## Loewner-Kufurer, Interplay between Loewner, and Dirichlet energies: conformal welding & flow-lines (joint with F. Viklund, KTH) & foliation by Weil-Petersson quasicircles

# SLE, R Loewner energy From Lecture 2 For chordal SLE $- \int_{\frac{1}{2}} \int_{\frac{1}{2}} \frac{1}{2} \int_{\frac{1}{2}$ Herristically, IP(SLE<sub>h</sub> stays close to 8) ~ exp(- $\frac{T_D(8)}{k}$ ) as k-> >+ .

### Dirichlet energy & GFF

• Similarly, the **Dirichlet energy** of functions  $\varphi$  defined on  $D \subset \mathbb{C}$  is the Cameron - Markin norm/large deviation rate function of (a small parameter  $\gamma$  times) the **Gaussian free field** (GFF).  $\in \mathcal{H}^{-\varepsilon}$  (D)  $(\int_{\Sigma} G_{\gamma} FF)_{\Sigma > 0}$ 

" $P(\sqrt{\kappa} GFF \text{ stays close to } 2\varphi) \approx e^{-\mathcal{D}(\varphi)/\kappa}, \text{ as } \kappa \to 0.$ "

where 
$$D_{D}^{1}(\varphi) = \frac{1}{\pi} \int_{D} |\nabla \varphi_{12}\rangle^{2} |dz|^{2}$$
  
is the Dirichlet energy of  $\varphi$  in  $D$ .  
We write  $\varphi \in \Sigma(D)$  if  $D_{D}(\varphi) < \infty$ .

- This lecture: there is a nice interplay between Loewner energy and Dirichlet energy of functions which is reminiscent to SLE/GFF couplings pioneered by Sheffield and Dubédat.
- Our results and proofs are purely analytic (and very short).

### Theorem [W. 2019]

```
If \eta passes through \infty, we have the identity
   \mathbf{\Lambda}
                        loop
                                           f(\infty) = \infty
                                          H • II
                  \eta
                                         \begin{array}{c|c} & g(\infty) = \infty \\ & \bullet & \\ \bullet & & \\ \end{array} \\ \mathbb{H}^* \end{array}
     • I'ly) < 00 ift y is a Weil-Petersson quasicircle
• I'ly) = 0 ift y is a circle
```

### **Cutting and Welding identity**

### Cutting and welding identity

Real-valued Let  $\varphi \in \mathcal{E}(\mathbb{C}) \subset W^{1,2}_{loc}(\mathbb{C}) \subset VMO(\mathbb{C})$ , f, g conformal maps from  $\mathbb{H}, \mathbb{H}^*$ onto  $H, H^*$  fixing  $\infty$ .



We have  $e^{2\varphi} \in L^1_{loc}(\mathbb{C})$  and the transformation law:

 $u(z) = \varphi \circ f(z) + \log |f'(z)|, \quad v(z) = \varphi \circ g(z) + \log |g'(z)|,$ 

such that  $e^{2u}dz^2 = f^*(e^{2\varphi}dz^2)$ ,  $e^{2v}dz^2 = g^*(e^{2\varphi}dz^2)$ .

### Cutting and welding identity, cont'd



### Theorem (cutting)

We have the identity

$$\mathcal{D}_{\mathbb{C}}(\varphi) + I^{\mathcal{L}}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v).$$

### Large deviation heuristics

| manilog F_                                                          |                                                                                                                    |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
|                                                                     |                                                                                                                    |  |
| SLE/GFF $\gamma := \sqrt{\kappa}$                                   | Einite energy                                                                                                      |  |
| $SLE_{\kappa}$ loop.                                                | Finite energy Jordan curve, $\eta$ .                                                                               |  |
| Free boundary GFF $\gamma \Phi$ on $\mathbb{H}$ (on $\mathbb{C}$ ). | $2u, u \in \mathcal{E}(\mathbb{H}) \ (2\varphi, \varphi \in \mathcal{E}(\mathbb{C})).$                             |  |
| $\gamma$ -LQG on quantum plane $pprox e^{\gamma \Phi} dz^2$ .       | $e^{2arphi} dz^2,  arphi \in \mathcal{E}(\mathbb{C}).$                                                             |  |
| $\gamma	ext{-LQG}$ on quantum half-plane on $\mathbb H$             | $e^{2u}dz^2, u \in \mathcal{E}(\mathbb{H}).$                                                                       |  |
| $SLE_{\kappa}$ cuts an independent                                  | Finite energy $\eta$ cuts $arphi \in \mathcal{E}(\mathbb{C})$                                                      |  |
| quantum plane $e^{\gamma \Phi} dz^2$ into                           | into $u\in \mathcal{E}(\mathbb{H}), v\in \mathcal{E}(\mathbb{H}^*)$ and                                            |  |
| ind. quantum half-planes $e^{\gamma \Phi_1}, e^{\gamma \Phi_2}$ .   | $I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$ |  |

SLE/GFF  $\Rightarrow$  one may expect that under appropriate topology and for small  $\kappa$ ,

"P(SLE<sub> $\kappa$ </sub> loop stays close to  $\eta$ ,  $\sqrt{\kappa}\Phi$  stays close to  $2\varphi$ ) = P( $\sqrt{\kappa}\Phi_1$  stays close to 2u,  $\sqrt{\kappa}\Phi_2$  stays close to 2v)" From the large deviation principle and the independence of SLE and  $\Phi,$  one expects

$$\lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta, \sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$$

$$= \lim_{\kappa \to 0} -\kappa \log P(\mathsf{SLE}_{\kappa} \text{ stays close to } \eta) + \lim_{\kappa \to 0} -\kappa \log P(\sqrt{\kappa} \Phi \text{ stays close to } 2\varphi)$$

$$= I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi).$$

Similarly, the independence between  $\Phi_1$  and  $\Phi_2$  gives

$$\begin{split} &\lim_{\kappa\to 0} -\kappa \log \mathrm{P}(\sqrt{\kappa} \Phi_1 \text{ stays close to } 2u, \sqrt{\kappa} \Phi_2 \text{ stays close to } 2v) \\ &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v). \end{split}$$

 $\implies I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$ 

One expects the density of an independent couple (SLE  $_{\kappa},\sqrt{\kappa}\,{\rm GFF})$  has density

$$\rho(\eta, 2\varphi) \propto \exp(-I^{L}(\eta)/\kappa) \exp(-\mathcal{D}_{\mathbb{C}}(\varphi)/\kappa)$$
$$= \exp(-\mathcal{D}_{\mathbb{H}}(2u)/\kappa) \exp(-\mathcal{D}_{\mathbb{H}^{*}}(2v)/\kappa)$$

the identity on the action functional also suggests the SLE/GFF coupling.

Now let  $u \in \mathcal{E}(\mathbb{H})$ ,  $v \in \mathcal{E}(\mathbb{H}^*)$ . The traces of  $u, v \in H^{1/2}(\mathbb{R}) \subset VMO(\mathbb{R})$ .

$$||u||_{H^{1/2}(\mathbb{R})}^2 = \frac{1}{2\pi^2} \iint_{\mathbb{R}\times\mathbb{R}} \frac{|u(z) - u(w)|^2}{|z - w|^2} |dz| |dw| = \frac{1}{|z - w|^2} |dw$$

We have  $e^{u}, e^{v} \in L^{1}_{loc}(\mathbb{R})$  defines two boundary measures  $\mu(dx) = e^{u}dx, \nu(dx) = e^{v}dx.$ 

### A lemma

#### Lemma

We define h(0) = 0, and h(x) :=

$$\begin{cases} \inf \{y \ge 0 : \mu[0, x] = \nu[0, y]\} & \text{if } x > 0; \\ -\inf \{y \ge 0 : \mu[x, 0] = \nu[-y, 0]\} & \text{if } x < 0. \end{cases}$$

Then h is a quasisymmetric homeomorphism. Moreover,  $\log h' \in H^{1/2}(\mathbb{R})$ .



### Welding problem

We say that the triple  $(\eta, f, g)$  is a **normalized solution to the conformal welding problem** for *h* if

- $\eta$  is Jordan curve in  $\hat{\mathbb{C}}$  passing through  $0, 1, \infty$ ;
- $f: \mathbb{H} \to H$  is the conformal map fixing  $0, 1, \infty$ ;
- $g: \mathbb{H}^* \to H^*$  is conformal and  $g^{-1} \circ f = h$  on  $\mathbb{R}$ ,



### Theorem (Shen-Tang-Wu '18)

 $\eta$  is Weil-Petersson quasicircle if and only if  $\log h' \in H^{1/2}(\mathbb{R})$ .

### Corollary

There exists a unique normalized solution  $(\eta, f, g)$  to the welding homeomorphism induced by  $e^u$  and  $e^v$ , and the curve obtained has finite Loewner energy.

Moreover,  $\varphi$  defined from the **transformation law** is in  $\mathcal{E}(\mathbb{C})$ , therefore the welding identity holds:



Key: Trace theorem & Sobolev extension theorem for domain bounded by chord-arc curves [Jonsson-Wallin].

### Application: arclength conformal welding

Assume  $\eta_1, \eta_2$  are rectifiable Jordan curves and  $|\eta_1| = |\eta_2|$ .

 $\psi: \eta_1 \rightarrow \eta_2$  preserves arclength.



- [Huber 1976] The solution does not always exist.
- [Bishop 1990] If the solution exists,  $\eta$  can be a curve of positive area and the solution is not unique.
- [David 1982, Zinsmeister 1982, Jerison-Kenig 1982] If η<sub>1</sub> and η<sub>2</sub> are chord-arc, then the solution exists and is unique, and is an α quasicircle.
- [Bishop 1990] But the Hausdorff dimension of  $\eta$  can take any value in  $1 < d < 2 \implies$  not rectifiable.
- Catting Welding id. The class of finite energy curves is **closed** under arclength welding.

How does the energy change under the arclength welding operation?

 $I^{L}(\eta)$  ??  $I^{L}(\eta_{1}) + I^{L}(\eta_{2})$ 

Assume  $I^{L}(\eta_{1}) < \infty$ ,  $I^{L}(\eta_{2}) < \infty$ , both passing through  $\infty$ . Let  $H_{i}$ ,  $H_{i}^{*}$  be the two connected components of  $\mathbb{C} \smallsetminus \eta_{i}$ .

### Corollary (sub-additivity)

Let  $\eta$  (resp.  $\tilde{\eta}$ ) be the arclength welding curve of the domains  $H_1$  and  $H_2^*$  (resp.  $H_2$  and  $H_1^*$ ). Then  $\eta$  and  $\tilde{\eta}$  have finite energy. Moreover,

$$I^{L}(\eta) + I^{L}(\tilde{\eta}) \leq I^{L}(\eta_{1}) + I^{L}(\eta_{2}).$$



### Proof of the sub-additivity



In fact, let  $u_i = \log |f'_i|$ ,  $v_i = \log |g'_i|$ . From the definition of the Loewner energy,

$$I^{L}(\eta_{i}) = \mathcal{D}_{\mathbb{H}}(u_{i}) + \mathcal{D}_{\mathbb{H}^{*}}(v_{i}).$$

Arclength welding implies that  $\eta$  is the welding curve obtained the isometric welding of  $e^{u_1}$  and  $e^{v_2}$  and  $\tilde{\eta}$  is the isometric welding of  $e^{u_2}$  and  $e^{v_1}$ . Then, from the welding identity,

$$I^{L}(\eta) + I^{L}(\tilde{\eta}) \leq \mathcal{D}_{\mathbb{H}}(u_{1}) + \mathcal{D}_{\mathbb{H}^{*}}(v_{2}) + \mathcal{D}_{\mathbb{H}}(u_{2}) + \mathcal{D}_{\mathbb{H}^{*}}(v_{1})$$
$$= I^{L}(\eta_{1}) + I^{L}(\eta_{2}) \leftarrow \Box$$

### **Flow-line identity**

### Assume $\eta$ is rectifiable.

$$\eta \underbrace{e^{i\tau}}_{H^*} \underbrace{ \begin{array}{c} f(\infty) = \infty \\ g(\infty) = \infty \end{array}}_{\mathbb{H}^*} \underbrace{\mathbb{H}}_{\mathbb{H}^*}$$

We denote by  

$$\mathcal{P}[\tau](z) = \begin{cases} \arg f'(f^{-1}(z)) & z \in H; \\ \arg g'(g^{-1}(z)) & z \in H^* \end{cases}$$

which is the Poisson integral of  $\tau$  in  $\mathbb{C}$ .

Notice that  $\arg(f')$  has the same Dirichlet energy as  $\log |f'|$ . We have the identity

$$I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(\arg f') + \mathcal{D}_{\mathbb{H}^{*}}(\arg g') = \mathcal{D}_{\mathbb{C}}(\mathcal{P}[\tau]).$$

Consequence:  $I^{L}(\eta) < \infty \Leftrightarrow \eta$  is chord-arc and  $\tau \in H^{1/2}(\eta)$ .

### Corollary (Flow-line identity)

Conversely, if  $\varphi \in \mathcal{E}(\mathbb{C}) \cap C^0(\hat{\mathbb{C}})$ , then for all  $z_0 \in \mathbb{C}$ , there is a unique solution to the differential equation

$$\eta'(t) = e^{i \varphi(\eta(t))}, \, \forall t \in \mathbb{R} \quad \text{and} \quad \eta(0) = z_0$$

is an infinite arclength parametrized simple curve and

$$\mathcal{D}_{\mathbb{C}}(\varphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_{0}),$$
  
where  $\varphi_{0} = \varphi - \mathcal{P}[\varphi|_{\eta}].$   $\Im_{\mathfrak{C}}(\mathcal{P}(\varphi|_{\eta}))$ 

SLE/GFF counterpart (imaginary geometry): The flow-lines of  $e^{i\sqrt{\kappa}GFF/2}$  is an SLE<sub> $\kappa$ </sub> curve. Conditioning on the flow-line,  $\varphi_0$  is an 0-boundary GFF.

### Application: Equipotential energy monotonicity



#### Corollary [infinite curve]

Let r > 0, we have  $I^{L}(\eta^{r}) \leq I^{L}(\eta)$ .



**Corollary [bounded curve]** For 0 < r < 1, we have  $I^{L}(\eta_{r}) \leq I^{L}(f(C)) \leq I^{L}(\eta)$ .

#### Proposition

The function  $r \mapsto I^{L}(\eta_{r})$  (resp.  $r \mapsto I^{L}(\eta^{r})$ ) is continuous and monotone. Moreover,

$$I^{L}(\eta_{r}) \xrightarrow{r \to 1-} I^{L}(\eta); \quad I^{L}(\eta_{r}) \xrightarrow{r \to 0+} 0.$$
  
(resp.  $I^{L}(\eta^{r}) \xrightarrow{r \to 0+} I^{L}(\eta); \quad I^{L}(\eta^{r}) \xrightarrow{r \to \infty} 0.$ )

**Remark:** The vanishing of  $I^{L}(\eta_{r})$  as  $r \to 0$  can be thought as expressing the fact that conformal maps asymptotically take small circles to circles.

### **Corollary (Complex identity)**

Let  $\psi$  be a complex-valued function on  $\mathbb{C}$  with finite Dirichlet energy and Im  $\psi \in C^0(\hat{\mathbb{C}})$ . Let  $\eta$  be a flow-line of the vector field  $e^{\psi}$  and f, g the conformal maps associated to  $\eta$ . Then we have

 $\mathcal{D}_{\mathbb{C}}(\psi) = \mathcal{D}_{\mathbb{H}}(\zeta) + \mathcal{D}_{\mathbb{H}^*}(\xi),$ 

where  $\zeta = \psi \circ f + \overline{\log f'}$ ,  $\xi = \psi \circ g + \overline{\log g'}$ .



It follows from welding and flow-line identities and also implies both identities:

• Taking Im 
$$\psi = \varphi$$
 and  $\operatorname{Re}(\psi) = 0$   
 $\implies$  flow-line identity:  $\mathcal{D}_{\mathbb{C}}(\varphi) = I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_{0}).$ 

• Taking  $\operatorname{Re} \psi = \varphi$  and  $\operatorname{Im} \psi := \mathcal{P}[\tau]$  where  $\tau$  is the winding of the curve  $\eta$ 

 $\implies$  welding identity:  $\mathcal{D}_{\mathbb{C}}(\varphi) + I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$ 

### **SLE/GFF** dictionary

### A (very loose) dictionary

| <b>SLE/GFF</b> with $\gamma = \sqrt{\kappa} \rightarrow 0$                | Finite energy                                                                                                |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| $SLE_{\kappa}$ loop.                                                      | Finite energy Jordan curve, $\eta$ .                                                                         |
| Free boundary GFF $\gamma \Phi$ on $\mathbb{H}$ (on $\mathbb{C}$ ).       | $2u, \ u \in \mathcal{E}(\mathbb{H}) \ (2arphi, \ arphi \in \mathcal{E}(\mathbb{C})).$                       |
| $\gamma$ -LQG on quantum plane $pprox e^{\gamma \Phi} dz^2$ .             | $e^{2\varphi}dz^2,  \varphi \in \mathcal{E}(\mathbb{C}).$                                                    |
| $\gamma	extsf{-LQG}$ on quantum half-plane on $\mathbb H$                 | $e^{2u}dz^2, u \in \mathcal{E}(\mathbb{H}).$                                                                 |
| $\gamma$ -LQG boundary measure on $\mathbb{R} pprox e^{\gamma \Phi/2} dx$ | $e^{u(x)}dx, u \in H^{1/2}(\mathbb{R}).$                                                                     |
| $SLE_\kappa$ cuts an independent                                          | Finite energy $\eta$ cuts $\varphi \in \mathcal{E}(\mathbb{C})$                                              |
| quantum plane into                                                        | into $u\in \mathcal{E}(\mathbb{H}), v\in \mathcal{E}(\mathbb{H}^*)$ and                                      |
| independent quantum half-planes.                                          | $I^L(\eta) + \mathcal{D}_{\mathbb{C}}(arphi) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^*}(v).$ |
| Quantum zipper: isometric welding                                         | Isometric welding                                                                                            |
| of independent $\gamma	ext{-}LQG$ measures on $\mathbb R$                 | of $e^u dx$ and $e^v dx$ , $u, v \in H^{1/2}(\mathbb{R})$                                                    |
| produces $SLE_{\kappa}$ .                                                 | produces a finite energy curve.                                                                              |
| $\gamma$ -LQG chaos w.r.t. Minkowski content                              | $e^{arphiert \eta}ert dzert, arphiert_\eta\in H^{1/2}(\eta),$                                                |
| equals the pushforward of                                                 | equals the pushforward of                                                                                    |
| $\gamma$ -LQG measures on $\mathbb R.$                                    | $e^{u}dx$ and $e^{v}dx$ , $u,v\in H^{1/2}(\mathbb{R})$ .                                                     |
| Bi-infinite flow-line of $e^{i\Phi/\chi} \approx e^{i\gamma\Phi/2}$       | Bi-infinite flow-line of $e^{i\varphi}$                                                                      |
| is an $SLE_\kappa$ loop measurable wrt. $\Phi$ .                          | is a finite energy curve                                                                                     |
|                                                                           | $\mathcal{D}_{\mathbb{C}}(\varphi) = I^{\mathcal{L}}(\eta) + \mathcal{D}_{\mathbb{C}}(\varphi_0).$           |
| Mating of trees                                                           | $ Complex identity \Leftrightarrow welding+flow-line. $                                                      |

Recall: Loewner - Kufarw equation

$$N := \int p Boul measure on S' \times IR : for internal I,  $p(S' \times I) = |I|$$$

Disintegration w.r.t t ~> 
$$P = Pt(dg) dt$$
  
where  $Pt(d3)$  is a probability musure on S'  
and  $t \mapsto Pt$  is measurable  
 $IR \longrightarrow Prob(S')$   
 $P \iff (Pt) t \in IR$ 

Whole Plane Loewner Kufarev equation. ZEC

$$(E_{t}) \begin{bmatrix} D_{t} g_{t}(t) = -g_{t}(t) \int \frac{g_{t}(t) + \zeta}{\zeta} g_{t}(t) - \zeta & f_{t}(d\zeta) \\ g_{t}(t) \sim e^{t} t & as \quad t \to -\infty \end{bmatrix}$$

Let 
$$T(z)$$
 solution time of  $(E_z)$ .  
 $D_t := \{i \ge C \mid T(z) > t \} = C \setminus k_t$   
 $\sum_{i \ge 1} T(z) > t \} = C \setminus k_t$ 

$$(D_t)_{t \in \mathbb{R}}$$
 is a shrinking family of simply connected domain."  
and  $g_t : conformal D_t \rightarrow D$ 

Exanples

• If 
$$P_t = \operatorname{nnif}(S')$$
 for all  $t \in \mathbb{R}$   
=)  $D_t = e^{-t} D$  - shrinks to (0)



• If 
$$p_t = hnrf(S')$$
 for  
all  $t \in R$ .  
=)  $D_t = e^{-t}D$  for  $t \leq 0$   
=)  $D_0 = 1D$   
For  $t > 0$  ( $D_t$ ) is the learner  
chain generated by  
( $f_t$ )  $t > 0$  in  $D$ .

### Example cont'd



Figure 3.1: The evolution corresponding to the measure that equals  $\pi^{-1} \sin^2(\theta/2) d\theta dt$  for  $0 \leq t < 1$  and is uniform for  $t \geq 1$ . The red curves are leaves drawn at equidistant times and the purple lines represent the flow of equidistant points on the unit circle. The winding function is harmonic, but non-zero, in the part foliated after time 1. The Loewner-Kufarev energy of this measure equals 2.

For each measure  $\mu \in \mathcal{M}_1(S^1)$  we define

$$\mathsf{L}^{\mathsf{DV}}(\mu) := \frac{1}{2} \int_{S^1} |v'(\theta)|^2 \,\mathrm{d}\theta$$

if  $d\mu(\theta) = v^2(\theta) d\theta$  and  $v \in W^{1,2}(S^1)$  , or otherwise.

The Loowner-know energy of 
$$p \in \mathcal{N}$$
  
 $S(p) := \int_{-\infty}^{\infty} I^{DV}(p_t) dt$   
 $LOP$  rate function  
of radial SLE  
 $S(p) := 0$  iff  $p_t = unif(S')$ .  $\forall t$  a.e.

# Winding function

Energy duality S(p)=0 => > Y = 0 If Sipicoo, then Qt 2(C) and 16 Sipi = DC(Q) hm. T P Dynamic Static







谢谢! Thank you!!

----

### Cutting and welding identity, cont'd



Theorem (cutting)

We have the identity

$$\mathcal{D}_{\mathbb{C}}(\varphi) + I^{L}(\eta) = \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v).$$

### **Proof of the welding identity:**

Assume that  $\eta$  and  $\varphi$  are smooth.

$$egin{split} \mathcal{D}_{\mathbb{H}}(u) &= \mathcal{D}_{\mathbb{H}}(arphi \circ f) + \mathcal{D}_{\mathbb{H}}(\log|f'|) + rac{1}{\pi}\int_{\mathbb{H}} 
abla(\log|f'|) \cdot 
abla(arphi \circ f) dz^2 \ &= \mathcal{D}_{H}(arphi) + \mathcal{D}_{\mathbb{H}}(\log|f'|) + rac{1}{\pi}\int_{\mathbb{H}} 
abla(\log|f'|) \cdot 
abla(arphi \circ f) dz^2. \end{split}$$

Adding  $\mathcal{D}_{\mathbb{H}^*}(v)$  the first two terms sum up to  $\mathcal{D}_{\mathbb{C}}(\varphi) + I^L(\eta)$ , and the cross terms sum up to 0 since

$$\begin{split} \int_{\mathbb{H}} \nabla (\log |f'|) \cdot \nabla (\varphi \circ f) dz^2 &= \int_{\mathbb{R}} (\partial_n \log |f'|) \varphi \circ f(x) dx \\ &= \int_{\mathbb{R}} k(f(x)) |f'(x)| \varphi \circ f(x) dx \\ &= \int_{\partial H} k(y) \varphi(y) dy = - \int_{\partial H^*} k(y) \varphi(y) dy. \quad \Box \end{split}$$

### Corollary (Complex identity)

Let  $\psi$  be a complex-valued function on  $\mathbb{C}$  with finite Dirichlet energy and Im  $\psi \in C^0(\hat{\mathbb{C}})$ . Let  $\eta$  be a flow-line of the vector field  $e^{\psi}$  and f, g the conformal maps associated to  $\eta$ . Then we have

 $\mathcal{D}_{\mathbb{C}}(\psi) = \mathcal{D}_{\mathbb{H}}(\zeta) + \mathcal{D}_{\mathbb{H}^*}(\xi),$ 

where  $\zeta = \psi \circ f + \overline{\log f'}$ ,  $\xi = \psi \circ g + \overline{\log g'}$ .



$$\begin{aligned} \zeta &= \psi \circ f + (\log f')^* = \operatorname{Re} \psi \circ f + \log |f'| + i(\operatorname{Im} \psi \circ f - \arg f') \\ \text{flow-line} &:= u + i\operatorname{Im} \psi_0 \circ f. \\ \xi &= v + i\operatorname{Im} \psi_0 \circ g. \end{aligned}$$

where 
$$u := \operatorname{Re} \psi \circ f + \log |f'|, v := \operatorname{Re} \psi \circ g + \log |g'|.$$
  
We have

$$\begin{split} \mathcal{D}_{\mathbb{C}}(\psi) &= \mathcal{D}_{\mathbb{C}}(\operatorname{\mathsf{Re}}\psi) + \mathcal{D}_{\mathbb{C}}(\operatorname{\mathsf{Im}}\psi) \\ \text{flow-line id.} &= \mathcal{D}_{\mathbb{C}}(\operatorname{\mathsf{Re}}\psi) + I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\operatorname{\mathsf{Im}}\psi_{0}) \\ &= \mathcal{D}_{\mathbb{C}}(\operatorname{\mathsf{Re}}\psi) + I^{L}(\eta) + \mathcal{D}_{\mathbb{C}}(\operatorname{\mathsf{Im}}\psi_{0}) \\ \text{welding id.} &= \mathcal{D}_{\mathbb{H}}(u) + \mathcal{D}_{\mathbb{H}^{*}}(v) + \mathcal{D}_{\mathbb{C}}(\operatorname{\mathsf{Im}}\psi_{0}) \\ &= \mathcal{D}_{\mathbb{H}}(\zeta) + \mathcal{D}_{\mathbb{H}^{*}}(\xi). \quad \Box \end{split}$$