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Schramm-Loewner evolution (SLE) is a one-parameter family of random
fractal curves characterized by

conformal invariance (CI)

domain Markov property (DMP)

We focus on chordal SLE, which grows in a simply connected domain from
one boundary point to another boundary point.



The geometric property of an SLE curve depends on the value of :

simple curve if  2 (0, 4],

space-filling if  2 [8,1),

neither simple nor space-filling if  2 (4, 8).

The Hausdor↵ dimension of the curve is min{2, 1 + 
8}.



We focus on the range  2 (0, 8). A chordal SLE curve �

is not space-filling:

satisfies reversibility,

may or may not be simple

In fact, for any z0 2 D,

lim
r#0

P[dist(z0, �) < r ] = P[z0 2 �] = 0.

We are interested in the decay rate of P[dist(z0, �) < r ] as r ! 0.



The Green’s function at z0 is the limit

G (z0) := lim
r#0

r
�↵

P[dist(z0, �) < r ],

for some suitable exponent ↵ > 0.

We are interested in the value of ↵, the convergence of the limit, the
exact formula of G , and the convergence rate.



The term ”Green’s function” is used for the following reasons. Recall that
the Laplacian Green’s function GD(z ,w), z 6= w 2 D, for a planar domain
D. It is the function determined by the following properties: for w 2 D,

GD(·,w) is positive and harmonic on D \ {w}.
As z ! @D, GD(z ,w) ! 0.

As z ! w , GD(z ,w) = 1
2⇡ ln |z � w |+ O(1).



One important fact is

G (z ,w) =
1

2⇡
lim
r#0

(� ln r) · Pz [dist(w ,B[0, ⌧D ])  r ],

where B is a planar Brownian motion started from z , and ⌧D is the exit
time of D. For the proof, one stops the local martingale GD(Bz

t ,w) at
⌧D ^ ⌧ zr to get a bounded martingale, where ⌧ zr is the first time that B
gets within distance r from z .

Another important fact is: for any measurable set U ⇢ D,

E[|{t 2 [0, ⌧D) : Bt 2 U}|] =
Z

U
G (w , z0)dw .

This fact is clear for random walk and discrete Green’s function.



About SLE Green’s function, the following is a result of [Lawler-Rezaei
’15]. For every  2 (0, 8), there is a constant bc = bc() > 0 such that for a
chordal SLE curve in H from 0 to 1 and any z0 2 H,

lim
r#0

r
�(1�

8 )P[dist(�, z) < r ] = bc(Im z0)

8 +

8
�2|z0|1�

8
 .

The formula on the RHS was predicted by Rohde and Schramm.

The exponent ↵ = 1� 
8 is related to the Hausdor↵ dimension

d = 1 + 
8 by ↵ = 2� d .

The constant bc is unknown so far.



The same paper derives the existence of two-point Green’s function, i.e.,

G (z1, z2) := lim
r1,r2#0

r
�↵
1 r

�↵
2 P[dist(�, zj) < rj , j = 1, 2],

and then uses those Green’s functions to prove that

an SLE curve can be parametrized by its d-dimensional Minkowski
content, i.e., for any t1 < t2, the (1 + 

8 )-dimensional Minkowski
content of �[t1, t2] is t2 � t1; and

under such parametrization, for any measurable set U ⇢ D,

E[|{t : �(t) 2 U}|] =
Z

U
G (z)dz .

The Minkowski content parametrization agrees with the natural
prametrization introduced earlier ([Lawler-She�eld ’11, Lawler-Zhou ’13]).



We now briefly review the proof for one-point interior Green’s function.

By conformal covariance, we may assume D = D = {|z | < 1},
a = e

i2✓0 , b = 1, ✓0 2 (0,⇡), and z0 = 0.

At each time t before the curve surrounds 0, let Dt denote the
connected component of D \ �[0, t] that contains 0.
Let gt be the conformal map from Dt onto D, which fixes 0 and 1.

Let ✓t 2 (0,⇡) be such that e i2✓t = gt(�(t)).

We reparametrize � such that |g 0
t(0)| = e

t for all t.





Using Itô’s calculus, we know that ✓t 2 (0,⇡) satisfies SDE:

d✓t =

p


2
dBt +

� 4

4
cot(✓t)dt,

where Bt is a standard Brownian motion. After a linear time-change with
ds = 

4dt, the SDE becomes

d✓s = d bBs +
� 4


cot(✓s)ds.

After this time-change, |g 0
s(0)| = e

4
 s .



Lawler calls a process ✓ 2 (0,⇡) that satisfies the SDE

d✓t = dBt +
� � 1

2
cot(✓t)dt, 0  t < T ,

a radial Bessel process of dimension �.

In comparison, a Bessel process X of dimension � satisfies the SDE:

dXt = dBt +
� � 1

2Xt
dt, 0  t < T .

If � � 2, then T = 1 and X stays in (0,1); if � < 2, then T < 1 and
limt!T Xt = 0.

A radial Bessel process behaves like a Bessel process of the same
dimension near 0 and ⇡. If � � 2, T = 1 and ✓ stays in (0,⇡); if � < 2,
T < 1 and limt!T ✓(t) 2 {0,⇡}.



Another similarity between Bessel processes and radial Bessel processes:
when � 2 N,

for a Brownian motion Bt in R
� and any x 2 R

�, distR�(Bt , x) is a
Bessel process of dimension �;

for a Brownian motion B on the sphere S
� and any x 2 S

�,
distS�(Bt , x) is a radial Bessel process of dimension �;

Recall that our SDE for the Green’s function is

d✓s = d bBs +
� 4


cot(✓s)ds.

So it is a radial Bessel process of dimension � = 3� 8
 < 2, and has a

finite lifetime.



We use a basic tool: Koebe’s 1/4 theorem: if f maps a domain D1

conformally onto a domain D2, z1 2 D1 and z2 = f (z1) 2 D2, then

1

4
|f 0(z1)| 

dist(z2, @D2)

dist(z1, @D1)
 4|f 0(z1)|.

Applying Koebe’s 1/4 theorem to gs (from Ds onto D fixing 0), we get

dist(0, �[0, s]) = dist(0, @Ds) ⇣ e
� 4

 s , 0  s < T .

Thus, dist(0, �) ⇣ e
� 4

T . Letting ↵ = 1� 
8 , the original limit problem

can be converted to the limit

lim
t!1

e
( 4
�

1
2 )tP[T > t] = lim

t!1
e

2��
2 t

P[T > t].



Suppose the limit limt!1 e
2��
2 t

P[T > t] exists and equals G (✓0). By
Markov property of the process ✓, we get a martingale

N(t) := e
2��
2 t

G (✓t).

Using Itô’s formula, we find that G (✓) = c sin2�� ✓ for some constant
c > 0. This argument gives the formula of G , but does not prove the
convergence of the limit.



For the convergence of the limit, we work in parallel on two-sided radial

SLE curve. A two-sided radial SLE curve

grows in a simply connected domain D from one marked boundary
point a to another marked boundary point b passing through a
marked interior point c ;

may be intuitively viewed as a chordal SLE curve in D from a to b

conditioned on the (singular) event that it passes through c ;
(The definition resembles the h-processes)

the two arms of the curve, one from a to c , the other from b to c ,
satisfy the property that when one curve is given, the other is a
chordal SLE curve in one complement domain.
(This property resembles the multiple SLE.)



Suppose instead of the chordal SLE in D from e
i2✓0 to 1, we work on the

two-sided radial SLE curve in D from e
i2✓0 to 1 passing through 0. We

define Ds , gs , ✓s ,T for the two-sided radial SLE curve up to the time that
the curve reaches 0. Then the ✓t obtained is also a radial Bessel process
but of dimension e� = 4� � = 1 + 8

 > 2. So its lifetime is 1.

The law P of the radial Bessel process of dimension � < 2 and the law eP of
the radial Bessel process of dimension e� = 4� � > 2 with the same
starting point are related by

dP|Ft \ {T > t}
deP|Ft \ {T > t}

=
N0

Nt
= e

��2
2 t sin

��2 ✓t
sin��2 ✓0

, 8t � 0,

where Nt = e
��2
2 t sin2�� ✓t is the martingale related to Green’s function.



An eigenvalue method is used to prove that a radial Bessel process of
dimension e� > 2 has a transition density ept(x , y), which approaches its
stationary density ep1(y) = c sin3��

y exponentially fast as t ! 1.

Using the transition density ept(x , y) for eP and the RN derivative
connection between P and eP, we see that if a radial Bessel process of
dimension � < 2 starts from x , then its lifetime T satisfies

P[T > t] = e
��2
2 t

Z ⇡

0

sin��2
y

sin��2
x
ept(x , y)dy

t!1⇡ e
��2
2 t

Z ⇡

0

sin��2
y

sin��2
x
ep1(y)dy = c()e

��2
2 t sin2��

x .

So we get the desired limit limt!1 e
2��
2 t

P[T > t].



Below is a list of some existing results on SLE Green’s functions.

1- and 2-pt Green’s function for chordal SLE (Lawler & Rezaei ’15)

1- and 2-pt boundary Green’s function for chordal SLE (Lawler ’15)

Green’s function for radial SLE (Alberts, Kozdron & Lawler ’12)

n-point Green’s function for chordal SLE (Rezaei & Z. ’18)

One-curve Green’s function for 2-SLE (Lenells & Viklund ’19).

Two-curve Green’s function for 2-SLE (Z. ’20)

Two-curve boundary Green’s function for 2-SLE (Z.)

Green’s function for cut-points of SLE (Z.)



We now study the two-curve Green’s function for 2-SLE for 0 <  < 8.
Let D be a simply connected domain. Fix four boundary points
(a1, b1, a2, b2) of D ordered clockwise or counterclockwise. A 2-SLE

configuration in D with link pattern (a1 ! b1; a2 ! b2) is a pair of
random curves (�1, �2) in D satisfying, for j = 1, 2,

�j grows from aj to bj ;

If �3�j is given, then �j is a chordal SLE curve in a complement
domain of D \ �3�j .

We have existence, uniqueness, and conformal invariance.

�1 and �2 are disjoint if   4; may intersect if  2 (4, 8).

The marginal law of each �j can be described by a hypergeometric
function ([Wu ’20]).





The two-curve Green’s function for a 2-SLE pair (�1, �2) at a point
z0 2 D is the limit

lim
r#0

r
�↵

P[dist(z0, �j) < r , j = 1, 2]

for some suitable exponent ↵ > 0.

Assuming that D = D and z0 = 0, we mimic the proof of the one-curve
Green’s function. Now we have two curves, each has its own
parametrization. For each pair of times (t1, t2), let Dt1,t2 denote the
complement of �1[0, t1] [ �2[0, t2] containing 0, and let gt1,t2 be a
conformal map from Dt1,t2 onto D that fixes 0. By Koebe’s 1/4 theorem,

|g 0
t1,t2(0)|

�1 ⇣ dist(0, @Dt1,t2) = min{dist(0, �j [0, tj ]) : j = 1, 2}.

But we want the decay rate of

P[max{dist(z0, �j) : j = 1, 2} < r ], as r ! 0.



To overcome this problem, we use a single time parametrization for both
curves. In other words, we grow two curves simultaneously. We want that
for any t in the lifespan,

min{dist(0, �j [0, t]) : j = 1, 2} ⇣ e
�t ;

dist(0, �1[0, t]) ⇣ dist(0, �2[0, t]).

These two properties together imply that

max{dist(0, �j [0, t]) : j = 1, 2} ⇣ e
�t .



The time parametrization is possible. For simplicity, we suppose b1 = 1,
b2 = �1, a1 = e

i✓1 and a2 = �e
i✓2 for some ✓1, ✓2 2 (0,⇡). At the

beginning, b1 and b2 equally divide the harmonic measure of @D viewed
from 0. Now we grow �1 and �2 simultaneously such that for any t

if gt maps Dt (the connected component of D \ (�1[0, t] [ �2[0, t])
that contains 0) conformally onto D, and fixes 0, then |g 0

t(0)| = e
t .

b1 = 1 and b2 = �1 equally divide the harmonic measure of @Dt

viewed from 0.

The first property implies that min{dist(0, �j [0, t]) : j = 1, 2} ⇣ e
�t by

Koebe’s 1/4 theorem.

The second property implies that dist(0, �1[0, t]) ⇣ dist(0, �2[0, t]) by
Beurling’s estimate applied to a planar Brownian motion started from 0.





The two-curve Green’s function is then closely related to the limit

lim
t!1

e
↵t
P[T > t],

where T is the lifetime of the above growth of two curves.

Since for each t 2 [0,T ), 1 and �1 equally divide the harmonic measure
of @Dt viewed from 0, we may assume that gt maps Dt conformally onto
D, and fixes 0, 1,�1. Then we have processes ✓1(t), ✓2(t) 2 (0,⇡) such
that e i✓1(t) = gt(�1(t)) and �e

i✓2(t) = gt(�2(t)). Let P denote the law of
the two-dimensional process (✓1(t), ✓2(t))0t<T .





We consider another random configuration which can be understood as
the 2-SLE curves �1 and �2 conditioned to both pass through 0. This is a
four-curve configuration in D connecting 0 with a1, b1, a2, b2. They satisfy
the property that, when any three curves are given, the last curve is a
chordal SLE curve in one complement domain. We call it a 4-SLE.



We now work on this 4-SLE, and grow �1 and �2 from a1 and a2 towards
0 simultaneously in the same way as before. Then we also get a process
(✓1(t), ✓2(t)). The lifetime of this new process is 1. Let eP denote its law.
Then this eP and the previous P are related by

dP|Ft \ {T > t}
deP|Ft \ {T > t}

= e
�↵t G (✓1(0), ✓2(0))

G (✓1(t), ✓2(t))
, t � 0.

where

↵ =
(12� )(+ 4)

8
,

G (✓1, ✓2) = (sin(
✓1
2
) sin(

✓2
2
))

8
�1 cos(

✓1 � ✓2
2

)
4
F

⇣cos(✓1/2) cos(✓2/2)
cos((✓1 � ✓2)/2)

⌘
,

and F is the hypergeometric function 2F1(1� 4
 ,

4
 ;

8
 , ·).



Under eP, (✓1(t), ✓2(t)) is a di↵usion process satisfying the SDE

d✓j =

s
 sin ✓j

sin ✓1 + sin ✓2
dBj +

4 cos ✓j
sin ✓1 + sin ✓2

dt, j = 1, 2,

where B1 and B2 are independent Brownian motions.

Using an eigenvalue method, we may calculate the transition density
ept((x1, x2), (y1, y2)) of the process (✓1(t), ✓2(t)) under eP. As t ! 1, it
converges exponentially fast to the invariant density ep1(y1, y2), which is

proportional to (sin y1 sin y2)
8
�1(sin y1 + sin y2).



Then we calculate

P[T > t] =

Z ⇡

0

Z ⇡

0
e
�↵t G (✓1, ✓2)

G (y1, y2)
ept((✓1, ✓2), (y1, y2))dy1dy2

t!1⇡
Z ⇡

0

Z ⇡

0
e
�↵t G (✓1, ✓2)

G (y1, y2)
ep1(y1, y2)dy1dy2

So we get
lim
t!1

e
↵t
P[T > t] = cG (✓1, ✓2).

where

c =

Z ⇡

0

Z ⇡

0
G (y1, y2)

�1ep1(y1, y2)dy1dy2 2 (0,1).



For  2 (4, 8), the exponent ↵ = (12�)(+4)
8 is related to the Hausdor↵

dimension d of the double points of a single SLE curve ([Miller-Wu ’13])
by ↵ = 2� d . A double point of a curve is a point that is visited by the
curve for more than once.

Our long term goal is to prove the existence of Minkowski content of
double points of SLE, which is related to the Minkowski content of the
intersection of the curves of a 2-SLE. For that purpose, we need the
two-curve two-point Green’s function for 2-SLE, i.e.,

lim
r1,r2#0

r
�↵
1 r

�↵
2 P[dist(�j , zk) < rk , j , k 2 {1, 2}].

The existence of this limit is currently beyond the reach.



The above technique may be used to study the boundary two-curve
Green’s function. Let (�1, �2) be the 2-SLE as before. Let z0 2 @D be
such that @D is analytic near z0. We are interested in the limit

lim
r#0

r
�↵

P[dist(z0, �j) < r , j = 1, 2].

We may assume that D = H and z0 = 1. Then the limit becomes

lim
R!1

R
↵
P[�j \ {|z | > R} 6= ;, j = 1, 2].

There are three di↵erent cases.





For the first case, we label the end points of the two curves by
b1 < a1 < a2 < b2. For simplicity, we assume that b1 = �1, b2 = 1, and
a1 < 0 < a2.

Now we grow �1, �2 simultaneously from a1, a2 such that for every t in the
life span [0,T ),

the harmonic measure of �1[0, t][ �2[0, t][ [b1, b2] in Dt viewed from
1 increases exponentially;

�1[0, t] [ [b1, 0] and �2[0, t] [ [0, b2] have equal harmonic measure in
Dt viewed from 1.



By Koebe’s 1/4 theorem and Beurling’s estimate, we then conclude that
1 _ diam(�j [0, t]) ⇣ e

t . So the original limit is closely related to the limit

lim
t!1

e
↵t
P[T > t].

For each t 2 [0,T ), suppose gt maps Dt conformally onto H, and fixes
1, 1,�1. Then we get a two-dimensional process (a1(t), a2(t)) in
[�1, 0]⇥ [0, 1] by aj(t) = gt(�j(t)), j = 1, 2.



In comparison, we now work on a 4-SLE in H with link pattern
(a1 ! 1, b1 ! 1, a2 ! 1, b2 ! 1). We grow the curves from a1 and
a2 towards 1 simultaneously with the same property as before, and get a
2-dimensional process (a1(t), a2(t)), whose lifetime is 1. The law eP of
(a1(t), a2(t)) for the 4-SLE and the law P for the 2-SLE are related by a
Radon-Nikodym derivative process.

Under eP, we have a transition density of the process (a1(t), a2(t)), which
converges to the invariant density as t ! 1.

Using the above facts and the same argument as in the interior case, we
conclude that, for ↵ = 2(12 � 1), the limit limt!1 e

↵t
P[T > t] converges

to a nontrivial number as t ! 1.



The technique also works in the other two cases, in which we compare
2-SLE respectively with 4-SLE and 3-SLE.



Another application of the two-curve technique is the Green’s function for
cut points of SLE. For a connected set K , a point z is called a cut point
of K if K \ z is not connected.

For  2 (0, 4], every point on an SLE curve is a cut point.

For  � 8, an SLE curve has no cut point.

For  2 (4, 8), the set of cut points of an SLE curve is not empty,
and has Hausdor↵ dimension 3� 3

8 ([Miller-Wu ’13]).

We now assume that  2 (4, 8).



In order to apply the two-curve technique, we attach the SLE curve with
two open boundary arcs and consider the cut points of the union.

Setup: Let D be a simply connected domain with four distinct boundary
points a1, a2, u, v . Suppose u and v divide @D into two open boundary
arcs: I1, I2 such that aj 2 Ij , j = 1, 2. Let � be an SLE curve in D from
a1 to a2. Let Sc denote the set of cut points of � [ I1 [ I2. Let z0 2 D.
Then we study the limit

lim
r#0

r
�↵

P[dist(z0, Sc) < r ].



We may assume that D = D, z0 = 0, u = 1 and v = �1. We
simultaneously grow two curves from a1 and a2 respectively along � and
its time-reversal in the same way as before, and get a two-dimensional
process (✓1(t), ✓2(t)) in (0,⇡)2 with finite lifetime T . Then we need to
study the limit

lim
t!1

e
↵t
P[T > t].



In comparison, we work on a random curve that can be understood as the
� conditioned on the event that 0 2 Sc . This is a curve from a1 to a2

passing though 0. For this process we also get a process (✓1(t), ✓2(t)) in
(0,⇡)2. This process has lifetime 1. Its law eP and the law P of the
original (✓1(t), ✓2(t) are related by Radon-Nikodym derivatives.

Under eP, (✓1(t), ✓2(t)) has a transition density, which converges to the
invariant density as t ! 1.

Using the above facts and the same argument as before, we conclude that,
for ↵ = 3

8� 1, the limit limt!1 e
↵t
P[T > t] converges as t ! 1.



Thank you!


