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1. Introduction and statement of results

Superprocesses in random medium have been received much attention in recent years,

see, for examples, Dawson and Fleischmann [3], Evans and Perkins [8] etc., Hong and

Li([10], [11], [13] ) considered a super-Brownian motion X with immigration governed

by the trajectory of another super-Brownian % motion (SBMSBI, for short), denoted it

by X%. In particles picture, there are two kind of particles in our model: one is the

underlying particles governed by X, the other is the immigration particles governed by %

which undergo as the underlying particles when they immigrate into the system.

We now recall the model SBMSBI briefly. Let C(IRd) denote the space of continuous

bounded functions on IRd. We fix a constant p > d and let φp(x) := (1 + |x|2)−p/2 for

x ∈ IRd. Let Cp(IR
d) := {f ∈ C(IRd) : |f(x)| ≤ const·φp(x)}. In duality, let Mp(IR

d)

be the space of Radon measures µ on IRd such that 〈µ, f〉 :=
∫

f(x)µ(dx) < ∞ for all

f ∈ Cp(IR
d). We endow Mp(IR

d) with the p-vague topology, that is, µk → µ if and only if

〈µk, f〉 → 〈µ, f〉 for all f ∈ Cp(IR
d). Then Mp(IR

d) is metrizable. Throughout this paper,

λ denotes the Lebesgue measure on IRd.
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Suppose that W = (wt, t ≥ 0) is a standard Brownian motion in IRd with semigroup

(Pt)t≥0. A super-Brownian motion X = (Xt, Qµ) is an Mp(IR
d)-valued Markov process

with X0 = µ and the transition probability given by

E exp{−〈Xt, f〉} = exp{−〈µ, n(t, ·)〉}, f ∈ C+
p (IRd), (1.1)

where n(·, ·) is the unique mild solution of the evolution equation
{

ṅ(t) = ∆n(t)− n2(t)
n(0) = f

(1.2)

Let {g(t, ·) : t ≥ 0} be a continuous C+
p (IRd)-valued path, for each a > 0, it is easy to

prove that there is a constant Ca > 0 such that g(t) ≤ Caφp for all t ∈ [0, a]. The weighted

occupation time of the super Brownian motion is determined by

E exp(−
∫ t

0
〈Xs, g(s)〉ds) = exp{−〈µ,m(0, t, ·)〉}, f ∈ C+

p (IRd), (1.3)

where m(0, ·, ·) is the unique mild solution of
{

ṁ(s) = ∆m(s)−m2(s) + g(t− s), 0 ≤ s ≤ t;
m(0) = 0,

(1.4)

see e.g. Iscoe [15].

Suppose that {γt, t ≥ 0} is an Mp(IR
d)-valued continuous path. A super-Brownian

motion with immigration determined by {γt, t ≥ 0} is an Mp(IR
d)-valued Markov process

Xγ = (Xγ
t , Qγ

µ) with transition probability given by

E exp(−〈Xγ
t , f〉) = exp{−〈µ, n(t, ·)〉 −

∫ t

0
〈γs, n(t− s, ·)〉ds}, f ∈ C+

p (IRd), (1.5)

where n(·, ·) is given by (1.2); see e.g. Dawson [2], Dynkin [6], Li & Wang [21] and Zhao

[24].

Based on (1.3) and (1.5) it is not difficult to construct a probability space (Ω,F ,Q)

on which the processes {%t : t ≥ 0} and {X%
t : t ≥ 0} are defined, where {%t : t ≥ 0} is a

super Brownian motion with %0 = λ and, for a given {%t : t ≥ 0}, the process {X%
t : t ≥ 0}

is a super Brownian motion with immigration determined by {%t : t ≥ 0} with X%
0 = λ.

By (1.3) and (1.5) we have

E exp{−〈X%
t , f〉} = E

[
E exp{−〈X%

t , f〉}
∣∣∣∣{σ(%s, s ≤ t)}

]

= E exp{−〈λ, n(t, ·)〉 −
∫ t

o
〈%s, n(t− s, ·)〉ds}

= exp{−〈λ, n(t, ·)〉 − 〈λ,m(t, ·)〉}, (1.6)

2



where m(·, ·) is the unique mild solution of the equation
{

ṁ(s) = ∆m(s)−m2(s) + n(s), 0 ≤ s ≤ t
m(0) = 0

(1.7)

and n(·, ·) is the mild solution of equation (1.2).

The process {X%
t : t ≥ 0} is what we call super-Brownian motion with super-Brownian

immigration (SBMSBI), for details, see Hong & Li [13]. Let

Y %
t :=

∫ t

0
X%

s ds (1.8)

be the occupation time process of SBMSBI in the sense that 〈Y %
t , f〉 :=

∫ t
0〈X%

s , f〉ds, where

f ∈ C+
p (Rd). By (1.3) and (1.6), we know that the Laplace transition functional of Y %

t

under Q is given by

E exp{−〈Y %
t , f〉} = exp{−〈λ, v(t, ·)〉 − 〈λ, u(t, ·)〉} (1.9)

where u(·, ·) is the mild solution of the equation
{

u̇(s) = ∆u(s)− u2(s) + v(s), 0 ≤ s ≤ t
u(0) = 0

(1.10)

and v(·, ·) is the solution of the equation
{

v̇(t) = ∆v(t)− v2(t) + f,
v(0) = 0.

(1.11)

Hong [11] proved the central limit theorem for the occupation time process of the

SBMSBI , some interesting properties have been revealed, especially the random immigra-

tion “smmoth” the critical dimension. Now we will investigate the LDP of the occupation

time process of the SBMSBI. Large deviation principles (LDP) have been proved for the

occupation time of the ordinary super-Brownian motion, see, e.g. [17], [18] and [19], etc..

Iscoe and Lee consider for the dimension d = 3, 4 in [17] and Lee for d ≥ 5 in [18], where

they proved the speed function is t1/2 for d = 3, t for d ≥ 5 and log t/t for d = 4.

Different from Lee [18], we use the series expanding method to obtain the LDP for

this model SBMSBI in higher dimension d ≥ 7.

Let f ≥ 0 be a Hölder continuous function with compact support in Rd and 〈λ, f〉 = 1

and let

W(t) :=
1

t2
〈Y %

t , f〉,
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Λd(t, θ) := c−1
d (t) log E exp[θcd(t)W(t)], (1.12)

where cd(t) = t2 for d ≥ 7.

We note that the following estimation is useful in our proof. For any f ∈ C+
p (IRd), we

have

Ptf ≤ c(1 ∧ t−d/2). (1.13)

where c = max{(2π)−d/2, |f |} is a positive constant.

It is proved below that for d ≥ 7 the following equations
{

∂v(t,x;θ)
∂t

= ∆v(t, x; θ) + v2(t, x; θ) + θf
v(0, x; θ) = 0

(1.14)

and {
∂u(t,x;θ)

∂t
= ∆u(t, x; θ) + u2(t, x; θ) + v(t, x; θ)

u(0, x; θ) = 0
(1.15)

admit unique mild solutions v(t, x; θ) and u(t, x; θ) respectively when |θ| < 1
a
, where

a = c · ∫∞0 ds
∫ s
0 (1 ∧ r−d/2)dr < ∞ when d ≥ 7.

Furthermore,

Λ(θ) := lim
t→∞Λd(t, θ) = θ/2 + 〈λ, [v(·; θ)]2〉/2 (1.16)

exists and is stictly convex, continuously differentiable and Λ′(0) = 1/2, where v(x; θ) :=

limt→∞ v(t, x; θ) exists

and satisfies the following equation

∆v(x; θ) + v2(x; θ) + θf = 0. (1.17)

Let

I(α) := sup
|θ|< 1

4a

[αθ − Λ(θ)] (1.18)

i.e., the Legendre transform of Λ(θ). Then we obtain a LDP for d ≥ 7:

Theorem 1.1 Let d ≥ 7, then the law of Wt under Q admits the LDP with speed function

t2 and rate function I(α), i.e. there exists a neighborhood O of 1/2 such that if U ⊂ O is

open and C ⊂ O is closed, then

lim inf
t→∞

1

t
log Q{W(t) ∈ U} ≥ − inf

α∈U
I(α),

lim sup
t→∞

1

t
log Q{W(t) ∈ C} ≤ − inf

α∈C
I(α).
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Remark. The existence of the solutions of equations (1.14) and (1.15) is well know

result when θ < 0. We will use the series expansion to prove the existence of the solution

in a neighborhood of 0 and obtain the expression of (1.12) by extending the Laplace

transformation. The limit of the solution to eqution (1.14) was considered in Lee [18]

when he proved the LDP for the ordinary Super-Brownian motion. Our attention is

focused on that of equation (1.15) which is caused by the random immigration.

2. Proof of Theorem 1.1

Firstly, for any functions g(t, ·), h(t, ·) ∈ Cp(R
d), ∀t ≥ 0, p > 1,

we define the convolution

g(t, x) ∗ h(t, x) :=
∫ t

0
Ps[g(t− s, ·) · h(t− s, ·)](x)ds. (2.1)

Let {
g∗1(t, x) := g(t, x)
g(t, x)∗n :=

∑n−1
k=1 g(t, x)∗k ∗ g(t, x)∗(n−k),

(2.2)

and {Bn, n ≥ 1} is a sequence of positive numbers determined by

{
B1 = B2 = 1
Bn =

∑n−1
k=1 BkBn−k,

(2.3)

see Dynkin [5] and Wang [22]. Recall (1.13) for the positive constant c.

Lemma 2.1. Let d ≥ 7 and F (t, x) =
∫ t
0 Psf(x)ds, then

F (t, x)∗n ≤ Bna
n−1 ·

∫ t

0
Psf(x)ds (2.4)

where a = c · ∫∞0 ds
∫ s
0 (1 ∧ r−d/2)dr < ∞ when d ≥ 7.

Proof. We will prove (2.4) by induction in n. It is trival for n = 1. For n = 2, from (1.13)

and the definition of the convolution, we have

F (t, x)∗2 =
∫ t

0
Ps[F (t− s, ·)]2(x)ds

=
∫ t

0
Ps[

∫ t−s

0
Prfdr]2(x)ds

≤
∫ t

0
ds

∫
p(s, x, y)[

∫ t−s

0
Prf(y)dr][

∫ t−s

0
c · (1 ∧ r−d/2)dr]dy

5



=
∫ t

0
ds

∫ s

0
Pt−rf(x)dr · [

∫ s

0
c · (1 ∧ r−d/2)dr]

≤
∫ t

0
Pt−rf(x)dr[

∫ t

0
ds

∫ s

0
c · (1 ∧ r−d/2)dr]

≤ a ·
∫ t

0
Prf(x)dr.

Suppose (2.4) is true for all k < n, by (2.2) and (2.3) we get

F (t, x)∗n ≤
n−1∑

1

[Bka
k−1 ·

∫ t

0
Psf(x)ds] ∗ [Bn−ka

n−k−1 ·
∫ t

0
Psf(x)ds]

= Bna
n−2 · [

∫ t

0
Psf(x)ds] ∗ [

∫ t

0
Psf(x)ds]

≤ Bna
n−1 ·

∫ t

0
Psf(x)ds

and then the proof is complete by induction. 2

Lemma 2.2. Let d ≥ 7 , |θ| < 1
4a

, then the equation (1.14) admits an unique mild

solution v(t, x; θ), it is analytic in |θ| < 1
4a

and

|v(t, x; θ)| ≤ b(θ) ·
∫ t

0
Psf(x)ds, (2.5)

where b(θ) = (2a)−1[1 − (1 − 4a|θ|)1/2]. Moreover, limt→∞ v(t, x; θ) := v(x; θ) exists

and satisfies the following equation

∆v(x; θ) + v2(x; θ) + θf = 0. (2.6)

Proof. The mild form of equation (1.14) is

v(t, x; θ) = θ
∫ t

0
Psf(x)ds +

∫ t

0
Ps[v(t− s, ·; θ)]2(x)ds,

i.e.

v(t, x; θ) = θF (t, x) + v(t, x; θ) ∗ v(t, x; θ). (2.7)

Then

v(t, x; θ) =
∞∑

n=1

F (t, x)∗nθn (2.8)

6



by Dynkin [5] ( see also Wang [22] ) and we can prove the convergence of the series on

the right hand, by Lemma 2.1 the series is dominated by

|v(t, x; θ)| ≤
∞∑

n=1

Bna
n−1|θ|n ·

∫ t

0
Psf(x)ds. (2.9)

On the other hand, we know (see Dawson [1], also Dynkin [5] and Wang [22]) that the

function g(z) = 1
2
[1− (1− 4z)1/2] could be expanded as a power series

g(z) =
1

2
[1− (1− 4z)1/2] =

∞∑

n=1

Bnz
n,

when |z| < 1/4, where Bn is given in (2.3). So the series (2.8) is uniformly absolute

convergent for |θ| < 1
4a

, and from (2.9) we get

|v(t, x; θ)| ≤ (2a)−1[1− (1− 4a|θ|)1/2] ·
∫ t

0
Psf(x)ds,

as desired. The last part of the theorem could proved by the similar method to Theorem

3.3 of [15]. 2

The following two Lemmas could be proved by the same method, and they reflects the

special structure properties of our model SBMSBI.

Lemma 2.3. Let d ≥ 7, |θ| < 1
4a

, v(t, x; θ) be the mild solution of equation (1.14), and

G(t, x; θ) =
∫ t

0
Psv(t− s, ·; θ)(x)ds,

then

G(t, x; θ)∗n ≤ Bnk
n−1b(θ)n ·

∫ t

0
dh

∫ h

0
Pt−lf(x)dl (2.10)

where k = c
∫∞
0 dt

∫ t
0 ds

∫ s
0 [1 ∧ (t− l)−d/2]dl < ∞, c is given in (1.13) and b(θ) is given in

Lemma 2.2.

Proof. For n = 1, by Lemma 2.2 we have

G(t, x; θ) ≤ b(θ) ·
∫ t

0
Pt−s[

∫ s

0
Prfdr](x)ds = b(θ) ·

∫ t

0
ds

∫ s

0
Pt−rf(x)dr.

For n = 2,

G(t, x; θ)∗2 =
∫ t

0
Pt−s[G(s, ·; θ)]2(x)ds
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≤ b(θ)2 ·
∫ t

0
Pt−s[

∫ s

0
dh

∫ h

0
Ps−lfdl]2(x)ds

≤ b(θ)2c ·
∫ t

0
ds

∫ s

0
dh

∫ h

0
Pt−lf(x)dl · [

∫ s

0
dh

∫ h

0
(1 ∧ (s− l)−d/2)dl]

≤ b(θ)2c ·
∫ t

0
dh

∫ h

0
Pt−lf(x)dl · [

∫ t

0
ds

∫ s

0
dh

∫ h

0
(1 ∧ (s− l)−d/2)dl]

≤ kb(θ)2 ·
∫ t

0
dh

∫ h

0
Pt−lf(x)dl,

in which we use (1.13) in the third step and the fact k = c
∫∞
0 dt

∫ t
0 ds

∫ s
0 [1∧(t− l)−d/2]dl <

∞ when d ≥ 7. If (2.10) is true for all k < n, we get

G(t, x; θ)∗n

≤
n−1∑

m=1

[Bmkm−1b(θ)m ·
∫ t

0
dh

∫ h

0
Pt−lf(x)dl] ∗ [Bn−mkn−m−1b(θ)n−m ·

∫ t

0
dh

∫ h

0
Pt−lf(x)dl]

= Bnk
n−2b(θ)n · [

∫ t

0
dh

∫ h

0
Pt−lf(x)dl] ∗ [

∫ t

0
dh

∫ h

0
Pt−lf(x)dl]

≤ Bnk
n−1b(θ)n ·

∫ t

0
dh

∫ h

0
Pt−lf(x)dl

as desired by induction. 2

Lemma 2.4. Let d ≥ 7, |θ| < 1
4a

, v(t, x; θ) be the mild solution of equation (1.14), then

the equation (1.15) admits an unique mild solution u(t, x; θ). Moreover, it is analytic in

|θ| < 1
4a

and

|u(t, x; θ)| ≤ β(θ) ·
∫ t

0
dh

∫ h

0
Pt−lf(x)dl, (2.11)

where β(θ) = (2k)−1[1− (1− 4b(θ)k)1/2].

Proof. The mild form of equation (1.15) is

u(t, x; θ) =
∫ t

0
Psv(t− s, ·; θ)(x) +

∫ t

0
Ps[u(t− s, ·; θ)]2(x)ds, (2.12)

i.e.

u(t, x; θ) = G(t, x; θ) + u(t, x; θ) ∗ u(t, x; θ). (2.13)

Then

u(t, x; θ) =
∞∑

n=1

G(t, x; θ)∗n (2.14)
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while we prove the convergence of the series on the right hand. By Lemma 2.3, the series

is dominated by

|u(t, x; θ)| ≤
∞∑

n=1

Bnk
n−1b(θ)n ·

∫ t

0
dh

∫ h

0
Pt−lf(x)dl. (2.15)

It is easy to check that |4b(θ)k| < 1 whenever |θ| < 1
4a

, then the series in (2.14) is uniformly

absolute convergent by the same method as in Lemma 2.2, and

|u(t, x; θ)| ≤ (2k)−1[1− (1− 4b(θ)k)1/2] ·
∫ t

0
dh

∫ h

0
Pt−lf(x)dl. (2.16)

This completes the proof. 2

Lemma 2.5. Let d ≥ 7 and Y %
t be the occupation time process of SBMSBI, then for

|θ| < 1
4a

, we have

E exp{〈Y %
t , θf〉} = exp{〈λ, v(t, ·; θ)〉+ 〈λ, u(t, ·; θ)〉} (2.17)

where v(t, x; θ) and u(t, x; θ) are the mild solutions of equations (1.14) and (1.15) respec-

tively.

Proof. From (1.9), (1.10) and (1.11) (in which −θ ↔ θ, −v ↔ v, −u ↔ u ), we have

E exp{〈X%
t , θf〉} = exp{〈λ, v(t, ·; θ)〉+ 〈λ, u(t, ·; θ)〉}, (2.18)

where v(t, x; θ) and u(t, x; θ) are the mild solutions of the following equations respectively,

{
∂v(t)

∂t
= ∆v(t) + v2(t) + θf

v(0) = 0
(2.19)

and {
∂u(t)

∂t
= ∆u(t) + u2(t) + v(t).

u(0) = 0

So (2.17) is true when θ ≤ 0. Note that v(t, x; θ) and u(t, x; θ) is analytic in θ when |θ| < 1
4a

by Lemma 2.2 and Lemma 2.4, then (2.17) also holds for 0 < θ < 1
4a

by properties of

Laplace transform of probability measure on [0,∞) (cf. [23]). 2

Lemma 2.6. Let d ≥ 7, |θ| < 1
4a

,

Λ(θ) := lim
t→∞Λd(t, θ) = lim

t→∞ t−2 log E exp[θt−2W(t)], (2.20)
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then

Λ(θ) = θ/2 + 〈λ, [v(·; θ)]2〉/2 (2.21)

where v(x; θ) is the solution of equation (2.6) in Lemma 2.2, and Λ(θ) is strictly convex,

continuous differentiable in |θ| < 1
4a

with Λ′(0) = 1/2.

Proof. Recall (1.12) and Lemma 2.5 we have

Λ(θ) = lim
t→∞ t−2[〈λ, v(t, ·; θ)〉+ 〈λ, u(t, ·; θ)〉], (2.22)

where v(t, x; θ) and u(t, x; θ) satisfy

v(t, x; θ) = θ
∫ t

0
Psf(x)ds +

∫ t

0
Ps[v(t− s, ·; θ)]2(x)ds, (2.23)

and

u(t, x; θ) =
∫ t

0
Psv(t− s, ·; θ)(x)ds +

∫ t

0
Ps[v(t− s, ·; θ)]2(x)ds. (2.24)

Then by noticing the fact 〈λ, f〉 = 1,

〈λ, v(t, ·; θ)〉 = θt +
∫ t

0
〈λ, [v(s, ·; θ)]2〉ds, (2.25)

and

〈λ, u(t, ·; θ)〉
=

∫ t

0
〈λ, v(s, ·; θ)〉ds +

∫ t

0
〈λ, [u(s, ·; θ)]2〉ds

= θt2/2 +
∫ t

0
ds

∫ s

0
〈λ, v2(h, ·; θ)〉dh +

∫ t

0
〈λ, [u(s, ·; θ)]2〉ds

By L’Hospital’s Rule and (2.11), as t →∞

t−2
∫ t

0
〈λ, [u(s, ·; θ)]2〉ds ≤ β(θ)2t−2

∫ t

0
〈λ, [

∫ s

0
dh

∫ h

0
Ps−lf(x)dl]2〉ds

= β(θ)2t−1〈λ, [
∫ t

0
dh

∫ h

0
Pt−lf(x)dl]2〉

= β(θ)2t−1
∫ t

0
dh

∫ h

0
dl

∫ t

0
dh′

∫ h′

0
dl′

∫ ∫
P2t−l−l′f(x)f(y)dxdy

≤ β(θ)2t−1
∫ t

0
dh

∫ h

0
dl

∫ t

0
dh′

∫ h′

0
[1 ∧ (2t− l − l′)−d/2]dl′

→ 0
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and then

lim
t→∞ t−2〈λ, u(t, ·; θ)〉 = θ/2 + lim

t→∞ t−2
∫ t

0
ds

∫ s

0
〈λ, v2(h, ·; θ)〉dh

= θ/2 + lim
t→∞〈λ, v2(t, ·; θ)〉/2

= θ/2 + 〈λ, v2(·; θ)〉/2

where the second step is according to Cesaro’s theorem if the limit in the right-hand side

exists and the third step is by lemma 2.2 and the dominated convergence theorem, because

|v(t, x; θ)| ≤ b(θ) · ∫ t
0 Psf(x)ds < b(θ) · ∫∞

0 Psf(x)ds and 〈λ, [b(θ) · ∫∞
0 Psf(x)ds]2〉 < ∞

when d ≥ 7. Note that from (2.5) we have

t−2〈λ, v(t, ·; θ)〉 ≤ t−2〈λ, b(θ)
∫ t

0
Psfds〉 → 0. (2.26)

Combining all the above with (2.22), we get

Λ(θ) = θ/2 + 〈λ, [v(·; θ)]2〉/2.

The last part of the theorem could proved by the similar method to Lemma 1.7 of Lee

[18]. This completes the proof. 2

Proof of Theorem 1.1 . Based on Lemma 2.7, Theorem 1.1 is followed from the general

large deviation result Gartner-Ellis Theorem (cf. Dembo and Zeitouni [4], or Ellis [7]).

2

Remark. At this moment, we obtain only the local LDP. It is interesting to investigate

the full LDP and to consider the LDP for the case of lower dimensions 3 ≤ d ≤ 6. 2
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