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Schramm-Loewner evolution (SLE) is a one-parameter family of random
fractal curves characterized by

conformal invariance (CI)

domain Markov property (DMP)

We focus on chordal SLE, which grows in a simply connected domain from
one boundary point to another boundary point.



The geometric property of an SLE curve depends on the value of :

simple curve if  2 (0, 4],

space-filling if  2 [8,1),

neither simple nor space-filling if  2 (4, 8).

The Hausdor↵ dimension of the curve is min{2, 1 + 
8}.



We focus on the range  2 (0, 8). A chordal SLE curve �

is not space-filling:

satisfies reversibility,

may or may not be simple

In fact, for any z0 2 D,

lim
r#0

P[dist(z0, �) < r ] = P[z0 2 �] = 0.

We are interested in the decay rate of P[dist(z0, �) < r ] as r ! 0.



The Green’s function at z0 is the limit

G (z0) := lim
r#0

r
�↵

P[dist(z0, �) < r ],

for some suitable exponent ↵ > 0.

We are interested in the value of ↵, the convergence of the limit, the
exact formula of G , and the convergence rate.



The term ”Green’s function” is used for the following reasons. Recall that
the Laplacian Green’s function GD(z ,w), z 6= w 2 D, for a planar domain
D. It is the function determined by the following properties: for w 2 D,

GD(·,w) is positive and harmonic on D \ {w}.
As z ! @D, GD(z ,w) ! 0.

As z ! w , GD(z ,w) = 1
2⇡ ln |z � w |+ O(1).



One important fact is

G (z ,w) =
1

2⇡
lim
r#0

(� ln r) · Pz [dist(w ,B[0, ⌧D ])  r ],

where B is a planar Brownian motion started from z , and ⌧D is the exit
time of D. For the proof, one stops the local martingale GD(Bz

t ,w) at
⌧D ^ ⌧ zr to get a bounded martingale, where ⌧ zr is the first time that B
gets within distance r from z .

Another important fact is: for any measurable set U ⇢ D,

E[|{t 2 [0, ⌧D) : Bt 2 U}|] =
Z

U
G (w , z0)dw .

This fact is clear for random walk and discrete Green’s function.



About SLE Green’s function, the following is a result of [Lawler-Rezaei
’15]. For every  2 (0, 8), there is a constant bc = bc() > 0 such that for a
chordal SLE curve in H from 0 to 1 and any z0 2 H,

lim
r#0

r
�(1�

8 )P[dist(�, z) < r ] = bc(Im z0)

8 +

8
�2|z0|1�

8
 .

The formula on the RHS was predicted by Rohde and Schramm.

The exponent ↵ = 1� 
8 is related to the Hausdor↵ dimension

d = 1 + 
8 by ↵ = 2� d .

The constant bc is unknown so far.



The same paper derives the existence of two-point Green’s function, i.e.,

G (z1, z2) := lim
r1,r2#0

r
�↵
1 r

�↵
2 P[dist(�, zj) < rj , j = 1, 2],

and then uses those Green’s functions to prove that

an SLE curve can be parametrized by its d-dimensional Minkowski
content, i.e., for any t1 < t2, the (1 + 

8 )-dimensional Minkowski
content of �[t1, t2] is t2 � t1; and

under such parametrization, for any measurable set U ⇢ D,

E[|{t : �(t) 2 U}|] =
Z

U
G (z)dz .

The Minkowski content parametrization agrees with the natural
prametrization introduced earlier ([Lawler-She�eld ’11, Lawler-Zhou ’13]).



We now briefly review the proof for one-point interior Green’s function.

By conformal covariance, we may assume D = D = {|z | < 1},
a = e

i2✓0 , b = 1, ✓0 2 (0,⇡), and z0 = 0.

At each time t before the curve surrounds 0, let Dt denote the
connected component of D \ �[0, t] that contains 0.
Let gt be the conformal map from Dt onto D, which fixes 0 and 1.

Let ✓t 2 (0,⇡) be such that e i2✓t = gt(�(t)).

We reparametrize � such that |g 0
t(0)| = e

t for all t.





Using Itô’s calculus, we know that ✓t 2 (0,⇡) satisfies SDE:

d✓t =

p


2
dBt +

� 4

4
cot(✓t)dt,

where Bt is a standard Brownian motion. After a linear time-change with
ds = 

4dt, the SDE becomes

d✓s = d bBs +
� 4


cot(✓s)ds.

After this time-change, |g 0
s(0)| = e

4
 s .



Lawler calls a process ✓ 2 (0,⇡) that satisfies the SDE

d✓t = dBt +
� � 1

2
cot(✓t)dt, 0  t < T ,

a radial Bessel process of dimension �.

In comparison, a Bessel process X of dimension � satisfies the SDE:

dXt = dBt +
� � 1

2Xt
dt, 0  t < T .

If � � 2, then T = 1 and X stays in (0,1); if � < 2, then T < 1 and
limt!T Xt = 0.

A radial Bessel process behaves like a Bessel process of the same
dimension near 0 and ⇡. If � � 2, T = 1 and ✓ stays in (0,⇡); if � < 2,
T < 1 and limt!T ✓(t) 2 {0,⇡}.



Another similarity between Bessel processes and radial Bessel processes:
when � 2 N,

for a Brownian motion Bt in R
� and any x 2 R

�, distR�(Bt , x) is a
Bessel process of dimension �;

for a Brownian motion B on the sphere S
� and any x 2 S

�,
distS�(Bt , x) is a radial Bessel process of dimension �;

Recall that our SDE for the Green’s function is

d✓s = d bBs +
� 4


cot(✓s)ds.

So it is a radial Bessel process of dimension � = 3� 8
 < 2, and has a

finite lifetime.



We use a basic tool: Koebe’s 1/4 theorem: if f maps a domain D1

conformally onto a domain D2, z1 2 D1 and z2 = f (z1) 2 D2, then

1

4
|f 0(z1)| 

dist(z2, @D2)

dist(z1, @D1)
 4|f 0(z1)|.

Applying Koebe’s 1/4 theorem to gs (from Ds onto D fixing 0), we get

dist(0, �[0, s]) = dist(0, @Ds) ⇣ e
� 4

 s , 0  s < T .

Thus, dist(0, �) ⇣ e
� 4

T . Letting ↵ = 1� 
8 , the original limit problem

can be converted to the limit

lim
t!1

e
( 4
�

1
2 )tP[T > t] = lim

t!1
e

2��
2 t

P[T > t].



Suppose the limit limt!1 e
2��
2 t

P[T > t] exists and equals G (✓0). By
Markov property of the process ✓, we get a martingale

N(t) := e
2��
2 t

G (✓t).

Using Itô’s formula, we find that G (✓) = c sin2�� ✓ for some constant
c > 0. This argument gives the formula of G , but does not prove the
convergence of the limit.



For the convergence of the limit, we work in parallel on two-sided radial

SLE curve. A two-sided radial SLE curve

grows in a simply connected domain D from one marked boundary
point a to another marked boundary point b passing through a
marked interior point c ;

may be intuitively viewed as a chordal SLE curve in D from a to b

conditioned on the (singular) event that it passes through c ;
(The definition resembles the h-processes)

the two arms of the curve, one from a to c , the other from b to c ,
satisfy the property that when one curve is given, the other is a
chordal SLE curve in one complement domain.
(This property resembles the multiple SLE.)



Suppose instead of the chordal SLE in D from e
i2✓0 to 1, we work on the

two-sided radial SLE curve in D from e
i2✓0 to 1 passing through 0. We

define Ds , gs , ✓s ,T for the two-sided radial SLE curve up to the time that
the curve reaches 0. Then the ✓t obtained is also a radial Bessel process
but of dimension e� = 4� � = 1 + 8

 > 2. So its lifetime is 1.

The law P of the radial Bessel process of dimension � < 2 and the law eP of
the radial Bessel process of dimension e� = 4� � > 2 with the same
starting point are related by

dP|Ft \ {T > t}
deP|Ft \ {T > t}

=
N0

Nt
= e

��2
2 t sin

��2 ✓t
sin��2 ✓0

, 8t � 0,

where Nt = e
��2
2 t sin2�� ✓t is the martingale related to Green’s function.



An eigenvalue method is used to prove that a radial Bessel process of
dimension e� > 2 has a transition density ept(x , y), which approaches its
stationary density ep1(y) = c sin3��

y exponentially fast as t ! 1.

Using the transition density ept(x , y) for eP and the RN derivative
connection between P and eP, we see that if a radial Bessel process of
dimension � < 2 starts from x , then its lifetime T satisfies

P[T > t] = e
��2
2 t

Z ⇡

0

sin��2
y

sin��2
x
ept(x , y)dy

t!1⇡ e
��2
2 t

Z ⇡

0

sin��2
y

sin��2
x
ep1(y)dy = c()e

��2
2 t sin2��

x .

So we get the desired limit limt!1 e
2��
2 t

P[T > t].



Below is a list of some existing results on SLE Green’s functions.

1- and 2-pt Green’s function for chordal SLE (Lawler & Rezaei ’15)

1- and 2-pt boundary Green’s function for chordal SLE (Lawler ’15)

Green’s function for radial SLE (Alberts, Kozdron & Lawler ’12)

n-point Green’s function for chordal SLE (Rezaei & Z. ’18)

One-curve Green’s function for 2-SLE (Lenells & Viklund ’19).

Two-curve Green’s function for 2-SLE (Z. ’20)

Two-curve boundary Green’s function for 2-SLE (Z.)

Green’s function for cut-points of SLE (Z.)



We now study the two-curve Green’s function for 2-SLE for 0 <  < 8.
Let D be a simply connected domain. Fix four boundary points
(a1, b1, a2, b2) of D ordered clockwise or counterclockwise. A 2-SLE

configuration in D with link pattern (a1 ! b1; a2 ! b2) is a pair of
random curves (�1, �2) in D satisfying, for j = 1, 2,

�j grows from aj to bj ;

If �3�j is given, then �j is a chordal SLE curve in a complement
domain of D \ �3�j .

We have existence, uniqueness, and conformal invariance.

�1 and �2 are disjoint if   4; may intersect if  2 (4, 8).

The marginal law of each �j can be described by a hypergeometric
function ([Wu ’20]).





The two-curve Green’s function for a 2-SLE pair (�1, �2) at a point
z0 2 D is the limit

lim
r#0

r
�↵

P[dist(z0, �j) < r , j = 1, 2]

for some suitable exponent ↵ > 0.

Assuming that D = D and z0 = 0, we mimic the proof of the one-curve
Green’s function. Now we have two curves, each has its own
parametrization. For each pair of times (t1, t2), let Dt1,t2 denote the
complement of �1[0, t1] [ �2[0, t2] containing 0, and let gt1,t2 be a
conformal map from Dt1,t2 onto D that fixes 0. By Koebe’s 1/4 theorem,

|g 0
t1,t2(0)|

�1 ⇣ dist(0, @Dt1,t2) = min{dist(0, �j [0, tj ]) : j = 1, 2}.

But we want the decay rate of

P[max{dist(z0, �j) : j = 1, 2} < r ], as r ! 0.



To overcome this problem, we use a single time parametrization for both
curves. In other words, we grow two curves simultaneously. We want that
for any t in the lifespan,

min{dist(0, �j [0, t]) : j = 1, 2} ⇣ e
�t ;

dist(0, �1[0, t]) ⇣ dist(0, �2[0, t]).

These two properties together imply that

max{dist(0, �j [0, t]) : j = 1, 2} ⇣ e
�t .



The time parametrization is possible. For simplicity, we suppose b1 = 1,
b2 = �1, a1 = e

i✓1 and a2 = �e
i✓2 for some ✓1, ✓2 2 (0,⇡). At the

beginning, b1 and b2 equally divide the harmonic measure of @D viewed
from 0. Now we grow �1 and �2 simultaneously such that for any t

if gt maps Dt (the connected component of D \ (�1[0, t] [ �2[0, t])
that contains 0) conformally onto D, and fixes 0, then |g 0

t(0)| = e
t .

b1 = 1 and b2 = �1 equally divide the harmonic measure of @Dt

viewed from 0.

The first property implies that min{dist(0, �j [0, t]) : j = 1, 2} ⇣ e
�t by

Koebe’s 1/4 theorem.

The second property implies that dist(0, �1[0, t]) ⇣ dist(0, �2[0, t]) by
Beurling’s estimate applied to a planar Brownian motion started from 0.





The two-curve Green’s function is then closely related to the limit

lim
t!1

e
↵t
P[T > t],

where T is the lifetime of the above growth of two curves.

Since for each t 2 [0,T ), 1 and �1 equally divide the harmonic measure
of @Dt viewed from 0, we may assume that gt maps Dt conformally onto
D, and fixes 0, 1,�1. Then we have processes ✓1(t), ✓2(t) 2 (0,⇡) such
that e i✓1(t) = gt(�1(t)) and �e

i✓2(t) = gt(�2(t)). Let P denote the law of
the two-dimensional process (✓1(t), ✓2(t))0t<T .





We consider another random configuration which can be understood as
the 2-SLE curves �1 and �2 conditioned to both pass through 0. This is a
four-curve configuration in D connecting 0 with a1, b1, a2, b2. They satisfy
the property that, when any three curves are given, the last curve is a
chordal SLE curve in one complement domain. We call it a 4-SLE.



We now work on this 4-SLE, and grow �1 and �2 from a1 and a2 towards
0 simultaneously in the same way as before. Then we also get a process
(✓1(t), ✓2(t)). The lifetime of this new process is 1. Let eP denote its law.
Then this eP and the previous P are related by

dP|Ft \ {T > t}
deP|Ft \ {T > t}

= e
�↵t G (✓1(0), ✓2(0))

G (✓1(t), ✓2(t))
, t � 0.

where

↵ =
(12� )(+ 4)

8
,

G (✓1, ✓2) = (sin(
✓1
2
) sin(

✓2
2
))

8
�1 cos(

✓1 � ✓2
2

)
4
F

⇣cos(✓1/2) cos(✓2/2)
cos((✓1 � ✓2)/2)

⌘
,

and F is the hypergeometric function 2F1(1� 4
 ,

4
 ;

8
 , ·).



Under eP, (✓1(t), ✓2(t)) is a di↵usion process satisfying the SDE

d✓j =

s
 sin ✓j

sin ✓1 + sin ✓2
dBj +

4 cos ✓j
sin ✓1 + sin ✓2

dt, j = 1, 2,

where B1 and B2 are independent Brownian motions.

Using an eigenvalue method, we may calculate the transition density
ept((x1, x2), (y1, y2)) of the process (✓1(t), ✓2(t)) under eP. As t ! 1, it
converges exponentially fast to the invariant density ep1(y1, y2), which is

proportional to (sin y1 sin y2)
8
�1(sin y1 + sin y2).



Then we calculate

P[T > t] =

Z ⇡

0

Z ⇡

0
e
�↵t G (✓1, ✓2)

G (y1, y2)
ept((✓1, ✓2), (y1, y2))dy1dy2

t!1⇡
Z ⇡

0

Z ⇡

0
e
�↵t G (✓1, ✓2)

G (y1, y2)
ep1(y1, y2)dy1dy2

So we get
lim
t!1

e
↵t
P[T > t] = cG (✓1, ✓2).

where

c =

Z ⇡

0

Z ⇡

0
G (y1, y2)

�1ep1(y1, y2)dy1dy2 2 (0,1).



For  2 (4, 8), the exponent ↵ = (12�)(+4)
8 is related to the Hausdor↵

dimension d of the double points of a single SLE curve ([Miller-Wu ’13])
by ↵ = 2� d . A double point of a curve is a point that is visited by the
curve for more than once.

Our long term goal is to prove the existence of Minkowski content of
double points of SLE, which is related to the Minkowski content of the
intersection of the curves of a 2-SLE. For that purpose, we need the
two-curve two-point Green’s function for 2-SLE, i.e.,

lim
r1,r2#0

r
�↵
1 r

�↵
2 P[dist(�j , zk) < rk , j , k 2 {1, 2}].

The existence of this limit is currently beyond the reach.



The above technique may be used to study the boundary two-curve
Green’s function. Let (�1, �2) be the 2-SLE as before. Let z0 2 @D be
such that @D is analytic near z0. We are interested in the limit

lim
r#0

r
�↵

P[dist(z0, �j) < r , j = 1, 2].

We may assume that D = H and z0 = 1. Then the limit becomes

lim
R!1

R
↵
P[�j \ {|z | > R} 6= ;, j = 1, 2].

There are three di↵erent cases.





For the first case, we label the end points of the two curves by
b1 < a1 < a2 < b2. For simplicity, we assume that b1 = �1, b2 = 1, and
a1 < 0 < a2.

Now we grow �1, �2 simultaneously from a1, a2 such that for every t in the
life span [0,T ),

the harmonic measure of �1[0, t][ �2[0, t][ [b1, b2] in Dt viewed from
1 increases exponentially;

�1[0, t] [ [b1, 0] and �2[0, t] [ [0, b2] have equal harmonic measure in
Dt viewed from 1.



By Koebe’s 1/4 theorem and Beurling’s estimate, we then conclude that
1 _ diam(�j [0, t]) ⇣ e

t . So the original limit is closely related to the limit

lim
t!1

e
↵t
P[T > t].

For each t 2 [0,T ), suppose gt maps Dt conformally onto H, and fixes
1, 1,�1. Then we get a two-dimensional process (a1(t), a2(t)) in
[�1, 0]⇥ [0, 1] by aj(t) = gt(�j(t)), j = 1, 2.



In comparison, we now work on a 4-SLE in H with link pattern
(a1 ! 1, b1 ! 1, a2 ! 1, b2 ! 1). We grow the curves from a1 and
a2 towards 1 simultaneously with the same property as before, and get a
2-dimensional process (a1(t), a2(t)), whose lifetime is 1. The law eP of
(a1(t), a2(t)) for the 4-SLE and the law P for the 2-SLE are related by a
Radon-Nikodym derivative process.

Under eP, we have a transition density of the process (a1(t), a2(t)), which
converges to the invariant density as t ! 1.

Using the above facts and the same argument as in the interior case, we
conclude that, for ↵ = 2(12 � 1), the limit limt!1 e

↵t
P[T > t] converges

to a nontrivial number as t ! 1.



The technique also works in the other two cases, in which we compare
2-SLE respectively with 4-SLE and 3-SLE.



Another application of the two-curve technique is the Green’s function for
cut points of SLE. For a connected set K , a point z is called a cut point
of K if K \ z is not connected.

For  2 (0, 4], every point on an SLE curve is a cut point.

For  � 8, an SLE curve has no cut point.

For  2 (4, 8), the set of cut points of an SLE curve is not empty,
and has Hausdor↵ dimension 3� 3

8 ([Miller-Wu ’13]).

We now assume that  2 (4, 8).



In order to apply the two-curve technique, we attach the SLE curve with
two open boundary arcs and consider the cut points of the union.

Setup: Let D be a simply connected domain with four distinct boundary
points a1, a2, u, v . Suppose u and v divide @D into two open boundary
arcs: I1, I2 such that aj 2 Ij , j = 1, 2. Let � be an SLE curve in D from
a1 to a2. Let Sc denote the set of cut points of � [ I1 [ I2. Let z0 2 D.
Then we study the limit

lim
r#0

r
�↵

P[dist(z0, Sc) < r ].



We may assume that D = D, z0 = 0, u = 1 and v = �1. We
simultaneously grow two curves from a1 and a2 respectively along � and
its time-reversal in the same way as before, and get a two-dimensional
process (✓1(t), ✓2(t)) in (0,⇡)2 with finite lifetime T . Then we need to
study the limit

lim
t!1

e
↵t
P[T > t].



In comparison, we work on a random curve that can be understood as the
� conditioned on the event that 0 2 Sc . This is a curve from a1 to a2

passing though 0. For this process we also get a process (✓1(t), ✓2(t)) in
(0,⇡)2. This process has lifetime 1. Its law eP and the law P of the
original (✓1(t), ✓2(t) are related by Radon-Nikodym derivatives.

Under eP, (✓1(t), ✓2(t)) has a transition density, which converges to the
invariant density as t ! 1.

Using the above facts and the same argument as before, we conclude that,
for ↵ = 3

8� 1, the limit limt!1 e
↵t
P[T > t] converges as t ! 1.



Thank you!


