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Schramm-Loewner evolution (SLE,) is a one-parameter family of random
fractal curves characterized by

@ conformal invariance (Cl)

@ domain Markov property (DMP)

We focus on chordal SLE, which grows in a simply connected domain from
one boundary point to another boundary point.
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The geometric property of an SLE, curve depends on the value of k:
e simple curve if k € (0, 4],
e space-filling if k € [8, 00),
@ neither simple nor space-filling if x € (4, 8).

@ The Hausdorff dimension of the curve is min{2,1 + g}.

£5.  _afiem

0<ic < &4 <k <g <

\J
oQ



We focus on the range x € (0,8). A chordal SLE, curve ~
@ is not space-filling:
@ satisfies reversibility,

@ may or may not be simple

In fact, for any zg € D,

Iif(‘)\ P[dist(zg,7) < r] = P[zg € 7] = 0.

We are interested in the decay rate of P[dist(zy,~y) < r] as r — 0.



@ The Green's function at z is the limit

G(z) := Irifa r~*P[dist(zp, ) < r],

for some suitable exponent o > 0.

@ We are interested in the value of «, the convergence of the limit, the
exact formula of G, and the convergence rate.



The term " Green'’s function” is used for the following reasons. Recall that
the Laplacian Green's function Gp(z,w), z # w € D, for a planar domain
D. It is the function determined by the following properties: for w € D,

@ Gp(-,w) is positive and harmonic on D\ {w}.
e As z — 9D, Gp(z,w) — 0.
o As z = w, Gp(z,w) = 5=In|z — w|+ O(1).



One important fact is

1
G(z,w) = —lim(—Inr) - P?[dist(w, B[O, 7p]) < r|,
(2.w) = 5= lim(=In ) - P*[dist(w, B0, 7p]) < ]
where B is a planar Brownian motion started from z, and 7p is the exit
time of D. For the proof, one stops the local martingale Gp(BZ, w) at
Tp A 77 to get a bounded martingale, where 77 is the first time that B

gets within distance r from z.
Another important fact is: for any measurable set U C D,
E[|{t € [0,7p) : B: € U}|] :/ G(w, zp)dw.
U

This fact is clear for random walk and discrete Green's function.



About SLE Green'’s function, the following is a result of [Lawler-Rezaei
'15]. For every k € (0, 8), there is a constant ¢ = ¢(k) > 0 such that for a
chordal SLE, curve in H from 0 to oo and any zy € Hi,

8
K

lim r~ (= P[dist(v, z) < r] = &(Im 2)§+ 7 2|zo|1x.

rl0

@ The formula on the RHS was predicted by Rohde and Schramm.

@ The exponent o =1 — g is related to the Hausdorff dimension

d=1+gbya=2-d.

@ The constant ¢ is unknown so far.



The same paper derives the existence of two-point Green’s function, i.e.,

G(z1,22) = lim _ry %r, “P[dist(y, zj) < rj,j = 1,2],
rlarz\l/o
and then uses those Green's functions to prove that

@ an SLE, curve can be parametrized by its d-dimensional Minkowski
content, i.e., for any t; < tp, the (1 + %)—dimensional Minkowski
content of [t1, to] is to — t1; and

@ under such parametrization, for any measurable set U C D,
Bl :5(6) € U} = [ Glz)e.

The Minkowski content parametrization agrees with the natural
prametrization introduced earlier ([Lawler-Sheffield '11, Lawler-Zhou '13]).



We now briefly review the proof for one-point interior Green's function.

e By conformal covariance, we may assume D =D = {|z| < 1},
a=-¢e2b p—1 6o € (0,7), and zg = 0.

@ At each time t before the curve surrounds 0, let D; denote the
connected component of D \ v[0, t] that contains 0.

@ Let g; be the conformal map from D; onto D, which fixes 0 and 1.
o Let 6; € (0,7) be such that e?%t = g,(v(t)).
@ We reparametrize ~ such that |g/(0)| = ef for all t.
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Using It6's calculus, we know that 6; € (0, 7) satisfies SDE:

VE k—4
df, = ~—dB
t 5 t + 1

cot(6;)dt,

where B; is a standard Brownian motion. After a linear time-change with
ds = 7 dt, the SDE becomes

Kk —4

d. = dB, +

cot(fs)ds.

25

After this time-change, |g.(0)| = ex°®.



Lawler calls a process 6 € (0, ) that satisfies the SDE

o—1

d@t = dBt + COt(et)dt, 0 <t< T,

a radial Bessel process of dimension §.
In comparison, a Bessel process X of dimension § satisfies the SDE:

0—1
2X¢

If 0 > 2, then T = 0o and X stays in (0,00); if § < 2, then T < oo and
||mt_>T Xt = 0

A radial Bessel process behaves like a Bessel process of the same
dimension near 0 and 7. If § > 2, T = oo and 0 stays in (0,7); if § < 2,
T < oo and lim;,76(t) € {0, 7}



Another similarity between Bessel processes and radial Bessel processes:
when § € N,

o for a Brownian motion B; in R? and any x € R?, distgs(B;, x) is a
Bessel process of dimension 9;

o for a Brownian motion B on the sphere S° and any x € S?,
distss (B¢, x) is a radial Bessel process of dimension ¢;

Recall that our SDE for the Green's function is

k—4

d. = dB, +

t(6s)ds.
p cot(fs)ds

So it is a radial Bessel process of dimension § =3 — % < 2, and has a
finite lifetime.



We use a basic tool: Koebe's 1/4 theorem: if f maps a domain D
conformally onto a domain Dy, z; € Dy and z = f(z1) € Dy, then

1 dist(z2, 0D
H17(2)] < Sz O22)

< 4|f’ .
= dist(z1,0D1) 4 (2)]

Applying Koebe's 1/4 theorem to g5 (from Ds onto I fixing 0), we get
dist(0, [0, s]) = dist(0,0D;) < e x5, 0<s< T.

Thus, dist(0,v) < e nT. Letting @ = 1 — g, the original limit problem
can be converted to the limit
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Suppose the limit lim;_, e¥tIP’[T > t] exists and equals G(6p). By
Markov property of the process 6, we get a martingale

2—

N(t) = e 2 LG(6y).

Using 1t8’s formula, we find that G(#) = csin>~° 6 for some constant
c > 0. This argument gives the formula of G, but does not prove the
convergence of the limit.



For the convergence of the limit, we work in parallel on two-sided radial
SLE, curve. A two-sided radial SLE, curve

@ grows in a simply connected domain D from one marked boundary
point a to another marked boundary point b passing through a
marked interior point c;

@ may be intuitively viewed as a chordal SLE, curve in D from a to b
conditioned on the (singular) event that it passes through c;
(The definition resembles the h-processes)

@ the two arms of the curve, one from a to ¢, the other from b to c,
satisfy the property that when one curve is given, the other is a
chordal SLE, curve in one complement domain.

(This property resembles the multiple SLE.)



Suppose instead of the chordal SLE, in D from e?% to 1, we work on the
two-sided radial SLE,, curve in D from % to 1 passing through 0. We
define Ds, gs,0s, T for the two-sided radial SLE, curve up to the time that
the curve reaches 0. Then the 0; obtained is also a radial Bessel process
but of dimension d =4 —§ =1 + % > 2. So its lifetime is oo.

The law IP of the radial Bessel process of dimension 4 < 2 and the law P of
the radial Bessel process of dimension 6 =4 — ¢ > 2 with the same
starting point are related by

dP|FeN{T >t} No  s-2,sin° 26,

=~ = — =€ 2 ——F,
dP|F: N {T >t} N sin®~2 6

vVt > 0,

6—2
5 t

where N; = e sin®79 0, is the martingale related to Green's function.



An eigenvalue method is used to prove that a radial Bessel process of
dimension § > 2 has a transition density p:(x, y), which approaches its

stationary density pso — csin37% y exponentially fast as t — oo.
y Y PolY Yy exp y

Using the transition density p:(x,y) for P and the RN derivative
connection between P and P, we see that if a radial Bessel process of
dimension 0 < 2 starts from x, then its lifetime T satisfies

So we get the desired limit lim;_,o e¥tIP’[T > t].



Below is a list of some existing results on SLE Green's functions.
@ 1- and 2-pt Green's function for chordal SLE (Lawler & Rezaei '15)
@ 1- and 2-pt boundary Green's function for chordal SLE (Lawler '15)
@ Green's function for radial SLE (Alberts, Kozdron & Lawler '12)
n-point Green's function for chordal SLE (Rezaei & Z. '18)
One-curve Green's function for 2-SLE (Lenells & Viklund '19).
Two-curve Green's function for 2-SLE (Z. '20)
Two-curve boundary Green's function for 2-SLE (Z.)

@ Green's function for cut-points of SLE (Z.)



We now study the two-curve Green’s function for 2-SLE,, for 0 < xk < 8.
Let D be a simply connected domain. Fix four boundary points
(a1, b1, a2, bp) of D ordered clockwise or counterclockwise. A 2-SLE,
configuration in D with link pattern (a; — b1;a» — bo) is a pair of
random curves (71, 72) in D satisfying, for j = 1,2,

@ ~y; grows from a; to b;;

@ If y3_; is given, then «; is a chordal SLE, curve in a complement

domain of D \ vy3_;.
@ We have existence, uniqueness, and conformal invariance.
@ 71 and ~; are disjoint if Kk < 4; may intersect if k € (4, 8).

@ The marginal law of each «; can be described by a hypergeometric
function ([Wu '20]).






The two-curve Green's function for a 2-SLE,; pair (71,72) at a point
Zo € D is the limit

lim r—*P[dist(zg,7;) < r,j =1, 2]
rl0

for some suitable exponent o > 0.

Assuming that D = 1D and zg = 0, we mimic the proof of the one-curve
Green's function. Now we have two curves, each has its own
parametrization. For each pair of times (t1, t2), let Dy, +, denote the
complement of 1[0, t;] U v2[0, t2] containing 0, and let g, 1, be a
conformal map from Dy, ;, onto D that fixes 0. By Koebe's 1/4 theorem,

\g{l,tz(O)]_l = dist(0, 9Dy, +,) = min{dist(0,~;[0, t;]) : j = 1, 2}.
But we want the decay rate of

P[max{dist(z,v;) :j =1,2} <r], asr—0.



To overcome this problem, we use a single time parametrization for both
curves. In other words, we grow two curves simultaneously. We want that
for any t in the lifespan,

o min{dist(0,7;[0,t]) :j=1,2} < e}
o dist(0,~1[0, t]) = dist(0, v>[0, t]).
These two properties together imply that

max{dist(0,~;[0,t]) : j = 1,2} < e ".



The time parametrization is possible. For simplicity, we suppose b; = 1,
by = —1, a; = €% and a, = —e'?2 for some 01,02 € (0, 7). At the
beginning, by and by equally divide the harmonic measure of 0D viewed
from 0. Now we grow 1 and 7, simultaneously such that for any t

o if g maps D; (the connected component of D\ (71[0, t] U~2[0, t])
that contains 0) conformally onto I, and fixes 0, then |g/(0)| = e’.

@ by =1 and by, = —1 equally divide the harmonic measure of 0D;
viewed from O.

The first property implies that min{dist(0,~;[0,t]) : j = 1,2} < e~ " by
Koebe's 1/4 theorem. ,(_ horwm Meatwe

=&
The second property implies that dist(0, 710, t]) = dlst( ,72[0, t]) C@t&,,gd
Beurling's estimate applied to a planar Brownian motion started from 0.
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The two-curve Green's function is then closely related to the limit

lim e P[T > t],

t—00

where T is the lifetime of the above growth of two curves.

Since for each t € [0, T), 1 and —1 equally divide the harmonic measure
of OD; viewed from 0, we may assume that g; maps D; conformally onto
D, and fixes 0,1, —1. Then we have processes 01(t), 02(t) € (0,7) such
that e/1(t) = g,(y1(t)) and —e/®(t) = g,(7»(t)). Let P denote the law of
the two-dimensional process (01(t), 02(t))o<t<T-






We consider another random configuration which can be understood as
the 2-SLE,; curves ~; and 7, conditioned to both pass through 0. This is a
four-curve configuration in D connecting 0 with aj, by, a», bo. They satisfy
the property that, when any three curves are given, the last curve is a
chordal SLE,, curve in one complement domain. We call it a 4-SLE,..

A,



We now work on this 4-SLE,, and grow +; and v, from a; and a, towards
0 simultaneously in the same way as before. Then we also get a process

(01(t),02(t)). The lifetime of this new process is co. Let IP denote its law.
Then this P and the previous P are related by

dP|Fe (T >t} 0 G(01(0),62(0))  _ o
dB|Fe N {T > t) C0a(8):02r))

where
(12 — k)(k + 4)
8k ’

G(0y,605) = (sin(%)sin(%))%—l cos(91 ; 92)%F(Cii(il(/ei)foesz()eiz/)z)),

and F is the hypergeometric function oF1(1 — 2, 2: 8 ),
=

(Q-) Cb)'l l'\ (0-)
F(Q]o C. X)-ZCC) ni

(A)n= QCatt)-- (@tn-t) nz|
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Under P, (A1(t),02(t)) is a diffusion process satisfying the SDE

Ksin@; 4 cos0;
do; = . dB; . dt. j=1,2
J \/sin 61 + sin 65 j + sin 61 + sin 6> > T

where B; and B, are independent Brownian motions.

Using an eigenvalue method, we may calculate the transition density
pt((x1,x2), (y1,y2)) of the process (01(t),62(t)) under P. As t — oo, it

converges exponentially fast to the invariant density poo(y1,y2), which is
proportional to (sin yp sin yg)%_l(sin y1 +sinys).



Then we calculate

BIT > f] = /0 ' /0 ' e—“f%m((el,%), (1, y2))dy1 dys

G(y1, y2
R /0 /0 e_at%ﬁm(h)m)d)ﬁdﬁ
So we get
Jim eP[T > t] = cG(01,0,).
where

C:/ / G(y1,¥2) " Poo(y1, y2)dy1dy> € (0, 00).
0 Jo



For k € (4,8), the exponent o = (12_';)5(““) is related to the Hausdorff

dimension d of the double points of a single SLE, curve ([Miller-Wu '13])
by a« =2 — d. A double point of a curve is a point that is visited by the
curve for more than once.

Our long term goal is to prove the existence of Minkowski content of
double points of SLE,, which is related to the Minkowski content of the
intersection of the curves of a 2-SLE,.. For that purpose, we need the
two-curve two-point Green's function for 2-SLE,, i.e.,

lim ry “ry “P[dist(v), z) < rk,j, k € {1,2}].
ry,r20

The existence of this limit is currently beyond the reach.



The above technique may be used to study the boundary two-curve
Green's function. Let (v1,72) be the 2-SLE,; as before. Let zp € 9D be
such that 0D is analytic near z5. We are interested in the limit

lim r*P[dist(zp,7;) < r,j = 1,2].
rl0

We may assume that D = H and zg = oo. Then the limit becomes

im ROP[y; N {|z] > R} £ 0,j = 1,2].
R—o0

There are three different cases.
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For the first case, we label the end points of the two curves by
by < a1 < ap < by. For simplicity, we assume that by = —1, b =1, and
a1 <0< an.

Now we grow <1, 2 simultaneously from aj, ap such that for every t in the
life span [0, T),

@ the harmonic measure of ~1[0, t] U~2[0, t] U [b1, bo| in D; viewed from
o0 increases exponentially;

e 1[0, t] U [b1,0] and 72[0, t] U [0, bz] have equal harmonic measure in
D; viewed from oo.
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By Koebe's 1/4 theorem and Beurling's estimate, we then conclude that
1V diam(v;[0, t]) < e*. So the original limit is closely related to the limit

lim e P[T > t].

t—00

For each t € [0, T), suppose g+ maps D; conformally onto H, and fixes
00,1, —1. Then we get a two-dimensional process (ai(t), a>(t)) in

[_1’0] X [07 1] by aj(t) — gt(%'(t))v Jj=12



In comparison, we now work on a 4-SLE, in H with link pattern

(a1 — 00, by — 00, ax — 00, by — o0). We grow the curves from a; and
a> towards oo simultaneously with the same property as before, and get a
2-dimensional process (a1(t), a2(t)), whose lifetime is co. The law P of
(a1(t), ax(t)) for the 4-SLE,; and the law P for the 2-SLE,; are related by a

Radon-Nikodym derivative process.

Under P, we have a transition density of the process (a1(t), ax(t)), which
converges to the invariant density as t — oo.

Using the above facts and the same argument as in the interior case, we
conclude that, for o = 2(% — 1), the limit lim; o e“*P[T > t] converges
to a nontrivial number as t — 0.



The technique also works in the other two cases, in which we compare
2-SLE, respectively with 4-SLE,, and 3-SLE,.



Another application of the two-curve technique is the Green's function for
cut points of SLE,. For a connected set K, a point z is called a cut point
of K if K\ z is not connected.

e For xk € (0,4], every point on an SLE, curve is a cut point.
@ For k > 8, an SLE,, curve has no cut point.

@ For k € (4,8), the set of cut points of an SLE,, curve is not empty,
and has Hausdorff dimension 3 — 3 ([Miller-Wu '13]).

We now assume that x € (4, 8).



In order to apply the two-curve technique, we attach the SLE curve with
two open boundary arcs and consider the cut points of the union.

Setup: Let D be a simply connected domain with four distinct boundary
points aj, a», u, v. Suppose u and v divide 9D into two open boundary
arcs: I, b such that a; € [;, j = 1,2. Let v be an SLE,; curve in D from
a; to a». Let 5S¢ denote the set of cut points of YU L U . Let zg € D.
Then we study the limit

Iifa r~*P[dist(zg, S¢) < r].



We may assume that D =D, zg =0, u=1and v=—1. We
simultaneously grow two curves from a; and ap respectively along ~ and
its time-reversal in the same way as before, and get a two-dimensional

process (01(t),02(t)) in (0,7)? with finite lifetime T. Then we need to
study the limit

NN

lim e P[T > t].

t—00

[



In comparison, we work on a random curve that can be understood as the
~ conditioned on the event that 0 € S.. This is a curve from a; to a
passing though 0. For this process we also get a process (01(t), 02(t)) in
(0, 7)2. This process has lifetime co. Its law IP and the law P of the
original (01(t),02(t) are related by Radon-Nikodym derivatives.

~

Under P, (61(t),02(t)) has a transition density, which converges to the
invariant density as t — oo.

Using the above facts and the same argument as before, we conclude that,

for a = %/4; — 1, the limit lim;_o e*'P[T > t] converges as t — 0.
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