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Interplay between Loewner ‘and Dirichlet energies:

conformal welding & flow-lines (joint with F. Viklund, KTH)
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Dirichlet energy & GFF

e Similarly, the Dirichlet energy of functions ¢ defined on D C C is
the Cameran —Masin v/ large deviation rate function of (a smaII

parameter 7 times) the Gaussian free field (GFF). ¢ I/‘
( ﬁ&kk) i)o

‘P(/kGFF stays close to 2¢) ~ e " B¥)/* as k — 0.
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Motivation: SLE/GFF coupling

OT*MS \Cd‘wt: there is a nice interplay between and
Dirichlet energy of functions which is reminiscent to SLE/GFF
couplings pioneered by Sheffield and Dubédat.

e Our results and proofs are purely analytic (and very short).



Equivalent definition of the Loewner energy

Theorem [W. 2019]
If 7 passes through oo, we have the identity

4
loop I*(n) = Du(log |f']) + Du-(log |g’|).
f(oo) =00
H H
77 _/\_/_
g(oo) = 00
" H
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Cutting and Welding identity




Cutting and welding identity

Rem\ - U_(A\NJ
Let ¢ € £(C) € WE3(C) ¢ VMO(C), f, g conformal maps from H, H*

loc

onto H, H* fixing oc.
EU\C&‘\AAW (rees NRADITS

H ! f H

e dz? L eMde? 0 1]
H 62vdz2

We have e?? € L} _(C) and the transformation law:

u(z) = pof(z) +log|f'(z)], v(z) =pog(z)+loglg'(2)l,

such that e?“dz? = f*(e*?dz?), e?Vdz? = g*(e*?dz?).



Cutting and welding identity, cont’d

H / H
62§0(Z>dz2 - €2ud22 Q 1
0 1 9 0
H* - H*

Theorem (cutting)
We have the identity



Large deviation heuristics

N~ T —
i/

SLE/GFF ~ .= \/k Finite energy

SLE. loop. Finite energy Jordan curve, 7.
Free boundary GFF v® on H (on C). | 2u, u € E(H) (2¢, ¢ € E(C)).
7-LQG on quantum plane ~ '®dz?. | e*?dz?, ¢ € £(C).

~v-LQG on quantum half-plane on H e*'dz*, u € E(H).

cuts an Finite energy n cuts ¢ € £(C)
into into u € E(H),v € E(H*) and
ind. quantum half-planes €7®1, 72, = Du(u) + Du=(v).

SLE/GFF = one may expect that under appropriate topology and for small ,

= P(\/k®; stays close to 2u, v/k®, stays close to 2v)"



Large deviation heuristics, cont’'d

From the large deviation principle and the independence of SLE and &, one
expects

lim —xlo

/-ili)nO 108

= lim —klog P(SLE,. stays close to n) + Iim0 —k log P(v/k® stays close to 2¢)
K—r

~—0

= 1"(n) + De().

Similarly, the independence between ®; and ®, gives
Iim0 —k log P(v/k®; stays close to 2u, /k®, stays close to 2v)
rR—
= DH(U) + Dy~ (V)

— :DH(U)—l—DH*(V)
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Conversely

One expects the density of an independent couple (SLE,, /< GFF) has
density

p(n, 2¢) ox exp(—/"(1)/ k) exp(— /K)
= exp(—Du(2u)/x) exp(—Dy-(2v)/k)

the identity on the action functional also suggests the SLE/GFF coupling.
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Converse operation: Isometric welding

Now let u € E(H), v € E(H*). The traces of u,v € H/?(R) ¢ VMO(R).

2
= — dz||d
HUHH1/2(R) D »MRXR ‘Z—WP ’ ZH W‘

We have e”, e" € L}, (R) defines two boundary measures

p(dx) = e'dx, v(dx) = e“dx.
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I R = 2H

Lemma
We define h(0) =0, and h(x) :=

{inf{yZO:,u[O,x] = v[0, y|} if x > 0;
—inf{y >0: pu[x,0] =v[-y,0]} ifx<O.

Then h is a quasisymmetric homeomorphism.
Moreover, log h' € H/2(R).

H
e dy Q 1
ho 3 L/
e?@dg 0 T
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Welding problem

We say that the triple (1, f, g) is a normalized solution to the
conformal welding problem for h if

e 1 is Jordan curve in ® passing through 0, 1, oo;
e f:IH — H is the conformal map fixing 0, 1, oc;

o g:H* — H* is conformal and g7t o f = hon R,

f
0 1 "
hi=glof § J — 7
0 I g o 0 1

Theorem (Shen-Tang-Wu ’18)
n is Weil-Petersson quasicircle if and only if log i’ € H/?(R).
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Why isometric welding: converse of cutting

Corollary
There exists a unique normalized solution (n, f, g) to the welding
homeomorphism induced by e and €Y, and the curve obtained has finite

Loewner energy.

Moreover, ¢ defined from the transformation law is in £(C), therefore
the welding identity holds:

Cothim &~ I5(n) = Du(u) + Du-(v) — Dc(y).
‘WMMQ co\m{b
H H
e2¢(2)|d212 PP 0 1
N — b )
0 1 g 0
H* -~ H*

e ¥

Key: Trace theorem & Sobolev extension theorem for domain bounded by
chord-arc curves [Jonsson-Wallin]. -



Application: arclength conformal welding

Assume 1,75 are rectifiable
Jordan curves and |n1| = ||

Y 1 mp — np preserves arclength.
n such that G™lo F = 4

e [Huber 1976] The solution does not always exist.

e [Bishop 1990] If the solution exists, 7 can be a curve of positive area
and the solution is not unique.

e [David 1982, Zinsmeister 1982, Jerison-Kenig 1982] If 1 and 1), are
chord-arc, then the solution exists and is unique, and is AT o
quasicircle.

e [Bishop 1990] But the Hausdorff dimension of 7 can take any value in
1 <d <2 = not rectifiable.

o Cuttine -Whlding . The class of finite energy curves is closed under

arclength welding.
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How does the energy change under the arclength welding operation?

I(n) 72 1"(m)+ I"(n2)



Arclength welding of finite energy domains

Assume I'(n;) < oo, I(n2) < 00, both passing through oco. Let H;, HF be
the two connected components of C \ 7;.

Corollary (sub-additivity)

Let ) (resp. 7j) be the arclength welding curve of the domains H; and H}
(resp. Hy, and H; ). Then n and ij have finite energy. Moreover,

I(n) + 1%(7) < 1"(m) + I"(n2).

m H1 F

B A H

w3771—>7721 A —
e . B
2 Hz H
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Proof of the sub-additivity

fi
ez H/Jl/\w F, H
smomt 3 g
e2v2 42 H* 2 T G *
T iz Hék

In fact, let u; = log|f/|, v; = log|g/|. From the definition of the Loewner
energy,
I*(ni) = D (ui) + D~ (vi).

Arclength welding implies that 7 is the welding curve obtained the
isometric welding of e“* and e*? and 7j is the isometric welding of e“> and

— /L77\/1\)ZA+ /L(TD
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Flow-line identity




Winding identity

Assume 7 is rectifiable.

| f(o0) = 00
e T H

4 g(oo) = o0
Jig H*

We denote by

which is the Poisson integral of 7 in C.
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Flow-line identity

1 \ % f R““ lls‘g |
N~ 03 v
Notice that arg(f’) has the same Dirichlet energy as log |f’|. We have the

identity
I*(n) = Du(arg f') + Dy~ (arg g’) = Dec(P[r]).

Consequence: I5(n) < co < 1 is chord-arc and 7 € HY/2(n).
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Flow-line identity, cont’d

Corollary (Flow-line identity)

Conversely, if ¢ € £(C) N C°(C), then for all zy € C, there is a unique
solution to the differential equation

0 (t) = ") vt e R and 7(0) = z
is an infinite arclength parametrized simple curve and
De(p) = I'(n) + De (o),

where o = © — Plpl,]. ) @(DQ? \v\))

SLE/GFF counterpart (imaginary geometry): The flow-lines of e'V<GFF/2
is an SLE,; curve. Conditioning on the flow-line, g is an 0-boundary GFF.
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Application: Equipotential energy monotonicity

_____

-

Corollary [infinite curve]
Let r > 0, we have I5(n") < IY(n).

T n
fD—>

Corollary [bounded curve]
For 0 < r < 1, we have IX(n,) < I*(f(C)) < IY(n).
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Application: Equipotential energy monotonicity, cont’'d

Proposition

The function r +— IX(n,) (resp. r — I*(n")) is continuous and monotone.

Moreover,
()Hl‘ L) 1t =25 0.
(resp. I*(n") === I*(n); I"(n") —=0.)

Remark: The vanishing of /X(7,) as r — 0 can be thought as expressing
the fact that conformal maps asymptotically take small circles to circles.
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Complex identity

Corollary (Complex identity)

Let ¢ be a complex-valued function on C with finite Dirichlet energy and
Imy € CO(C). Let n be a flow-line of the vector field e¥ and f,g the
conformal maps associated to 1. Then we have

De(¥) = Du(C) + DPu-(£),

where ( = of +logf’, E =vYog+logg’.
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Complex function identity, cont’d

It follows from welding and flow-line identities and also implies both
identities:

e Taking Imvy = ¢ and Re(¢)) =0
— flow-line identity: Dc(¢) = I'(n) + De(po).
e Taking Rey) = ¢ and Im 1 := P[] where 7 is the winding of the

curve 7
— welding identity: Dc(p) + I'(n) = Du(u) + Du-(v).
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SLE/GFF dictionary




A (very loose) dictionary

]

SLE/GFF with 7 = v/ — 0

Finite energy

SLE. loop.

Finite energy Jordan curve, 7.

Free boundary GFF v® on H (on C).

2u, u € E(H) (2, p € E(C)).

~-LQG on quantum plane ~ e7®dz2.

e?vdz?, p € £(C).

v-LQG on quantum half-plane on H

e?!dz?, u € E(H).

~v-LQG boundary measure on R ~ e7®/2dx

e'®dx, u e HY2(R).

SLE, cuts an independent
quantum plane into
independent quantum half-planes.

Finite energy n cuts ¢ € £(C)
into u € £(H), v € £(H*) and
I*(n) 4+ Dc(p) = Du(u) 4 Dax(v)-

Quantum zipper: isometric welding
of independent v-LQG measures on R
produces SLE.

Isometric welding
of e’dx and eVdx, u,v € H/?(R)
produces a finite energy curve.

v-LQG chaos w.r.t. Minkowski content
equals the pushforward of
v-LQG measures on R.

e?In|dz|, ¢ln € HY/2(n),
equals the pushforward of
e'dx and e“dx, u,v € HY/2(R).

Bi-infinite flow-line of e/®/X ~~ e7®/2

is an SLE,, loop measurable wrt. ®.

Bi-infinite flow-line of e/¥
is a finite energy curve
Dc(p) = I"(n) + Dc(wo)

Mating of trees

Complex identity < welding+flow-line.
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Figure 3.1: The evolution corresponding to the measure that equals 7' sin®(6/2)déd¢t for
0 <t <1 and is uniform for £ > 1. The red curves are leaves drawn at equidistant times
and the purple lines represent the flow of equidistant points on the unit circle. The winding
function is harmonic, but non-zero, in the part foliated after time 1. The Loewner-Kufarev

energy of this measure equals 2.
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Cutting and welding identity, cont’d

H f H
e2P(2)d2 PP Q 1
N — % S
0 1 g 0
H* D e——— H*

62vdz2

Theorem (cutting)
We have the identity

Dc(ep) + = Du(u) + Dy=(v).



Proof of the welding identity:

Assume that 7 and ¢ are smooth.
DH( ) DH(QDOI()—FDH |Og‘f-/ /Vlog\f’ (gpof)

= Du(p) + Du(log |f']) + /Vlog|f’ V(g o f)dz

Adding Dg-(v) the first two terms sum up to Dc(p) + /5(n), and the
cross terms sum up to O since

/H V(log|f]) - V(g o f)dz? = / (B log | |)ip o £ (x)dx
= / K(FO))IF ()] o F(x)dx

~ | kedy == [ kel)dy. 0



Complex identity

Corollary (Complex identity)

Let i) be a complex-valued function on C with finite Dirichlet energy and
Im € CO(C). Let n be a flow-line of the vector field e¥ and f, g the
conformal maps associated to 1. Then we have

De(4) = Du(C) + Pu-(£),

where ( =Y of +logf’, §E =vYog+logg’.

f(o0) = 00
H H
N — >—
g(o0) = o0
H* H*




Proof of the complex identity

C(=1vof+(logf')" = +i(lmyof —argf’)
flow-line : = u + ilmag o f.
f: —|—/|m¢oog

where u:= Re o f + log|f'|,v := Revy o g+ log|g’|.
We have

Dc(¢) = De(Re ) + De(Imy)
flow-line id. = Dg(Re ) + I(n) + De(Im )
— + De(Im 1)
welding id. = + De(Im o)
= Du(¢) + Du-(§).- O



