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Abstract

We study the uctuations around the mean of a super-Brownian motion with immigration controlled by the trajectory
of a stationary immigration process. The main result is a central limit theorem which holds for all dimensions and leads
to some Gaussian random �elds. c© 2001 Elsevier Science B.V. All rights reserved

MSC: primary 60J80; secondary 60F05

Keywords: Super-Brownian motion; Immigration; Stationary process; Central limit theorem

A variety of limit theorems have been proved for Dawson–Watanabe superprocesses. Dawson (1977)
obtained a spatial central limit theorem for the stationary state of a (�; d; �)-superprocess with underlying
dimension number d¿�=�. Iscoe (1986) proved central limit theorems for the associated weighted occupa-
tion time process in the same situation. A central limit theorem of super-Brownian motion was given by Li
(1999), which leads to non-degenerate limit distributions for all dimension numbers. Immigration structures
associated with Dawson–Watanabe superprocesses have been studied by several authors; see Gorostiza and
Lopez-Mimbela (1990), Li (1992a,b, 1996), Li and Wang (1999) and the references therein. Limit theorems
for immigration processes were studied by Li and Shiga (1995), where the immigration is governed by a
deterministic measure. Hong and Li (1999) considered a super-Brownian motion with immigration governed
by the trajectory of another super-Brownian motion and proved a central limit theorem for such process, which
lead to Gaussian random �elds for dimension numbers d¿3. For d=3 the �eld is spatially uniform; for d¿5
its covariance is given by the potential operator of the underlying Brownian motion; and for d=4 the limit
�eld involves a mixture of the two kinds of uctuations mentioned above, which exhibits a departure from
the phenomenon by Li (1999) and Li and Shiga (1995). Hong (2000) investigated the asymptotic behavior
of the model for d=2.
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To �nd new situations where non-degenerate limit theorems for a superprocess can be obtained, we consider
in this paper a super-Brownian motion with immigration controlled by the trajectory of a stationary immigration
process. The main result is a central limit theorem for the process. We shall see that the limit theorem gives
the same limit laws as the ones in Li (1999) and Li and Shiga (1995), in the contrast to the result of Hong
and Li (1999). The study has been stimulated by the work of Dawson and Fleischmann (1997), who studied
a super-Brownian motion with random branching mechanism governed by another super-Brownian motion.
The process considered here can also be regarded as a special form of the multi-type branching–immigration
model studied by Gorostiza and Lopez-Mimbela (1990) and Li (1992a).

1. Super-Brownian motion with immigration

Let C(Rd) denote the space of continuous bounded functions on Rd. We �x a constant p¿d and let
�p(x) := (1 + |x|2)−p=2 for x∈Rd. Let Cp(Rd) := {f∈C(Rd): |f(x)|6 const·�p(x)}. In duality, let Mp(Rd)
be the space of Radon measures � on Rd such that 〈�; f〉 := ∫

f(x)�(dx)¡∞ for all f∈Cp(Rd). We endow
Mp(Rd) with the p-vague topology, that is, �k → � if and only if 〈�k ; f〉→ 〈�; f〉 for all f∈Cp(Rd). Then
Mp(Rd) is metrizable. Throughout this note, � denotes the Lebesgue measure on Rd.
Suppose that (Pt)t¿0 is the semigroup of a standard Brownian motion in Rd. For any b¿0 we let

Pbt =e
−btPt . Let  := {t : t¿0} be a continuous path from [0;∞) to Mp(Rd). In this note, a Markov pro-

cess {X t : t¿0} with state space Mp(Rd) is called a subcritical super-Brownian motion with immigration
controlled by  if it has transition semigroup (Qr; t)t¿r¿0 such that∫

Mp(Rd)
e−〈�;f〉Qr; t(�; d�)= exp

{
−〈�; v(t − r; ·)〉 −

∫ t

r
〈s; v(t − s; ·)〉 ds

}
(1)

for f∈C+p (Rd), where v(· ; ·) is the unique solution of the evolution equation

v(t; x)=Pbt f(x)−
∫ t

0
Pbt−sv(s; ·)2(x) ds; t¿0; (2)

see e.g. Li and Wang (1999).
Let Q� denote the conditional law of {X t : t¿0} given that X 0 = �. Suppose that {�(t; ·): t¿0} is a

continuous path from [0;∞) to C+p (Rd) bounded above by const · �p. By an approximating procedure as
Iscoe (1986), one may show

Q� exp
{
−
∫ t

0
〈X s ; �(s)〉 ds

}
=exp

{
−〈�; w(t; ·)〉 −

∫ t

0
〈s; w(s; ·)〉 ds

}
(3)

for f∈C+p (Rd), where w(· ; ·) satis�es

w(r; x)=
∫ r

0
Pbr−s�(t − s)(x) ds−

∫ r

0
Pbr−sw(s; ·)2(x) ds; 06r6t: (4)

In particular, (1) de�nes a homogeneous semigroup (Q�t )t¿0 if t ≡ �. Observe that, when b¿0, we have∫ ∞

0
〈�; v(s; ·)〉 ds6

∫ ∞

0
〈�; Pbt f〉 ds= 〈�; f〉=b¡∞

for all f∈C+p (Rd). It follows that Q�t (0; ·)→Q� as t→∞, where Q� is a stationary distribution for (Q�t )t¿0
given by∫

Mp(Rd)
e−〈�;f〉Q�(d�)= exp

{
−
∫ ∞

0
〈�; v(s; ·)〉 ds

}
: (5)



W. Hong, Z. Li / Statistics & Probability Letters 51 (2001) 285–291 287

Now it is not di�cult to construct a probability space (
;F;Q) on which the two processes {%t : t¿0}
and {Yt : t¿0} are de�ned, where {%t : t¿0} is a stationary subcritical super-Brownian motion with im-
migration having one-dimensional distribution Q�, and given {%t : t¿0} the process {Yt : t¿0} is a critical
super-Brownian motion with immigration controlled by {%t : t¿0} and Y0 = 0.
One particular choice for the space (
;F;Q) is given as follows. Let C[0;∞) denote the totality of con-

tinuous paths {w(·): t¿0} from [0;∞) to Mp(Rd), with the Skorokhod topology and the Borel �-algebra G.
Suppose that Q� is the distribution on (C[0;∞);G) of the stationary immigration process with one-dimensional
distribution Q� and that Q0 is the distribution of the critical super-Brownian motion with immigration con-
trolled by {t : t¿0} and Y0 = 0. Let 
=C[0;∞) × C[0;∞) and F=G×G and de�ne the probability measure
Q on F by

Q(dw1; dw2)=Q�(dw1)Q
w1
0 (dw2); w1; w2 ∈C[0;∞):

Let %t(w1; w2)=w1(t) and Yt(w1; w2)=w2(t). Then {(%t; Yt): t¿0} has the predescribed distribution property.
By (1) we have

Q[exp{−〈Yt; f〉}|{%t : t¿0}] = exp
{
−
∫ t

0
〈%s; u(t − s)〉 ds

}
; (6)

where u(· ; ·) is the solution of

u(t; x)=Ptf(x)−
∫ t

0
Pt−su(s; ·)2(x) ds; t¿0: (7)

Taking the expectation of (6) and using (3) and (5) we get

Q exp{−〈Yt; f〉} =
∫
Mp(Rd)

exp
{
−〈�; w(t; ·)〉 −

∫ t

0
〈�; w(r; ·)〉 dr

}
Q�(d�)

= exp
{
−
∫ ∞

0
〈�; v(r; ·)〉 dr −

∫ t

0
〈�; w(r; ·)〉 dr

}
; (8)

where w(· ; ·) and v(· ; ·) are de�ned, respectively, by

w(r; x)=
∫ r

0
Pbr−su(s; ·)(x) ds−

∫ r

0
Pbr−sw

2(s; ·)(x) ds; r¿0 (9)

and

v(r; x)=Pbr w(t; ·)(x)−
∫ r

0
Pbr−sv

2(s; ·)(x) ds; r¿0: (10)

2. A central limit theorem

We present here a central limit theorem for the process {Yt : t¿0} de�ned in the last section. It is not
di�cult to check by using (7)–(10) that Q{Yt(f)}= t�(f)=b for t¿0 and f∈Cp(Rd). Let S(Rd) be the
space of rapidly decreasing, in�nitely di�erentiable functions on Rd whose all partial derivatives are also
rapidly decreasing, and let S′(Rd) be the dual space of S(Rd). We de�ne the S′(Rd)-valued process
{Zt : t¿0} by

〈Zt; f〉 := ad(t)−1[〈Yt; f〉 − t〈�; f〉=b]; f∈S(Rd); (11)

where a1(t)= t3=4, a2(t)= (t log t)1=2 and ad(t)= t1=2 for d¿3. Then we have
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Theorem 1. As t→∞; the distribution of Zt converges to a centered Gaussian random variable Z∞ in
S′(Rd) with covariance

Cov(〈Z∞; f〉; 〈Z∞; g〉)=




2〈�; f〉〈�g〉=3b�1=2; d=1;

〈�; f〉〈�; g〉=4�b; d=2;

〈�; fGg〉=2b; d¿3;

where G denotes the potential operator of the Brownian motion.

Now we proceed to the proof of Theorem 1 by an argument adapted from Li (1999). Let ft := ad(t)−1f. In
the following lemmas and proofs, ut(s); wt(s) and vt(s) are the solutions of Eqs. (7), (9) and (10), respectively,
with f being replaced by ft , and C denotes a constant which may take di�erent values in di�erent lines.

Lemma 2. For f∈S(Rd)+ let

Ad(t; f) :=
∫ t

0
dr

∫ r

0
ds

∫ s

0
e−b(r−s)〈�; (Ps−qft)2〉 dq:

Then we have

lim
t→∞Ad(t; f)=




2〈�; f〉2=3b√�; d=1;

〈�; f〉2=4�b; d=2;

〈�; fGf〉=2b; d¿3:

Proof. We have clearly

Ad(t; f)= ad(t)−2
∫ t

0
e−br dr

∫ r

0
ebs ds

∫ s

0
dq

∫
Rd
Ps−qf(x)2 dx:

When d¿3, we use l’Hospital’s rule to get

lim
t→∞Ad(t; f) = lim

t→∞
1
t

∫ t

0
e−br dr

∫ r

0
ebs ds

∫ s

0
dq

∫
Rd
Ps−qf(x)2 dx

= lim
t→∞

1
ebt

∫ t

0
ebs ds

∫ s

0
dq

∫
Rd
Ps−qf(x)2 dx

= lim
t→∞

1
b

∫ t

0
dq

∫
Rd
Ps−qf(x)2 dx

= 〈�; fGf〉=2b:
For d=1 we have

lim
t→∞A1(t; f) = lim

t→∞
1
t3=2

∫ t

0
e−br dr

∫ r

0
ebs ds

∫ s

0
dq

∫
Rd
Ps−qf(x)2 dx

= lim
t→∞

2
3
√
tebt

∫ t

0
ebs ds

∫ s

0
dq

∫
Rd
Ps−qf(x)2 dx

= lim
t→∞

2
3b

√
t

∫ t

0
dq

∫
Rd
Pqf(x)2 dx
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= lim
t→∞

2
3b

√
t

∫ t

0

1√
4�q

dq
∫
R2
exp

{
− (y − x)2

4q

}
f(x)f(y) dx dy

= lim
t→∞

2
3b

∫ 1

0

1√
4�r

dr
∫
R2
exp

{
− (y − x)2

4tr

}
f(x)f(y) dx dy

= 2〈�; f〉2=3b√�;

where we used the change of variables q= tr in the �fth step. Similarly, by setting q= t1−r for d=2, one
may see that limt→∞A2(t; f)= 〈�; f〉2=4�b.

Lemma 3. For f∈S(Rd)+ let

Bd(t; f) :=
∫ t

0
dr

∫ r

0
ds

∫ s

0
e−b(r−s)〈�; (Ps−qft)2 − ut(s− q; ·)2〉 dq:

Then we have limt→∞ Bd(t; f)= 0.

Proof. Note that for any f∈S(Rd)+ we have

‖Psf‖6C(1 ∧ s−d=2);

where C =C(f)¿0. From Eq. (7) we can see that

(Prft)2 − ut(r)2 = 2ut(r)
∫ r

0
Pr−sut(s)2 ds+

(∫ r

0
Pr−sut(s)2 ds

)2

6 3Prft

∫ r

0
Pr−s(Psft)2 ds

6 Cad(t)−3(Prf)2
∫ r

0
(1 ∧ s−d=2) ds:

It follows that

Bd(t; f)6Cad(t)−3
∫ t

0
dr

∫ r

0
e−b(r−s) ds

∫ s

0
dq

∫
Rd
Ps−qf(x)2 dx

∫ t

0
(1 ∧ l−d=2) dl

6Cad(t)−3
∫ t

0
dr

∫ r

0
e−b(r−s) ds

∫ t

0
(1 ∧ q−d=2) dq

∫ t

0
(1 ∧ l−d=2) dl:

Then we have for dimension one

lim sup
t→∞

B1(t; f)6C lim sup
t→∞

1
t9=4

∫ t

0
dr

∫ r

0
e−bs ds

∫ t

0
(1 ∧ q−d=2) dq

∫ t

0
(1 ∧ l−d=2) dl

6C lim sup
t→∞

1
t5=4

∫ t

0
(1 ∧ q−d=2) dq

∫ t

0
(1 ∧ l−d=2) dl=0:

The proof for other dimension numbers are similar.
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Proof of Theorem 1. From (7)–(9) and (11) we get the Laplace functional

Q exp{−〈Zt; f〉} = exp
{
t〈�; ft〉=b−

∫ ∞

0
〈�; vt(r)〉 dr −

∫ t

0
〈�; wt(r)〉 dr

}

= exp
{
t〈�; ft〉=b−

∫ ∞

0
〈�; vt(r)〉 dr −

∫ t

0
dr

∫ r

0
e−b(r−s)〈�; ut(s)〉 ds

+
∫ t

0
dr

∫ r

0
e−b(r−s)〈�; wt(s)2〉 ds

}

= exp
{
t〈�; ft〉=b−

∫ ∞

0
〈�; vt(r)〉 dr −

∫ t

0
dr

∫ r

0
e−b(r−s)〈�; ft〉 ds

+
∫ t

0
dr

∫ r

0
ds

∫ s

0
e−b(r−s)〈�; ut(s− q)2〉 dq

+
∫ t

0
dr

∫ r

0
e−b(r−s)〈�; wt(s)2〉 ds

}
; (12)

where

t〈�; ft〉=b−
∫ t

0
dr

∫ r

0
e−b(r−s)〈�; ft〉 ds= b−1

∫ t

0
e−br〈�; ft〉 ds→ 0 (13)

as t→∞. By Eqs. (7), (9) and (10), we have

vt(s)6Pbs wt(t)6
∫ t

0
Pbs+t−rut(r) dr6e

−bs
∫ t

0
e−b(t−r)Ps+tft dr6e−bsPs+tft :

It follows that

lim sup
t→∞

∫ ∞

0
〈�; vt(s)〉 ds6 lim

t→∞ ad(t)
−1〈�; f〉=0: (14)

Similarly, one may check that

lim
t→∞

∫ t

0
dr

∫ r

0
e−b(r−s)〈�; wt(s)2〉 ds=0: (15)

On the other hand, combining Lemmas 2 and 3, we have

lim
t→∞

∫ t

0
dr

∫ r

0
ds

∫ s

0
e−b(r−s)〈�; ut(s− q)2〉 dq=




2〈�; f〉2=3b�1=2; d=1;

〈�; f〉2=4�b; d=2;

〈�; fGf〉=2b; d¿3:

(16)

Combining (12)–(16) we obtain the desired convergence.

An immediate consequence of Theorem 1 is the following

Corollary 4. For d¿1 we have t−1Yt→ � in probability.
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