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Immigration process in catalytic medium
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Abstract The longtime behavior of the immigration process associated with a catalytic super-Brown-
ian motion is studied. A large number law is proved in dimension d<3 and a central limit theorem is
proved for dimension d=3.
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It is well known that the measure-valued branching process, or superprocess, describes the
evolution of a population that evolves according to the law of chance. If we consider a situation
where there are some additional source of population from which immigration occurs during the
evolution, we need to consider a measure-valued branching process with immigration, or simply

(1,2

immigration process 1. Some limit theorem for the immigration process were obtained in refs.

[3, 4]. Recently, much attention is focused on the superprocess in random environment. Ran-

domizing the branching rate functional, Dawson and F leischmann!®

constructed a super-Brownian
motion in catalytic medium, the so-called catalytic super-Brownian motion in dimension d <3,
whose branching rate functional is random and is given by the Brownian collision local time
(BCLT). The BCLT is determined by another super-Brownian motion o, which is called a
catalytic medium (refer ref. [5] for details) . A central limit theorem for the occupation time of
the catalytic super-Brownian motion is proved in ref. [6].

The situation is also interesting for the immigration process. In this paper, we consider the
immigration process associated with catalytic super-Brownian motion (ICSBM) X°. And we ob-
tain the weak large number law ( d <<3) and the central limit theorem (d =3) for the ICSBM X?
and its occupation time process.

1 Main results
Let W= [w,, I,,,,s,t=0, a€ R?%] denote a standard Brownian motion in R? with semi-
group {P,, t=0}. Let C( R%) denote the Banach space of continuous bounded functions on R¢

equipped with the supreme norm. Let $,(a): = (1+ lal?) "?”?for a € R?, and let C,(R?):
={fE€EC(RY), If(x)< C;$,(x) for some constant C,f. Let Mp(Rd)I = {Radon mea-

suresy on R? such thatj(l +1 x |”)_l;1(dx) < o}, Suppose that MP(Rd) is endowed with

the p-vague topology. Note {u, f): = j f(x)p(dx). Let A denote the Lebesgue measure. We
shall take p > d, so that A € Mp(Rd).
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Suppose that we are given an ordinary M, ( R*)-valued critical branching super-Brownian
motion p: = [p,, 21, P, ,,t=s=20, € M,(R*)]. (We write P, for Py ,.) For d <3
Dawson and Fleischmann'! proved the existence of the Brownian collision local time ( BCLT)
Ly, ,1(dr) of p, which is an additive function of W. And for f€ C,(R%)*

L Lo a(anfC) = [arfoan)p = s, 0 0p0). D)

Furthermore, it is the branching rate functional. We refer to ref. [5] for details.
For P,-a.s. p, the ICSBM starting from g with the immigration rate v is denoted by X*:
=X, 0,, P, t=0, p, v - Mp(Rd) 1. The Laplace functional of its transition probabili-

ties is
Pz,vexp(_ <Xf’f>) = exp{— <}197)(09 L, ')> —J;dS<V9U(S’ l, ')>}, (1,2)

where f€ C,, v(*,t,*) is the unique positive solution of the evolution equation

v(s,t,a) = Hs,a[f(w,) —J[L[w,p](dr)vz(r,t,w,)]. (1.3)

We consider the case ¢ = v =4, and let

Q(+) : = JPQ,A(‘)PA(d(O)-

The following is the main results.

Theorem 1. Let d <3. Then for any f€ Mp(Rd) , we have

t7'(Xt, f> = (A,f) in probability under Q.

Let S(R?) be the space of rapidly decreasing, infinitely differentiable functions of R? whose
all partial derivatives are also rapidly decreasing, and let S’ ( R%) be the dual space of S(R?).
Let

(Xp, )= 720X, 1) - X, ) = (X, P, £ € S(RY. (1.4)

Theorem 2. Iet d =3. Then we have Yf —~>X, in distribution, where X ., is a centered

Gaussian variable in S’ (R?®). Iis covariance is
Cov({Xa, £, (Xu, g)) = (X, fGg),

for f, g€ S(R?), where G denotes the potential opertor of the Brownian motion.

2 Proofs

Lemma 1. Let f€ M,(R?). Then under P, there are
(i) d<3,

ad(t)‘l[Ltdrjp,(db)(l’l_,f(b)>2 - ]:drfm_f(b))zdb]»o,

uniformly in s, where a;(t) = t*(a >3/4), a,(t) = ¢, a3(s) =1, B,7>0.
(ii) d =3, a€R?

[ arfe@n)pr = sy a 0P f0)) = [ar[p (- 6 a,5) (P (8D 2ab] 0,

Proof. We prove (i) only. By the same method, (ii) can be obtained. Consider the

I.anlace transition functional of the occupation time of p
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P,\exp{— J0<Pr’ f>dr} = eXpi— <A9u(07t’ ')>% ’ (21)
where u(*,t,+) is the solution of the following equation:
u(s, t, a) = jP,_,f(a)dr —JP,_su(r, t, a)idr. (2.2)

Noting that I Pf Il <(1As 9?)-C, we can calculate ( C denotes a constant; it may have

different values in different lines)

p[ar[oan) (P g(0)) = ['arf(p_g(6))as,
Var, | drf 0, (db) (P, £(5))

szJ;deb[J:thhg,(P,_;f)z(b)]z

<C -J;dr(j:dh(l A (i - h)“‘”))2 Ax, (P

t t 2
<c-[anemar (] an )
0
C - d =1,
s{C- (logt)* d =2,.
c d = 3.
By Chebyshev’s inequality, for any € >0, uniformly in s there is

P{au()”! |J:drjp,(db>(p,_,f<b>>2 _ J:er(Pt_,f(b))zdb > <]

<€ Zay(t)?- Var,\Jldrjpr(clb)(P,_f(b))2

<0(t ) >0 (as t > @),
where ¢ (1) =2a =3/2>0, ¢(2)=28- 7 (> 5>0), c(3) =27. This completes the

proof . Q.E.D.
Proof of Theorem 1. It suffices to prove
lim Qexp(~ ¢ (X, f)) = exp(- L. (2.3)

Let f,: =t 'f. By (1.1)—(1.3), the Laplace transition function of ¢ ' X¢ under Q is
Qexpl— 17 (X0, O} = expl= (A, f0) = ¢4, 1)

. P,\exp”;drjp,(db)v(r,t,b)2 + J;dsJ:drjp,(db)v(r,t,b)Z}, (2.4)
where v(*,t,*) is given by (1.3) with f being replaced by f,. But
J;dsﬂdrjp,(db)v(r,t,b)z < f;dsfdrfp,(db)(a_,f,(b))z. (2.5)
By the dominated convergence theorem and Lemma 1, under probability P;, we have

nmj;ds j:drjp,(dw(a_,ﬁ(b))z

>



62 SCIENCE IN CHINA (Series A) Vol. 43

= tim|ds[ 12 ar [, (a0 (P_ (8 7]

t—> oo

- 1imt-2ﬁdsf:drjdb(?,_,ﬁ( b))?

= ®

<limz 2 J (A,f)ds J (1 A r¥?)dr
> 0 0

—~0.
That is,
tim|'ds | ar[ o, (ab)o(r,1,0)” = 0. (2.6)
Similarly, we can prove
lim| dr[o.(ab)n(r, 1,07 = 0. 2.7)
Then from (2.4) together with (2.6) and (2.7), (2.3) is obtained. This completes the proof.

Q.E.D.
Proof of Theorem 2. Let f,: = ¢t ~'>f. From (1.2) and (1.3), with respect to Q, the

Laplace functional of X° is

Qexp(- (X, 1)
- PAexp{J:)erp,(db)v(r,t,b)2 . J;dsj:drjp,(db)v(r,t,b)z}, (2.8)
where (7, ) is the solution of (1.3) with f being replaced by f,. Because
[[arf sy < [ an oG —o 2.9)
as t—> % . By Lemma 1 and the dominated convergence theorem, under probability P;, we have

limJ drfp,(db)v(r,t,b)2
e Q

<tim| 'dr[ o, (ab)(P_£(8))? = 0, (2.10)

t—> o

lim ;dsj:drjpxdbxp,_,)ﬁ(b>>2

—®

= lim ;ds[ t'lj:drjp,(db)(Pt_r)f( b))z]

t—®

_ umt—lj;dsﬂdrj(p,_,)f( b))2db

=j:drj(p,f(b>)2db
_ G e, 2.11)

where G is the potential operator of Brownian motion. From (1.3)
(Pfi(0))? = (o(r,1,8)) < 2P fi(0)) + | 'dh[ oy (de)oChoe,2)pCh = 1,0 ,).

Using Lemma 1 and Hélder inequality, we get
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0 slimf;dsjtdrjp,(db)[(P,_f,(b))2 - (v(r,t,0))*]

>

:nmj;dsf:drjdb[(p,_,ﬂ(b))z C(olrat, b))

t—> o

gzlimJ;dsJ:erdb(Pt_f,(b)) -j:dhjph(dx)v(h,t,x)zp(h ribx)

> o

172

<2 lim[J;dsf:drjdb(Pc_,ﬂ(b))Z]

—>®

' U(t,dsfdrjdb[fdhjpﬂdx)v(h,t,x>2p(h - r’b’“]z}
< ¢ tim{[[as[‘arfas[ [ an[ax g0 (h - ri000) ]

>

172

] 172

<C- lim[J;dstrJdb(P,_f,(b))2

o

. t"”ﬂdh(l A (¢t = h)32)

=C - t—l/ZJ dh(l /\ h—3/2)
0

-0, (2.12)
as t— o . Combining (2.11) and (2.12), we have
t t
limjodsj drﬁo,(db)(v(r,t,b))2 = (A,fGf). (2.13)

From (2.8), (2.10) and (2.13), we prove that
}irngxp(— (Xe,1)) = exp({A,fGf)).

Then the assertion follows from Iscoe!”! . Q.E.D.

t
Let ¥0: = J X°dr be the occupation time process of the ICSBM. By methods similar to
0

Theorems 1 and 2, we can prove the following results.

Theorem 3. Let d <3. Then for any f€ M,(R?),

2072 ¥, f) — (A,f) in probability under Q.
Let
(Vo,f) o= VL) - (AL, ) = A 01, f€ S(RY. (2.14)
Theorem 4. Let d =3. Then in S'(R’),
Y? — Y, in distribution under Q,

where Y., is a centered Gaussian variable in S’ (R?). Iis covariance is

COV(<?¢, §f>9<—Y—m ,g>> =c* <'1 ’f></\ ,g>,
8G/2-1)

157(3/2

The details for the proof are omitted.

forf,g € S(R?), where ¢ =
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