- LDP of SLE ~ K ~ SOO (2 = 1/K)
 L) Radial Loenner chain
 L) Donsker-Varadhan's Hearem
 L) Loenner Kufarer energy
 - N 0

Peltola

A simulation of interface in critical Ising lattice model, which approximates the SLE₃.

Simulations of multichordal SLE₃:

Cardy, Werner, Dubédat, Lawler, Kozdron, Bauer, Bernard, Kytölä, Sheffield, Miller, Wu, Peltola, Beffara, etc.

$$\frac{d P_{\alpha}^{k} \not\in \mathsf{nulticlicities} \mathsf{SLE}_{k}}{d P_{\alpha}^{k}} \left(\begin{array}{c} \mathscr{C}_{1,1}, \cdots, \mathscr{C}_{n} \end{array} \right) \\ \frac{d P_{\alpha}^{k}}{d \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right)} \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, \mathscr{C}_{n}) \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \mathsf{exp} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, 2 \end{array} \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \end{array} \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1,1}, \cdots, 2 \end{array} \right) \\ \frac{\mathsf{E}_{k, ind}^{k, ind} \left(\begin{array}{c} \underline{\mathcal{C}}(k) \\ 2 \end{array} \right) (\Upsilon_{1, ind}^{k, ind} \left) (\Upsilon_{1, ind}^{k, ind} \left) (\Upsilon_$$

Pi is the GLED (i.e. hyperbolic good)
in Di
exists?
minimiter of (Algebraic method)
the antiticherdal
Loewner energy
(Results jointly with E. Peltila)
Thm: Let (9, ..., 1) be a
geodesic multicherd in H, connecting

$$X_{1} \dots X_{2N} \in IR$$
 (don't fix 2 for)
Then, there exists a rectional function
 $h_{1} = \frac{P}{Q} \in polynomials f$
 ef degree $N+1$, $f = 2f$
such that ef h
 $1, Vy_{2} \dots Vy_{n} \cup y_{n}^{*} \dots y_{n}^{*} \cup y_{n}^{*}$

hy is unique up to post-composition
by PSLL2(1R)
$$\in$$
 confirmed autom
or by $2 + 3 - 2$ of H4
Thurll. Goldberg (91)
For a given set (21, ..., .22n) of
coritical points of index 2.
there are at most a Catalan
number Ch of rational functions
of degree $n+1$ with these coritical
points / PSL(2, C)
 $C_n = -\frac{1}{n+1} {2n \choose n} = 5 + 2$

Cor. There is a unique geodesix miltich. Il in Xy (H1, Xil, J, Azn) (or When ZI=XI ... ty = Xin all real then I Ca rational functions with these critical points. Moreover, these rational furction are PSL 12, C) - equivalent to a REAL rational function. Sheppiro's conjutive i Evenienko - Gabrielov '02 Armonts) 2) Multichardel SLE, well- defined.

~

_

The : As
$$k \rightarrow \infty$$
. SLE_k (k_{t})
converges to $(D i e^{t} D)$
 $t \rightarrow t+\Delta t$ $t \in D$
 $\Delta g_{t}(t) = \int_{t}^{t+\Delta T} -g(t) \frac{f_{s}(t)+B_{s}}{g_{s}(t)-B_{s}} ds$
Since $dhorst$ instart
 $\int_{s} \frac{f_{t}(t)+f_{s}}{g_{t}(t)-f_{s}} \delta B_{s}^{k}$
 $= \int_{t}^{t+\Delta t} \int_{s'} -g(t) \frac{g_{t}(t)+f_{s}}{g_{t}(t)-f_{s}} \delta B_{s}^{k} ds$
 $= \int_{s'} -g_{t}(t) \frac{g_{t}(t)+f_{s}}{g_{t}(t)-f_{s}} \left(L_{t+\Delta t}^{k}(J) -L_{t}^{k}(f_{s}) \right)$
Local time
of $Btf_{s'}^{k}$ on
 g_{t}^{k}

Definition. "Loewner-kulperer energy"

$$N_{i} := 9 \text{ massure on S' x[o, i]};$$

 $p(S' xI) = iI] \text{ for all intervals I ctoil)}$
 $p \in N_{1} \rightarrow p(dS dt)$
 $= p(dS dt)$
 $= p(dS) dt$
 $S(p) = \int^{I} I^{DV}(p_{t}) dt$
where $I^{DV}(p_{t}) = 4 \int_{S} (U_{t}')^{2} dS$
 $i \int p(dS) = U_{t}^{2}(y) dS$
 $fine a.c. u.et dS$
 $o otherwise$
 S_{1}
 $I = 1$
 S_{1}
 $I = 1$
 $I =$

K-Jor Measure.
K-Jor L Pt = unifm on S'

$$V_t = \sqrt{Pt} \rightarrow constant$$

[Ang. Park. W] => S(p) = 0
[Thm. N; endound with the weak topology
 $\{S_{B_t}\}_{t \in toil} \in N_i$
Satisfies the LDP with rate function
 $S(p)$
 V regularizing effect
 $for each pt N_i \rightarrow IKt)$
 $for each pt N_i \rightarrow IKt)$
 $homeomorphism Car
Contraction principle
 \Rightarrow Lik energy is the UPP of Radial
 SUE_k as k-300.$

