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Dirichlet energy & GFF

• Similarly, the Dirichlet energy of functions Ï defined on D µ C is
the action functional/large deviation rate function of (a small
parameter “ times) the Gaussian free field (GFF).

“P(
Ô

ŸGFF stays close to 2Ï) ¥ e≠D(Ï)/Ÿ, as Ÿ æ 0.”

• A reminder: For a finite dimensional Gaussian vector, the density
w.r.t. Lebesgue measure is given by

fl(X ) Ã e≠X
t
K

≠1
X/2.

• To relate to Eero’s talk, GFF is the Gaussian measure index by D
with covariance kernel the Green’s function K = 2fi(≠�)≠1. So the
density of GFF (with abuse) is given by

fl(2Ï) Ã e≠ÈÏ,≠�ÏÍ/fi = e≠D(Ï).
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Motivation: SLE/GFF coupling

• This talk: there is a nice interplay between Loewner energy and
Dirichlet energy of functions which is reminiscent to SLE/GFF
couplings pioneered by She�eld and Dubédat.

• Our results and proofs are purely analytic (and very short).
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Equivalent definition of the Loewner energy

Theorem [W. 2019]

If ÷ passes through Œ, we have the identity

IL(÷) = DH(log |f Õ|) + DHú(log |g Õ|).

f (1) = 1

g(1) = 1⌘

H H

H
⇤

H
⇤

In this talk we assume all finite energy curves pass through Œ. All results also have a
version for bounded curves (even for statements that are not Möbius invariant).
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Cutting and Welding identity



Cutting and welding identity

Let Ï œ E(C) µ W 1,2
loc

(C) µ VMO(C), f , g conformal maps from H,Hú

onto H, Hú fixing Œ.

f

g
⌘

0

00

1

1

H

H
⇤

H

H
⇤

e
2u
dz

2

e
2v
dz

2

e
2'(z)

dz
2

We have e2Ï œ L1
loc

(C) and the transformation law:

u(z) = Ï ¶ f (z) + log |f Õ(z)| , v(z) = Ï ¶ g(z) + log |g Õ(z)| ,

such that e2udz2 = f ú(e2Ïdz2), e2v dz2 = gú(e2Ïdz2).
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Cutting and welding identity, cont’d

f

g
⌘

0

00

1

1

H

H
⇤

H

H
⇤

e
2u
dz

2

e
2v
dz

2

e
2'(z)

dz
2

Theorem (cutting)

We have the identity

DC(Ï) + IL(÷) = DH(u) + DHú(v).
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Large deviation heuristics

SLE/GFF “ := Ô
Ÿ Finite energy

SLEŸ loop. Finite energy Jordan curve, ÷.
Free boundary GFF “� on H (on C). 2u, u œ E(H) (2Ï, Ï œ E(C)).
“-LQG on quantum plane ¥ e“�dz2. e2Ïdz2, Ï œ E(C).
“-LQG on quantum half-plane on H e2udz2, u œ E(H).
SLEŸ cuts an independent Finite energy ÷ cuts Ï œ E(C)
quantum plane e“�dz2 into into u œ E(H), v œ E(Hú) and
ind. quantum half-planes e“�1 , e“�2 . IL(÷) + DC(Ï) = DH(u) + DHú (v).

SLE/GFF ∆ one may expect that under appropriate topology and for small Ÿ,

“P(SLEŸ loop stays close to ÷,
Ô

Ÿ� stays close to 2Ï)
= P(

Ô
Ÿ�1 stays close to 2u,

Ô
Ÿ�2 stays close to 2v)”
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Large deviation heuristics, cont’d

From the large deviation principle and the independence of SLE and �, one
expects

lim
Ÿæ0

≠Ÿ log P(SLEŸ stays close to ÷,
Ô

Ÿ� stays close to 2Ï)

= lim
Ÿæ0

≠Ÿ log P(SLEŸ stays close to ÷) + lim
Ÿæ0

≠Ÿ log P(
Ô

Ÿ� stays close to 2Ï)

= IL(÷) + DC(Ï).

Similarly, the independence between �1 and �2 gives

lim
Ÿæ0

≠Ÿ log P(
Ô

Ÿ�1 stays close to 2u,
Ô

Ÿ�2 stays close to 2v)

= DH(u) + DHú (v).

=∆ IL(÷) + DC(Ï) = DH(u) + DHú (v).

10

Epp



Conversely

One expects the density of an independent couple (SLEŸ,
Ô

Ÿ GFF) has
density

fl(÷, 2Ï) Ã exp(≠IL(÷)/Ÿ) exp(≠DC(Ï)/Ÿ)
= exp(≠DH(2u)/Ÿ) exp(≠DHú(2v)/Ÿ)

the identity on the action functional also suggests the SLE/GFF coupling.
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Converse operation: Isometric welding

Now let u œ E(H), v œ E(Hú). The traces of u, v œ H1/2(R) µ VMO(R).

ÎuÎ2
H1/2(R) = 1

2fi2

⁄⁄

R◊R

|u(z) ≠ u(w)|2
|z ≠ w |2 |dz ||dw | = DH(P[u]) < Œ.

We have eu, ev œ L1
loc

(R) defines two boundary measures
µ(dx) = eudx , ‹(dx) = ev dx .
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A lemma

Lemma

We define h(0) = 0, and h(x) :=
I

inf {y Ø 0 : µ[0, x ] = ‹[0, y ]} if x > 0;
≠ inf {y Ø 0 : µ[x , 0] = ‹[≠y , 0]} if x < 0.

Then h is a quasisymmetric homeomorphism.
Moreover, log hÕ œ H1/2(R).

0

0

1

h

H

H
⇤

eu(x)dx

ev(x)dx
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Welding problem

We say that the triple (÷, f , g) is a normalized solution to the

conformal welding problem for h if

• ÷ is Jordan curve in Ĉ passing through 0, 1, Œ;
• f : H æ H is the conformal map fixing 0, 1, Œ;
• g : Hú æ Hú is conformal and g≠1 ¶ f = h on R,

f

g

⌘

0

0 0

1

1
h := g

�1 � f

H

H
⇤

H

H
⇤

Theorem (Shen-Tang-Wu ’18)

÷ is Weil-Petersson quasicircle if and only if log hÕ œ H1/2(R).
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Why isometric welding: converse of cutting

Corollary

There exists a unique normalized solution (÷, f , g) to the welding
homeomorphism induced by eu and ev , and the curve obtained has finite
Loewner energy.

Moreover, Ï defined from the transformation law is in E(C), therefore
the welding identity holds:

IL(÷) = DH(u) + DHú(v) ≠ DC(Ï).

f

g
⌘

0

00

1

1

H

H
⇤

H

H
⇤

e
2u
dz

2

e
2v
dz

2

e
2'(z)

dz
2

Key: Trace theorem & Sobolev extension theorem for domain bounded by
chord-arc curves [Jonsson-Wallin]. 15
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Application: arclength conformal welding

Assume ÷1, ÷2 are rectifiable
Jordan curves and |÷1| = |÷2|.

Â : ÷1 æ ÷2 preserves arclength.

D1

⌘1 ⌘2

D2

 

F

G

⌘ such that G�1 � F =  

• [Huber 1976] The solution does not always exist.
• [Bishop 1990] If the solution exists, ÷ can be a curve of positive area

and the solution is not unique.
• [David 1982, Zinsmeister 1982, Jerison-Kenig 1982] If ÷1 and ÷2 are

chord-arc, then the solution exists and is unique, and is an
quasicircle.

• [Bishop 1990] But the Hausdor� dimension of ÷ can take any value in
1 < d < 2 =∆ not rectifiable.

• [Viklund, W. 2019] The class of finite energy curves is closed under
arclength welding.
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How does the energy change under the arclength welding operation?

IL(÷) ?? IL(÷1) + IL(÷2)



Arclength welding of finite energy domains

Assume IL(÷1) < Œ, IL(÷2) < Œ, both passing through Œ. Let Hi , Hú
i

be
the two connected components of Cr ÷i .

Corollary (sub-additivity)

Let ÷ (resp. ÷̃) be the arclength welding curve of the domains H1 and Hú
2

(resp. H2 and Hú
1 ). Then ÷ and ÷̃ have finite energy. Moreover,

IL(÷) + IL(÷̃) Æ IL(÷1) + IL(÷2).

H1

H
⇤
2

H

H
⇤

⌘1

⌘2

F

G

 : ⌘1 ! ⌘2 ⌘

17



Proof of the sub-additivity

H1

H
⇤
2

H

H
⇤

⌘1

⌘2

F

G

 : ⌘1 ! ⌘2 ⌘

H

H
⇤

f1

g2

e
2u1dz2

e
2v2dz2

In fact, let ui = log |f Õ
i
|, vi = log |g Õ

i
|. From the definition of the Loewner

energy,
IL(÷i) = DH (ui) + DHú (vi) .

Arclength welding implies that ÷ is the welding curve obtained the
isometric welding of eu1 and ev2 and ÷̃ is the isometric welding of eu2 and
ev1 . Then, from the welding identity,

IL(÷) + IL(÷̃) Æ DH (u1) + DHú (v2) + DH (u2) + DHú (v1)
= IL(÷1) + IL(÷2).
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Flow-line identity



Winding identity

Assume ÷ is rectifiable.

f (1) = 1

g(1) = 1⌘

H H

H
⇤H

⇤

e
i⌧

We denote by

P[· ](z) =
I

arg f Õ(f ≠1(z)) z œ H;
arg g Õ(g≠1(z)) z œ Hú

which is the Poisson integral of · in C.

19
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Flow-line identity

Notice that arg(f Õ) has the same Dirichlet energy as log |f Õ|. We have the
identity

IL(÷) = DH(arg f Õ) + DHú(arg g Õ) = DC(P[· ]).

Consequence: IL(÷) < Œ … ÷ is chord-arc and · œ H1/2(÷).

20
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Flow-line identity, cont’d

Corollary (Flow-line identity)

Conversely, if Ï œ E(C) fl C0(Ĉ), then for all z0 œ C, there is a unique
solution to the di�erential equation

÷Õ(t) = e iÏ(÷(t)), ’t œ R and ÷(0) = z0

is an infinite arclength parametrized simple curve and

DC(Ï) = IL(÷) + DC(Ï0),

where Ï0 = Ï ≠ P[Ï|÷].

SLE/GFF counterpart (imaginary geometry): The flow-lines of e i
Ô

ŸGFF/2

is an SLEŸ curve. Conditioning on the flow-line, Ï0 is an 0-boundary GFF.

21
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Application: Equipotential energy monotonicity

f (1) = 1

⌘

H H R + ir⌘
r := f (R + ir)

R

Corollary [infinite curve]

Let r > 0, we have IL(÷r ) Æ IL(÷).

f : D ! D

⌘T
rT

⌘r

C f (C)

Corollary [bounded curve]

For 0 < r < 1, we have IL(÷r ) Æ IL(f (C)) Æ IL(÷).
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Application: Equipotential energy monotonicity, cont’d

Proposition

The function r ‘æ IL(÷r ) (resp. r ‘æ IL(÷r )) is continuous and monotone.
Moreover,

IL(÷r )
ræ1≠≠≠≠≠æ IL(÷); IL(÷r )

ræ0+≠≠≠≠æ 0.

(resp. IL(÷r ) ræ0+≠≠≠≠æ IL(÷); IL(÷r ) ræŒ≠≠≠æ 0.)

Remark: The vanishing of IL(÷r ) as r æ 0 can be thought as expressing
the fact that conformal maps asymptotically take small circles to circles.
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Complex identity

Corollary (Complex identity)

Let Â be a complex-valued function on C with finite Dirichlet energy and
Im Â œ C0(Ĉ). Let ÷ be a flow-line of the vector field eÂ and f , g the
conformal maps associated to ÷. Then we have

DC(Â) = DH(’) + DHú(›),

where ’ = Â ¶ f + log f Õ, › = Â ¶ g + log g Õ.

f (1) = 1

g(1) = 1⌘

H H

H
⇤

H
⇤

24
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Complex function identity, cont’d

It follows from welding and flow-line identities and also implies both
identities:

• Taking Im Â = Ï and Re(Â) = 0
=∆ flow-line identity: DC(Ï) = IL(÷) + DC(Ï0).

• Taking Re Â = Ï and Im Â := P[· ] where · is the winding of the
curve ÷

=∆ welding identity: DC(Ï) + IL(÷) = DH(u) + DHú(v).

25
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A (very loose) dictionary

SLE/GFF with “ = Ô
Ÿ æ 0 Finite energy

SLEŸ loop. Finite energy Jordan curve, ÷.
Free boundary GFF “� on H (on C). 2u, u œ E(H) (2Ï, Ï œ E(C)).
“-LQG on quantum plane ¥ e

“�
dz

2. e
2Ï

dz
2, Ï œ E(C).

“-LQG on quantum half-plane on H e
2u

dz
2, u œ E(H).

“-LQG boundary measure on R ¥ e
“�/2

dx e
u(x)

dx , u œ H
1/2(R).

SLEŸ cuts an independent Finite energy ÷ cuts Ï œ E(C)
quantum plane into into u œ E(H), v œ E(Hú) and
independent quantum half-planes. I

L(÷) + DC(Ï) = DH(u) + DHú (v).
Quantum zipper: isometric welding Isometric welding
of independent “-LQG measures on R of e

u
dx and e

v
dx , u, v œ H

1/2(R)
produces SLEŸ. produces a finite energy curve.
“-LQG chaos w.r.t. Minkowski content e

Ï|÷ |dz|, Ï|÷ œ H
1/2(÷),

equals the pushforward of equals the pushforward of
“-LQG measures on R. e

u
dx and e

v
dx , u, v œ H

1/2(R).
Bi-infinite flow-line of e

i�/‰ ¥ e
i“�/2 Bi-infinite flow-line of e

iÏ

is an SLEŸ loop measurable wrt. �. is a finite energy curve
DC(Ï) = I

L(÷) + DC(Ï0).
Mating of trees Complex identity … welding+flow-line.
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Cutting and welding identity, cont’d

f

g
⌘

0

00

1

1

H

H
⇤

H

H
⇤

e
2u
dz

2

e
2v
dz

2

e
2'(z)

dz
2

Theorem (cutting)

We have the identity

DC(Ï) + IL(÷) = DH(u) + DHú(v).



Proof of the welding identity:

Assume that ÷ and Ï are smooth.

DH(u) = DH(Ï ¶ f ) + DH(log |f Õ|) + 1
fi

⁄

H

Ò(log |f Õ|) · Ò(Ï ¶ f )dz2

= DH(Ï) + DH(log |f Õ|) + 1
fi

⁄

H

Ò(log |f Õ|) · Ò(Ï ¶ f )dz2.

Adding DHú(v) the first two terms sum up to DC(Ï) + IL(÷), and the
cross terms sum up to 0 since

⁄

H

Ò(log |f Õ|) · Ò(Ï ¶ f )dz2 =
⁄

R

(ˆn log |f Õ|)Ï ¶ f (x)dx

=
⁄

R

k(f (x))|f Õ(x)|Ï ¶ f (x)dx

=
⁄

ˆH

k(y)Ï(y)dy = ≠
⁄

ˆHú
k(y)Ï(y)dy .



Complex identity

Corollary (Complex identity)

Let Â be a complex-valued function on C with finite Dirichlet energy and
Im Â œ C0(Ĉ). Let ÷ be a flow-line of the vector field eÂ and f , g the
conformal maps associated to ÷. Then we have

DC(Â) = DH(’) + DHú(›),

where ’ = Â ¶ f + log f Õ, › = Â ¶ g + log g Õ.

f (1) = 1

g(1) = 1⌘

H H

H
⇤

H
⇤



Proof of the complex identity

’ = Â ¶ f + (log f Õ)ú = Re Â ¶ f + log |f Õ| + i(Im Â ¶ f ≠ arg f Õ)
flow-line : = u + i Im Â0 ¶ f .

› = v + i Im Â0 ¶ g .

where u := Re Â ¶ f + log |f Õ|, v := Re Â ¶ g + log |g Õ|.

We have

DC(Â) = DC(Re Â) + DC(Im Â)
flow-line id. = DC(Re Â) + IL(÷) + DC(Im Â0)

= DC(Re Â) + IL(÷) + DC(Im Â0)
welding id. = DH(u) + DHú(v) + DC(Im Â0)

= DH(’) + DHú(›).


