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Gaussian free field

A discrete GFF {ηv : v ∈ VN} on a 2D box (with Dirichlet
boundary condition) is a mean zero Gaussian process with
covariance Eηvηu = expected number of visits (of SRW) from v to
u before exiting VN (log-correlated, hierarchical).

Discrete GFF converges in
some sense to (continuous)
GFF, which is a random
generalized function.

GFF is closely related to local
times of simple random walk.

GFF is the scaling limit for
many random surface models.

GFF is closely related to
Schramm–Loewner evolution.
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Liouville quantum gravity: exponentiating GFF

Gaussian multiplicative chaos/Liouville quantum gravity: a random
measure arising from the scaling limit of eγGFF, γ ∈ (0, 2].

Figure: From Duplantier–Sheffield
(10); γ = 0.5; the squares shown
have roughly the same LQG measure

Kahane (85);
Rhodes–Vargas (since 08);
Duplantier–Sheffield(10);
Duplantier–Rhodes
–Sheffield–Vargas (12);
Barral–Jin (12); etc.

• Scaling limit is well defined;
• KPZ relation: LQG dimension v.s.
Euclidean dimension.

Duplantier–Miller–Sheffield (14): a
novel construction of LQG which
draws connections to SLE and
random planar maps.

Distance on LQG: today’s focus.
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Liouville graph distance and Liouville Brownian motion

Liouville graph distance: the graph distance in the random square
partition, where each square has roughly the same LQG measure.

Figure: From Duplantier–Sheffield
(10); γ = 0.5; the squares shown
have roughly the same LQG measure

Liouville Brownian motion
(Garban–Rhodes–Vargas 16):
Brownian motion with time change
given by the LQG, and is the limit of
the simple random walk on the
random square partition.
• Invariance principle is proved by
Gwynne–Miller–Sheffield 18.
• Time change proved by
Berestycki–Gwynne 20.

Heat kernel of LBM in short time is
another way to make sense of the
LQG distance. (Varadhan 67: short
time heat kernel of BM relates to
geodesic distance, for uniformly
elliptic generator.)
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Liouville first passage percolation

Figure: γ=0.2; color indicates distance from
the center; curves are geodesics.

Liouville FPP: FPP with
weight eξGFF, for ξ > 0.
More precisely, {hδ} be the
circle average process for
GFF and ξ > 0. Define
Liouville-FPP by

Dξ,δ(u, v) = inf
P

∫
P

eξhδ(z)|dz | ,

where P ranges over all
piecewise C 1 paths in V
connecting u, v .

LFPP v.s. FPP: strong
correlation and hierarchical
structure of the random
media makes a drastic
difference.
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Non-universality among log-correlated fields

Theorem.(Non-universality) (D.–Zhang 15) A family of
log-correlated Gaussian fields where the FPP exponent is arbitrarily
close to the Euclidean exponent, and thus different from that of
GFF; (D.–Zeitouni–Zhang 17) non-universality extends to heat
kernel of Liouville Brownian motion.
Somewhat surprising as most of the properties such as extreme
values and Gaussian multiplicative chaos are universal among
log-correlated fields.

Suggests that the exponent relies on refined structure of GFF, and
thus any attempt on computing the exact value of the exponent
needs to differentiate GFF from other log-correlated fields.

May become universal if we pose regularity assumptions on
covariance kernel, but most analysis of log-correlated fields do not
depend on such regularity assumption.
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Universality for different distances on GFF

Theorem. (D.–Zeitouni–Zhang 18) There is an exponent dγ > 2
such that for each fixed z ,w , the Liouville graph distance satisfies

lim
ε→0

logDε
h(z ,w)

log ε−1
=

1

dγ
, a.s.

In addition, the Liouville heat kernel satisfies

pγt (z ,w) = exp

(
−t−

1
dγ−1

+o(1)
)

as t → 0.

Theorem. (D.–Gwynne 18) The above dγ also describes the
distance exponents of Liouville FPP.
Theorem. (D.–Gwynne 18, Gwynne–Holden–Sun 17) For certain
random planar maps (such as UIPT, mated-CRT maps,...), dγ also
describes the exponent for the graph distance of the planar map.

Remark: By known estimates for the UIPT (Angel, 2003)
d√

8/3
= 4. New for LQG distance.
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Bounds on the dimension: almost Euclidean case

Watabiki’s prediction (1993) The Hausdorff dimension dH(γ) for

γ-LQG distance is given by dH(γ) = 1 + γ2

4 +

√
(1 + γ2

4 )2 + γ2.
All reasonable interpretations suggest that
“|LFPP exponent - Euclidean exponent |” = Θγ→0(γ2).
Theorem. (D.–Goswami 16) For small but fixed γ > 0, we have

max
u,v∈VN

EDγ,δ(u, v) = O(δ
γ4/3/ log

1
γ ) .

Contradicts with interpretations of Watabiki (well believed and
consistent with simulations).
Motivated recent more extensive simulations by Barkley–Budd 19,
which also contradict Watabiki.
Theorem. (D.–Zhang 16) (discrete case) For small but fixed
γ > 0, the box-counting dimension of the geodesic is strictly larger
than 1.
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Bounds on the dimension of the distance: general case

Theorem. (D.–Gwynne 18). dγ is a strictly increasing and locally
Lipschitz continuous in γ. Furthermore, explicit bounds on dγ
which are numerically fairly sharp and consistent with simulations.

• Monotonicity proof based on connection between Liouville FPP
and Liouville graph distance and some easy observation on
Liouville FPP (which works for all log-correlated fields with
reasonable structures).
• Proof on bounds also uses d√

8/3
= 4.

• D.–Gwynne 18 improved over Gwynne-Holden–Sun 17.
• Gwynne–Pfeffer 19 proved some new bounds and that dγ is the
Hausdorff dimension for the LQG metric.
• Gwynne 19 computed the exact dimension for the boundary of
the LQG metric ball in terms of dγ .

Open: relate the dimension of geodesic to dγ? Miller–Qian 18
proved that geodesics are singular to SLE.
Open: compute dγ for any γ 6=

√
8/3. There were new proposals

on dimension formula, but seems no convincing heuristics.
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Tightness of LQG distances

The usual two-step procedure to prove scaling limit:
• tightness, which then gives existence of scaling limit (via
subsequential limit).
• uniqueness, which guarantees that all subsequential scaling limits
are the same.
For distance Dγ,δ, consider a normalized distance D̃γ,δ(·, ·) on
[0, 1]2. For x , y ∈ [0, 1]2, define

D̃γ,δ(x , y) =
Dγ,δ(x , y)

EDγ,δ(left, right)
.

D.–Dunlap–Falconet–Dubédat 19, D.–Dunlap 18
The normalized distance D̃γ,δ(·, ·) is tight with respect to uniform
topology of continuous functions from [0, 1]2 × [0, 1]2 to R+. In
addition, all possible (conjecturally unique) scaling limits are
bi-Hölder-continuous with respect to the Euclidean distance.
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Uniqueness of LQG distances

Dubédat–Falconet–Gwynne–Pfeffer–Sun 19 formulated a set of
axioms of LQG distances, and showed that any subsequential
scaling limit of Liouville FPP satisfies these axioms (relying on
D.–Dunlap–Falconet–Dubédat 19).

Gwynne–Miller 19 proved that the LQG distance which satisfies
this set of axioms is unique, for all γ ∈ (0, 2).

Remark: the LQG distance constructed by Miller–Sheffield 16 at
γ =

√
8/3 also satisfies the aforementioned axioms and thus the

same as the scaling limit of Liouville FPP; in addition by
Miller–Sheffield, this is equivalent to the distance of Brownian map.

Open: uniqueness for Liouville graph distance; universality for all
limits of reasonable discrete approximations of LQG distances?
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Gwynne–Miller 19 proved that the LQG distance which satisfies
this set of axioms is unique, for all γ ∈ (0, 2).

Remark: the LQG distance constructed by Miller–Sheffield 16 at
γ =

√
8/3 also satisfies the aforementioned axioms and thus the

same as the scaling limit of Liouville FPP; in addition by
Miller–Sheffield, this is equivalent to the distance of Brownian map.

Open: uniqueness for Liouville graph distance; universality for all
limits of reasonable discrete approximations of LQG distances?



Recent progress on supercritical LFPP

D.–Gwynne–Sepúlveda 20.
• Existence of exponent: for any ξ > 0, there exists Q = Q(ξ) s.t.
median(Dξ,δ(crossing [0, 1]2)) = ε1−ξQ+o(1).
• Positivity: Q > 0 for all ξ > 0. This implies that the typical
crossing distance in a big box is larger than that in a small box.

Remark: expected to be related to the graph distance on the
random partition studied in Gwynne–Holden–Pfeffer–Remy 19.

D.–Gwynne 20: tightness of LFPP in supercritical regime.
• cannot be tight with respect to uniform topology.
• instead consider Beer topology (82): metric on lower
semicontinuous functions on a metric space X whereby fn → f iff
(i) if xn → x then lim infn→∞ fn(xn) ≥ f (x);
(ii) for each x , there exists xn such that fn(xn)→ f (x).
• LFPP normalized by its median is tight with respect to the Beer
topology for all ξ > 0.

Open: uniqueness in supercritical regime?
Open: convergence with respect to uniform topology at criticality?
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