yϑ(∞), F 〉〉, 〈〈Yϑ(∞), H〉〉)

=





a2βCd〈λ, f〉〈λ, h〉, 5 ≤ d ≤ 7,
a2βCd〈λ, f〉〈λ, h〉+ a2α〈f,G3h〉, d = 8,
a2α〈f, G3h〉, d ≥ 9.
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for F (µ) = 〈µ, f〉 and H(µ) = 〈µ, h〉 with f ∈ Cc(IR
d)+ and h ∈ Cc(IR

d)+, where

Cd = (2π)−d/2
∫ 1

0
s4ds

∫ 1

0
hdh

∫ 1

0
h′dh′

∫ 1

0
dr

∫ 1

0
dr′

∫ ∞

0
(2l + 2s− shr − sh′r′)−d/2dl

for 5 ≤ d ≤ 8. 2

Remark. 1. Comparing the normalization in (10), (14) and (18), we found that in the

model of the 2-level superprocess with random immigration there is no “ log ” term in the

critical dimension, which is “smoothed” by the random immigration.

2. With a1, a2 labelling the amount of the particles and α, β labelling the two kinds of

branching in our model, interesting phenomenon is reflected in Theorem 2 and Theorem

3 for the 2-level superprocess with random immigration: Firstly, only the immigration

particles make contributions to the limiting behavior. Secondly, the immigration particles

involve two kinds of branching, the branching of the random immigration ϑ and that

of the underlying process X . The former makes contributions to the fluctuation limits

in low space dimensions; whereas the later makes contributions in higher dimensions.

Interestingly, both of the branchings make contributions in the critical dimension.

2. Proofs

The method to prove the three theorems is similar. We will prove Theorem 2, and

make a simple calculation for Theorem 3 to confirm that cd(t) is the right normalization

for the occupation time process Yϑ. First of all, we note that the initial value R∞ of

the 2-level superprocess is the canonical equilibrium measure of the 1-level superprocess

(cf. Dawson and Perkins [6], Gorostiza et al [7]). The properties of R∞ is important

for our consideration. Let ν0(dµ) ≡ ∫
IRd δδx(dµ)dx. Wu ([13]) proved that ν0 ∈ M2

p (IRd),

R∞ ∈ M2
p (IRd) and

T ∗
t ν0 ⇒R∞ (19)

as t → ∞. The following lemma was proved by Gorostiza et al ([7]), it is a direct

calculation based on Proposition 1 and (19).

Lemma 1. Let R∞ be the canonical equilibrium measure of the 1-level superprocess.

Then

〈〈R∞, 〈·, f〉〉〉 = 〈λ, f〉 (20)
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〈〈R∞, 〈·, f〉2〉〉 =
∫ ∞

0

∫

IRd
f(y)Psf(y)dyds. (21)

2

By (11) and (13) it is easy to get that

E exp{−〈〈X ϑ(t), F 〉〉} = exp{a1αI + a2βII + a2αIII}, (22)

where

I = 〈〈R∞,
∫ t

0
Tt−sv

2
t (s)ds〉〉,

II = 〈〈R∞,
∫ t

0
Tt−sv

2
t (s)ds〉〉,

III = 〈〈R∞,
∫ t

0

∫ s

0
Tt−rv

2
t (r)drds〉〉,

where vt(s, ·) and vt(s, ·) are the solutions of equations of (6) and (12) respectively with

F replaced by Ft(µ) = bd(t)
−1F (µ) = bd(t)

−1〈µ, f〉. Now we will calculate the three limit

of the above. First note that by (6) we have

vt(s, µ) ≤ TsFt(µ) = bd(t)
−1〈µ, Psf〉. (23)

Then by Proposition 1 and Lemma 1,

I ≤ 〈〈R∞,
∫ t

0
Tt−s[bd(t)

−1〈·, Psf〉]2ds〉〉

= bd(t)
−2

∫ t

0
〈〈R∞, [〈·, Psf〉]2〉〉ds

= bd(t)
−2

∫ t

0
ds

∫ ∞

0
dh

∫
(PhPsf)2(x)dx

≤ C · bd(t)
−2

∫ t

0
ds

∫ ∞

0
(2s + 2h)−d/2dh

→ 0,

for d ≥ 5 as t →∞.

Lemma 2. Let d ≥ 5. Then as t →∞

II −→
{

Cd〈λ, f〉2, d = 5, 6
0, d ≥ 7.

where

Cd = (4π)−d/2
∫ 1

0
s2ds

∫ ∞

0
(s + r)−d/2dr
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for d = 5, 6. 2

Proof. Firstly we write II as

II = II1 − II2 − II3, (24)

where

II1 = 〈〈R∞,
∫ t

0
Tt−s[sTsFt]

2ds〉〉,

II2 = 〈〈R∞,
∫ t

0
Tt−s[sTsFt]

2ds〉〉 − 〈〈R∞,
∫ t

0
Tt−s[

∫ s

0
Ts−rvt(r)dr]2ds〉〉,

II3 = 〈〈R∞,
∫ t

0
Tt−s[

∫ s

0
Ts−rvt(r)dr]2ds〉〉 − 〈〈R∞,

∫ t

0
Tt−sv

2
t (s)ds〉〉.

By Proposition 1 and Lemma 1, we have

II1 = bd(t)
−2

∫ t

0
〈〈R∞, [s〈·, Psf〉]2〉〉ds

= bd(t)
−2

∫ t

0
s2ds

∫ ∞

0
dh

∫
(PhPsf)2(x)dx

= bd(t)
−2

∫ t

0
s2ds

∫ ∞

0
dh

∫ ∫
p(2s + 2h, y, z)f(y)f(z)dydz

= bd(t)
−2t4−d/2

∫ 1

0
s2ds

∫ ∞

0
dh

∫ ∫
[2π(2s + 2h)]−d/2e

(y−z)2

2t(s+h) f(y)f(z)dydz

−→
{

Cd〈λ, f〉2, d = 5, 6
0, d ≥ 7,

where

Cd = (4π)−d/2
∫ 1

0
s2ds

∫ ∞

0
(s + h)−d/2dh

for d = 5, 6.

For II2, we note that

II2 = 〈〈R∞,
∫ t

0
Tt−s[sTsFt]

2



1−

[∫
s
0 Ts−rvt(r, ·)(µ)dr

sTsFt(µ)

]2


 ds〉〉 (25)

and II2 ≤ II1 because by (6)

0 ≤
∫ s
0 Ts−rvt(r, ·)(µ)dr

sTsFt(µ)
= 1−

∫ s
0 dr

∫ r
0 Ts−hvt(h, ·)2(µ)dh

sTsFt(µ)
≤ 1.

Moreover,

∫ s
0 dr

∫ r
0 Ts−hvt(h, ·)2(µ)dh

sTsFt(µ)
≤ bd(t)

−1

∫ s
0 dr

∫ r
0 Ts−h[ThF ]2(µ)dh

sTsF (µ)
−→ 0
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as t → ∞ for all s and R∞ − a.e.µ. Since II1 convergence as t → ∞, by dominated

convergence theorem we get that

II2 −→ 0. (26)

Based on equations (6) and (12) we can prove that II3 → 0 similarly. Combining the

above with (24) complete the proof. 2

Lemma 3. Let d ≥ 5. Then as t →∞

III −→
{

0, d = 5,
1
2
〈f, G2f〉, d ≥ 6.

2

Proof. Note that

III = III1 − III2,

where

III1 = 〈〈R∞,
∫ t

0

∫ s

0
Tt−r(TrFt)

2drds〉〉,

III2 = 〈〈R∞,
∫ t

0

∫ s

0
Tt−r(TrFt)

2drds〉〉 − 〈〈R∞,
∫ t

0

∫ s

0
Tt−rv

2
t (r)drds〉〉.

By Proposition 1 and Lemma 1, we have

III1 = bd(t)
−2

∫ t

0
ds

∫ s

0
〈〈R∞, [〈·, Prf〉]2〉〉dr

= 2bd(t)
−2

∫ t

0
ds

∫ s

0
dr

∫ ∞

0
dh

∫
(PhPrf)2(x)dx

= 2bd(t)
−2

∫ t

0
ds

∫ s

0
dr

∫ ∞

0
dh

∫ ∫
p(2r + 2h, y, z)f(y)f(z)dydz

−→
{

0, d = 5,
1
2

∫∞
0 dr

∫∞
0 dh

∫
fPr+hfdy d ≥ 6.

=

{
0, d = 5,
1
2
〈f, G2f〉 d ≥ 6.

Similar as in Lemma 2, we can prove that III2 → 0. Those complete the proof. 2

Proof of Theorem 2. Combining Lemma 2 and Lemma 3 with (22), we get the results

from (cf. Iscoe [11]). 2
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For Theorem 3, by (15) and (17) we get that

E exp{−〈〈X ϑ(t), F 〉〉} = exp{a1αJ1 + a2βJ2 + a2αJ3}, (27)

where

J1 = 〈〈R∞,
∫ t

0
Tt−su

2
t (s)ds〉〉,

J2 = 〈〈R∞,
∫ t

0
Tt−su

2
t (s)ds〉〉,

J3 = 〈〈R∞,
∫ t

0
ds

∫ s

0
Tt−ru

2
t (r)dr〉〉,

where ut(s, ·) and ut(s, ·) are the solutions of equations of (8) and (16) respectively with

F replaced by Ft(µ) = cd(t)
−1F (µ) = cd(t)

−1〈µ, f〉. It is easy to verify that J1 → 0,

and then we can calculate the limits of J2 and J3 similar as in lemma 2 and lemma 3

respectively. For example we consider J3 as follows.

Lemma 4. Let d ≥ 5. Then as t →∞

J3 −→
{

0, 5 ≤ d ≤ 7,
〈f, G3f〉, d ≥ 8.

2

Proof. To calculate the limit of J3, it is enough to consider that of the J ′3,

J ′3 = 〈〈R∞,
∫ t

0
ds

∫ s

0
Tt−r[

∫ r

0
ThFtdh]2dr〉〉,

By Proposition 1 and Lemma 1, we have

J ′3 = cd(t)
−2

∫ t

0
ds

∫ s

0
〈〈R∞, [〈·,

∫ r

0
Phfdh〉]2〉〉dr

= 2cd(t)
−2

∫ t

0
ds

∫ s

0
dr

∫ ∞

0
dl

∫
(
∫ r

0
Ph+lfdh)2(x)dx

= cd(t)
−2

∫ t

0
ds

∫ s

0
dr

∫ ∞

0
dl

∫ r

0
dh

∫ r

0
dh′

∫ ∫
p(l + h + h′, y, z)f(y)f(z)dydz

−→
{

0, 5 ≤ d ≤ 7,
1
2

∫∞
0 dl

∫∞
0 dh

∫∞
0 dh′

∫
fPl+h+h′fdy, d ≥ 8.

=

{
0, 5 ≤ d ≤ 7,
〈f, G3f〉, d ≥ 8

as t →∞. Then we can prove that ∆J3 := J3 − J ′3 → 0. 2

The remaining proof is similar as Theorem 2. We omit the details.
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