Phase transition in the Ising model on a random 2D lattice

Linxiao Chen University of Helsinki (···· \sim ETH Zürich)

joint work with Joonas Turunen

Probability Victoria Seminar 25 June 2020

Linxiao Chen

Phase transition in the Ising model on a random 2D lattice

1/21

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

Introduction

Linxiao Chen

Phase transition in the Ising model on a random 2D lattice

2 / 21

590

Input: • A finite graph *G* embedded in \mathbb{R}^2 . • A coupling constant $\nu > 0$.

The *nearest-neighbor Ising model* on the *faces* of *G* is a random assignment of the numbers +1 and -1 (spins) to the faces of *G* according to the probability distribution such that for all $\sigma \equiv (\sigma_x)_{x \in F(G)} \in \{+1, -1\}^{F(G)}$,

 $\mathbb{P}(\sigma) \propto \nu^{\#\{x \sim y: \, \sigma_x = \sigma_y\}} =: \nu^{\mathcal{E}(G,\sigma)}$

: the dual graph of G

・ロト ・回 ト ・ヨト ・ヨト

Input: • A finite graph *G* embedded in \mathbb{R}^2 . • A coupling constant $\nu > 0$.

The *nearest-neighbor Ising model* on the *faces* of *G* is a random assignment of the numbers +1 and -1 (spins) to the faces of *G* according to the probability distribution such that for all $\sigma \equiv (\sigma_x)_{x \in F(G)} \in \{+1, -1\}^{F(G)}$,

$$\mathbb{P}(\sigma) \propto \nu^{\#\{x \sim y: \, \sigma_x = \sigma_y\}} =: \nu^{\mathcal{E}(G,\sigma)}$$

The coupling constant is related to the *physical parameters* by $\nu = \exp\left(\frac{2\beta}{k_{B}T}\right)$.

・ロト ・四ト ・ヨト ・ロト

___: the graph G ___: the dual graph of G

Input: • A finite graph *G* embedded in \mathbb{R}^2 . • A coupling constant $\nu > 0$.

The *nearest-neighbor Ising model* on the *faces* of *G* is a random assignment of the numbers +1 and -1 (spins) to the faces of *G* according to the probability distribution such that for all $\sigma \equiv (\sigma_x)_{x \in F(G)} \in \{+1, -1\}^{F(G)}$,

$$\mathbb{P}(\sigma) \propto \nu^{\#\{x \sim y: \sigma_x = \sigma_y\}} =: \nu^{\mathcal{E}(G,\sigma)}$$

___: the graph G __: the dual graph of G The coupling constant is related to the *physical parameters* by $\nu = \exp\left(\frac{2\beta}{k_BT}\right)$.

 \sim large ν : "low temperature", small ν : "high temperature".

The usually studied case:

- $\nu > 1$ (ferromagnetic).
- *G* is a subgraph of a regular 2D lattice $(\triangle, \Box \text{ or } \bigcirc)$.

・ロト ・四ト ・ヨト ・ヨト

Initial motivation: • Model of ferromagnet: Competition between "weight of \checkmark > weight of \checkmark " and Entropy

• Demonstrate the existence of *phase transition* in a mathematically tractable model.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Initial motivation: • Model of ferromagnet: Competition between "weight of \rightarrow > weight of \rightarrow " and Entropy

• Demonstrate the existence of *phase transition* in a mathematically tractable model.

590

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

Initial motivation: • Model of ferromagnet: Competition between "weight of \checkmark > weight of \checkmark " and Entropy"

• Demonstrate the existence of *phase transition* in a mathematically tractable model.

Why would this extremely idealized model be related to the real physics?
 → <u>Universality</u>: the phenomenon that <u>some macroscopic observables</u> of the system <u>at or near criticality</u> is independent from microscopic details of the system.
 → Distinction between <u>non-universal observables</u> and <u>universal observables</u>.

Ja C

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

How to describe the phase transition mathematically?

• Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.

590

イロト イポト イヨト イヨト 二日

How to describe the phase transition mathematically?

- Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.
- Asymptotic decay rate of the *correlation functions*.

e.g.: when
$$\nu \neq \nu_c$$
: $\mathbb{E}[\sigma_0 \sigma_x] \asymp \exp(-|x|/\eta)$, with $\eta \equiv \eta(\nu) \to \infty$ as $\nu \to \nu_c$.
when $\nu = \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \asymp |x|^{-2\delta}$ with $\delta = 1/8$.

999

◆ロト ◆部 ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

How to describe the phase transition mathematically?

- Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.
- Asymptotic decay rate of the *correlation functions*.
 - e.g.: when $\nu \neq \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \asymp \exp(-|x|/\eta)$, with $\eta \equiv \eta(\nu) \to \infty$ as $\nu \to \nu_c$. when $\nu = \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \asymp |x|^{-2\delta}$ with $\delta = 1/8$.

+ Higher order correlations and correlations between other observables \sim CFT

200

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

How to describe the phase transition mathematically?

- Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.
- Asymptotic decay rate of the *correlation functions*.

e.g.: when
$$\nu \neq \nu_c$$
: $\mathbb{E}[\sigma_0 \sigma_x] \simeq \exp(-|x|/\eta)$, with $\eta \equiv \eta(\nu) \to \infty$ as $\nu \to \nu_c$.
when $\nu = \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \simeq |x|^{-2\delta}$ with $\delta = 1/8$.

+ Higher order correlations and correlations between other observables \rightsquigarrow CFT

• Limit of geometric observables (connection probabilities, interfaces, \ldots) \sim SLE

SQ C

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

How to describe the phase transition mathematically?

- Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.
- Asymptotic decay rate of the *correlation functions*.

e.g.: when
$$\nu \neq \nu_c$$
: $\mathbb{E}[\sigma_0 \sigma_x] \simeq \exp(-|x|/\eta)$, with $\eta \equiv \eta(\nu) \to \infty$ as $\nu \to \nu_c$.
when $\nu = \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \simeq |x|^{-2\delta}$ with $\delta = 1/8$.

+ Higher order correlations and correlations between other observables \rightsquigarrow CFT

• Limit of geometric observables (connection probabilities, interfaces, \ldots) \sim SLE

A very simplified history:

• Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ● ●

How to describe the phase transition mathematically?

- Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.
- Asymptotic decay rate of the *correlation functions*.

e.g.: when
$$\nu \neq \nu_c$$
: $\mathbb{E}[\sigma_0 \sigma_x] \simeq \exp(-|x|/\eta)$, with $\eta \equiv \eta(\nu) \to \infty$ as $\nu \to \nu_c$.
when $\nu = \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \simeq |x|^{-2\delta}$ with $\delta = 1/8$.

+ Higher order correlations and correlations between other observables \rightsquigarrow CFT

- Limit of geometric observables (connection probabilities, interfaces, \ldots) \sim SLE
- A very simplified history:
- Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)
- Onsager 1944 (exact partition function on 2D square lattice, critical temperature)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ● ●

How to describe the phase transition mathematically?

- Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.
- Asymptotic decay rate of the *correlation functions*.

e.g.: when
$$\nu \neq \nu_c$$
: $\mathbb{E}[\sigma_0 \sigma_x] \simeq \exp(-|x|/\eta)$, with $\eta \equiv \eta(\nu) \to \infty$ as $\nu \to \nu_c$.
when $\nu = \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \simeq |x|^{-2\delta}$ with $\delta = 1/8$.

+ Higher order correlations and correlations between other observables \rightsquigarrow CFT

- Limit of geometric observables (connection probabilities, interfaces, . . .) \rightsquigarrow SLE
- A very simplified history:
- Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)
- Onsager 1944 (exact partition function on 2D square lattice, critical temperature)
- 1940'-1980': more exact computations and the values of various critical exponents.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

How to describe the phase transition mathematically?

- Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.
- Asymptotic decay rate of the *correlation functions*.

e.g.: when
$$\nu \neq \nu_c$$
: $\mathbb{E}[\sigma_0 \sigma_x] \simeq \exp(-|x|/\eta)$, with $\eta \equiv \eta(\nu) \to \infty$ as $\nu \to \nu_c$.
when $\nu = \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \simeq |x|^{-2\delta}$ with $\delta = 1/8$.

+ Higher order correlations and correlations between other observables \rightsquigarrow CFT

- Limit of geometric observables (connection probabilities, interfaces, \ldots) \rightsquigarrow SLE
- A very simplified history:
- Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)
- Onsager 1944 (exact partition function on 2D square lattice, critical temperature)
- 1940'-1980': more exact computations and the values of various critical exponents.
- 1980'-1990': development of the CFT and its predictions of the scaling limits of the Ising correlation functions.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

How to describe the phase transition mathematically?

- Non-analyticity at $\nu = \nu_c$ of the *free energy density* when the system size $\rightarrow \infty$.
- Asymptotic decay rate of the *correlation functions*.
 - e.g.: when $\nu \neq \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \simeq \exp(-|x|/\eta)$, with $\eta \equiv \eta(\nu) \to \infty$ as $\nu \to \nu_c$. when $\nu = \nu_c$: $\mathbb{E}[\sigma_0 \sigma_x] \simeq |x|^{-2\delta}$ with $\delta = 1/8$.

+ Higher order correlations and correlations between other observables \rightsquigarrow CFT

- Limit of geometric observables (connection probabilities, interfaces, \ldots) \sim SLE
- A very simplified history:
- Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)
- Onsager 1944 (exact partition function on 2D square lattice, critical temperature)
- 1940'-1980': more exact computations and the values of various critical exponents.
- 1980'-1990': development of the CFT and its predictions of the scaling limits of the Ising correlation functions.
- 2000+: proof of the convergence of correlation functions to the predicted limits. prediction and proof of the scaling limits of the interfaces (SLE, CLE)

A *(finite) planar map* is a *proper embedding* of a finite connected graph into the sphere S_2 , seen up to the orientation-preserving homeomorphisms of S_2 .

Da C

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

A *(finite) planar map* is a *proper embedding* of a finite connected graph into the sphere S_2 , seen up to the orientation-preserving homeomorphisms of S_2 .

・ロト ・日 ・ ・ ヨ ・

A *(finite) planar map* is a *proper embedding* of a finite connected graph into the sphere S_2 , seen up to the orientation-preserving homeomorphisms of S_2 .

・ロト ・回ト ・ヨト ・ヨト

A *(finite) planar map* is a *proper embedding* of a finite connected graph into the sphere S_2 , seen up to the orientation-preserving homeomorphisms of S_2 .

To avoid symmetry problems, we mark a corner (called the *root*) of the planar map. The resulting object is a *rooted planar map*, which will be called *map* in the sequel.

Image: A math a math

A *(finite) planar map* is a *proper embedding* of a finite connected graph into the sphere S_2 , seen up to the orientation-preserving homeomorphisms of S_2 .

To avoid symmetry problems, we mark a corner (called the *root*) of the planar map. The resulting object is a *rooted planar map*, which will be called *map* in the sequel. *External face*: the face containing the root. *Internal faces*: the other faces. *Boundary*: the edges/vertices incident to the external face. *Perimeter*: the number of the boundary edges.

A (rooted planar) *triangulation* is a map whose all faces are triangles.* When only the *internal* faces are triangles, we talk about *triangulation with boundary*.

・ロト ・回 ト ・ヨト ・ヨト

A *(finite) planar map* is a *proper embedding* of a finite connected graph into the sphere S_2 , seen up to the orientation-preserving homeomorphisms of S_2 .

To avoid symmetry problems, we mark a corner (called the *root*) of the planar map. The resulting object is a *rooted planar map*, which will be called *map* in the sequel. *External face*: the face containing the root. *Internal faces*: the other faces. *Boundary*: the edges/vertices incident to the external face. *Perimeter*: the number of the boundary edges.

A (rooted planar) *triangulation* is a map whose all faces are triangles.* When only the *internal* faces are triangles, we talk about *triangulation with boundary*.

 $\star \text{ triangles} \leftarrow \text{quadrangles} \Rightarrow \text{triangulation} \leftarrow \text{quadrangulation}$

San

A planar triangulation

A quadrangulation with a boundary

A more general map with a boundary

イロト イヨト イヨト イヨト

590

A planar triangulation

A quadrangulation with a boundary

A more general map with a boundary

・ロト ・回ト ・ヨト ・ヨト

A *uniform triangulation* of size *n* is a random triangulation chosen uniformly among the (rooted planar) triangulations with *n* faces. A *Boltzmann triangulation* of weight *t* is a random triangulation chosen among all the triangulations with a probability $\mathbb{P}(\mathfrak{t}) \propto t^{\#faces(\mathfrak{t})}$.

A quadrangulatior with a boundary

A more general map with a boundary

・ロト ・ 四 ト ・ 回 ト ・ 日 ト

A *uniform triangulation* of size *n* is a random triangulation chosen uniformly among the (rooted planar) triangulations with *n* faces. A *Boltzmann triangulation* of weight *t* is a random triangulation chosen among all the triangulations with a probability $\mathbb{P}(\mathfrak{t}) \propto t^{\#faces(\mathfrak{t})}$.

The partition function: $\mathcal{Z}(t) := \sum_{\mathfrak{t}} t^{\# faces(\mathfrak{t})} = \sum_{n} T_n \cdot t^n$, where $T_n := \# \{ \text{triangulations with } n \text{ faces} \}.$

200

Asymptotic counting formula:

$$T_n \underset{n \to \infty}{\sim} c \cdot t_c^{-n} \cdot n^{-5/2}$$
 with $c = \frac{\sqrt{6}}{32\sqrt{\pi}}$ and $t_c = \frac{27}{256}$.

This is the standard asymptotic behavior of the number of planar maps:

- planar maps with *n* edges: $c = \frac{2}{\sqrt{\pi}}$ and $t_c = \frac{1}{12}$,
- triangulations with a perimeter of p and n internal faces: c = c(p) and $t_c = t_c(p)$,

. . .

590

Asymptotic counting formula:

$$T_n \sim c \cdot t_c^{-n} \cdot n^{-5/2}$$
 with $c = \frac{\sqrt{6}}{32\sqrt{\pi}}$ and $t_c = \frac{27}{256}$.

This is the standard asymptotic behavior of the number of planar maps:

- planar maps with *n* edges: $c = \frac{2}{\sqrt{\pi}}$ and $t_c = \frac{1}{12}$,
- triangulations with a perimeter of p and n internal faces: c = c(p) and $t_c = t_c(p)$,

To be compared with the standard asymptotic behavior of the number of plane trees:

#{plane trees with *n* edges}
$$\underset{n \to \infty}{\sim} c \cdot t_c^{-n} \cdot n^{-3/2}$$

・ロト ・回 ト ・目 ト ・ 回 ト

Asymptotic counting formula:

$$T_n \underset{n \to \infty}{\sim} c \cdot t_c^{-n} \cdot n^{-5/2}$$
 with $c = \frac{\sqrt{6}}{32\sqrt{\pi}}$ and $t_c = \frac{27}{256}$.

This is the standard asymptotic behavior of the number of planar maps:

- planar maps with *n* edges: $c = \frac{2}{\sqrt{\pi}}$ and $t_c = \frac{1}{12}$,
- triangulations with a perimeter of p and n internal faces: c = c(p) and $t_c = t_c(p)$,

To be compared with the standard asymptotic behavior of the number of plane trees:

#{plane trees with *n* edges}
$$\underset{n \to \infty}{\sim} c \cdot t_c^{-n} \cdot n^{-3/2}$$

 \rightsquigarrow Two universality classes.

Sac

・ロト ・回 ト ・日 ト ・日 ト

Asymptotic counting formula:

$$T_n \underset{n \to \infty}{\sim} c \cdot t_c^{-n} \cdot n^{-5/2}$$
 with $c = \frac{\sqrt{6}}{32\sqrt{\pi}}$ and $t_c = \frac{27}{256}$.

This is the standard asymptotic behavior of the number of planar maps:

- planar maps with *n* edges: $c = \frac{2}{\sqrt{\pi}}$ and $t_c = \frac{1}{12}$,
- triangulations with a perimeter of p and n internal faces: c = c(p) and $t_c = t_c(p)$,

To be compared with the standard asymptotic behavior of the number of plane trees:

#{plane trees with *n* edges}
$$\underset{n \to \infty}{\sim} c \cdot t_c^{-n} \cdot n^{-3/2}$$

 \sim *Two universality classes.* --> Other universal observables?

・ロト ・四ト ・ヨト ・ヨト

Asymptotic counting formula:

$$T_n \sim c \cdot t_c^{-n} \cdot n^{-5/2}$$
 with $c = \frac{\sqrt{6}}{32\sqrt{\pi}}$ and $t_c = \frac{27}{256}$.

This is the standard asymptotic behavior of the number of planar maps:

- planar maps with *n* edges: $c = \frac{2}{\sqrt{\pi}}$ and $t_c = \frac{1}{12}$,
- triangulations with a perimeter of p and n internal faces: c = c(p) and $t_c = t_c(p)$,

To be compared with the standard asymptotic behavior of the number of *plane trees*:

#{plane trees with *n* edges}
$$\underset{n \to \infty}{\sim} c \cdot t_c^{-n} \cdot n^{-3/2}$$

 \sim Two universality classes. --> Other universal observables? \sim Yes, many!

Theorem (Aldous 1990, etc.)

Let \mathfrak{T}_n be a random tree of size *n* chosen uniformly from one of many classes of rooted plane trees,

$$\left(\mathfrak{T}_n, rac{C}{n^{1/2}} d_{g^r}^{\mathfrak{T}_n}\right) \stackrel{GM}{\underset{n \to \infty}{\longrightarrow}} (\mathcal{T}, d)$$

in distribution, where (\mathcal{T}, d) is Adlous' Continuous Random Tree (a compact metric space of Haudorff dimension 2, independent of the choice of the class).

Linxiao Chen

Theorem (Le Gall & Paulin 2008, Le Gall 2013, Miermont 2013, etc.)

Let \mathfrak{m}_n be a random map of size *n* chosen uniformly from one of many classes of rooted planar maps,

$$\left(\mathfrak{m}_n, rac{C}{n^{1/4}} d_{gr}^{\mathfrak{m}_n}
ight) \stackrel{GM}{\longrightarrow} (\mathcal{M}, \mathcal{D})$$

in distribution, where $(\mathcal{M}, \mathcal{D})$ is the Browninan map (a compact metric space of Haudorff dimension 4 and homeomorphic to the sphere, independent of the class).

・ロト ・回 ト ・ヨト ・ヨト

Theorem (Le Gall & Paulin 2008, Le Gall 2013, Miermont 2013, etc.)

Let \mathfrak{m}_n be a random map of size *n* chosen uniformly from one of many classes of rooted planar maps,

$$\left(\mathfrak{m}_n, rac{C}{n^{1/4}} d_{gr}^{\mathfrak{m}_n}
ight) \stackrel{GM}{\longrightarrow} (\mathcal{M}, \mathcal{D})$$

in distribution, where $(\mathcal{M}, \mathcal{D})$ is the Browninan map (a compact metric space of Haudorff dimension 4 and homeomorphic to the sphere, independent of the class).

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.)

590

<ロ> <同> <同> < 同> < 同> < 同> < 同> <

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.)

1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.)

590

・ロト ・四ト ・モト・

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.)

1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.) 1980': maps as a discretization of Liouville quantique gravity (Polyakov, et al.)

Sar

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.)

1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.) 1980': maps as a discretization of Liouville quantique gravity (Polyakov, et al.) \sim 2000': discovery of bijections (Schaeffer et al.)

Sar

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.)

1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.)

1980': maps as a discretization of Liouville quantique gravity (Polyakov, et al.)

 \sim 2000': discovery of bijections (Schaeffer et al.)

 ${\sim}2010^{\prime}\!:$ construction of the Browninan map and related limit objects.

Sar

・ロト ・四ト ・ヨト ・ヨト

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.)

1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.)

1980': maps as a discretization of Liouville quantique gravity (Polyakov, et al.)

 \sim 2000': discovery of bijections (Schaeffer et al.)

 ${\sim}2010^{\prime}\!:$ construction of the Browninan map and related limit objects.

Can we escape from the Brownian map universality class?

SQ C

・ロト ・雪 ・ ・ 間・ ・ 目・

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.)

1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.)

1980': maps as a discretization of Liouville quantique gravity (Polyakov, et al.)

 \sim 2000': discovery of bijections (Schaeffer et al.)

 ${\sim}2010^{\prime}\!:$ construction of the Browninan map and related limit objects.

Can we escape from the Brownian map universality class?

 \sim Yes. One way to do so: couple the law of the random map to a model of statistical physics, i.e. instead of choosing the random map *uniformly* or with a weight that only depends on its *size*, we choose $\mathbb{P}(\mathfrak{m}) \propto \mathcal{Z}_{\mathfrak{m}}$, where $\mathcal{Z}_{\mathfrak{m}}$ is the *partition function* of some statistical physics model living on the map \mathfrak{m} .

NQ P

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.) 1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.) 1980': maps as a discretization of Liouville quantique gravity (Polyakov, et al.) \sim 2000': discovery of bijections (Schaeffer et al.) \sim 2010': construction of the Browninan map and related limit objects.

Can we escape from the Brownian map universality class? \sim Yes. One way to do so: couple the law of the random map to a model of statistical physics, i.e. instead of choosing the random map *uniformly* or with a weight that only depends on its *size*, we choose $\mathbb{P}(\mathfrak{m}) \propto \mathcal{Z}_{\mathfrak{m}}$, where $\mathcal{Z}_{\mathfrak{m}}$ is the *partition function* of some statistical physics model living on the map \mathfrak{m} .

Tutte 1960': already enumerated maps weighted by additional functions, such as Tutte's polynomial (of which Ising partition function is a specialization).

NQ C

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・ 日

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.) 1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.) 1980': maps as a discretization of Liouville quantique gravity (Polyakov, et al.) \sim 2000': discovery of bijections (Schaeffer et al.) \sim 2010': construction of the Browninan map and related limit objects.

Can we escape from the Brownian map universality class? \rightsquigarrow Yes. One way to do so: couple the law of the random map to a model of statistical physics, i.e. instead of choosing the random map *uniformly* or with a weight that only depends on its *size*, we choose $\mathbb{P}(\mathfrak{m}) \propto \mathcal{Z}_{\mathfrak{m}}$, where $\mathcal{Z}_{\mathfrak{m}}$ is the *partition function* of some statistical physics model living on the map \mathfrak{m} .

 Tutte 1960': already enumerated maps weighted by additional functions, such as Tutte's polynomial (of which Ising partition function is a specialization).
 Boulatov & Kazakov 1987: asymptotics enumeration of triangulations weighted by the Ising model, predicted a phase transition and some of its properties.

~ ~ ~ ~

・ロト ・日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

A very simplified history:

1960': enumeration of maps using combinatorial methods (Tutte et al.) 1970': maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.) 1980': maps as a discretization of Liouville quantique gravity (Polyakov, et al.) \sim 2000': discovery of bijections (Schaeffer et al.) \sim 2010': construction of the Browninan map and related limit objects.

Can we escape from the Brownian map universality class? \sim Yes. One way to do so: couple the law of the random map to a model of statistical physics, i.e. instead of choosing the random map *uniformly* or with a weight that only depends on its *size*, we choose $\mathbb{P}(\mathfrak{m}) \propto \mathcal{Z}_{\mathfrak{m}}$, where $\mathcal{Z}_{\mathfrak{m}}$ is the *partition function* of some statistical physics model living on the map \mathfrak{m} .

Tutte 1960': already enumerated maps weighted by additional functions, such as Tutte's polynomial (of which Ising partition function is a specialization).
 Boulatov & Kazakov 1987: asymptotics enumeration of triangulations weighted by the Ising model, predicted a phase transition and some of its properties.
 ~2000+: rigorous and more systematic methods for the enumeration of various classes of maps with additional structures.

590

・ロト ・日 ・ ト ・ 日 ・ 一日・

The model: Boltzmann Ising-triangulation

996

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣

Let \mathcal{T}_2 be the set of triangulations with a *simple* boundary, endowed with a partition of its boundary into 2 intervals. Denote by $p(\mathfrak{t})$ and $q(\mathfrak{t})$ the lengths of these intervals.

Let \mathcal{T}_2 be the set of triangulations with a *simple* boundary, endowed with a partition of its boundary into 2 intervals. Denote by $p(\mathfrak{t})$ and $q(\mathfrak{t})$ the lengths of these intervals.

Let \mathcal{T}_2 be the set of triangulations with a *simple* boundary, endowed with a partition of its boundary into 2 intervals. Denote by $p(\mathfrak{t})$ and $q(\mathfrak{t})$ the lengths of these intervals.

Consider the set of Ising-decorated triangulations (Ising-triangulation for short):

$$\mathcal{IT}_{+-} = \{(\mathfrak{t}, \sigma) \mid \mathfrak{t} \in \mathcal{T}_2 \text{ and } \sigma \in \{+, -\}^{faces(\mathfrak{t})}\}$$

The elements of \mathcal{IT}_{+-} are endowed with *Dobrushin boundary condition*: we assign a sequence of p(t) spins + followed by q(t) spins - to the *outside of the boundary*. Let $\mathcal{E}(t, \sigma)$ be the number of monochromatic edges in (t, σ) .

nan

・ロト ・回 ト ・ヨト ・ヨト

Let \mathcal{T}_2 be the set of triangulations with a *simple* boundary, endowed with a partition of its boundary into 2 intervals. Denote by $p(\mathfrak{t})$ and $q(\mathfrak{t})$ the lengths of these intervals.

Example:
$$(\mathfrak{t}, \sigma) \in \mathcal{IT}_{+-}$$

 $p(\mathfrak{t}) = 2, \ q(\mathfrak{t}) = 3,$
 $\# faces(\mathfrak{t}) = 7, \ \mathcal{E}(\mathfrak{t}, \sigma) = 5.$

Consider the set of Ising-decorated triangulations (Ising-triangulation for short):

$$\mathcal{IT}_{+-} = \{(\mathfrak{t}, \sigma) \mid \mathfrak{t} \in \mathcal{T}_2 \text{ and } \sigma \in \{+, -\}^{faces(\mathfrak{t})}\}$$

The elements of \mathcal{IT}_{+-} are endowed with *Dobrushin boundary condition*: we assign a sequence of p(t) spins + followed by q(t) spins - to the *outside of the boundary*. Let $\mathcal{E}(t, \sigma)$ be the number of monochromatic edges in (t, σ) .

nan

・ロト ・回ト ・ヨト ・ヨト

Boltzmann-Ising triangulation

Generating functions

$$Z(u, v; t, \nu) := \sum_{(\mathfrak{t}, \sigma) \in \mathcal{IT}_{\leftarrow}} u^{p(\mathfrak{t})} v^{q(\mathfrak{t})} t^{\#F(\mathfrak{t})} \nu^{\mathcal{E}(\mathfrak{t}, \sigma)}$$
$$Z_q(u; t, \nu) := [v^q] Z(u, v; t, \nu)$$
$$z_{p,q}(t, \nu) := [u^p v^q] Z(u, v; t, \nu) = [u^p] Z_q(u; t, \nu)$$

By convention $z_{0,0}(t, \nu) = Z(0, 0; t, \nu) = 1$.

590

・ロット 小型マネ 山ママ

Generating functions

$$Z(u, v; t, \nu) := \sum_{(\mathfrak{t}, \sigma) \in \mathcal{IT}_{\mathfrak{l}}} u^{p(\mathfrak{t})} v^{q(\mathfrak{t})} t^{\#F(\mathfrak{t})} \nu^{\mathcal{E}(\mathfrak{t}, \sigma)}$$
$$Z_q(u; t, \nu) := [v^q] Z(u, v; t, \nu)$$
$$z_{p,q}(t, \nu) := [u^p v^q] Z(u, v; t, \nu) = [u^p] Z_q(u; t, \nu)$$

By convention $z_{0,0}(t, \nu) = Z(0, 0; t, \nu) = 1$.

For all $p, q \ge 0$ and $t, \nu > 0$ such that $z_{p,q}(t, \nu) < \infty$, we define a probability measure on the set $\{(\mathfrak{t}, \sigma) \in \mathcal{IT}_{+} \mid p(\mathfrak{t}) = p \text{ and } q(\mathfrak{t}) = q\}$ by

$$\mathbb{P}_{p,q}^{t,\nu}(\mathfrak{t},\sigma) = \frac{t^{\#F(\mathfrak{t})}\nu^{\mathcal{E}(\mathfrak{t},\sigma)}}{z_{p,q}(t,\nu)} \,.$$

We call a random variable of law $\mathbb{P}_{p,q}^{t,\nu}$ Boltzmann Ising-triangulation of (p,q)-gon.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Previous results

Let $t_c(\nu)$ is the radius of convergence of $t \mapsto z_{l,0}(t,\nu)$. Let $\nu_c = 1 + 2\sqrt{7}$.

Theorem (Bernardi-Bousquet-Mélou 11, Albenque-Laurent-Schaeffer 18)

For all $\nu > 1$ and $(p,q) \neq (0,0)$, we have

$$\begin{bmatrix} t^n \end{bmatrix} z_{p,q}(t,\nu) \underset{n \to \infty}{\sim} \begin{cases} \kappa_{p,q}(\nu) \cdot t_c(\nu)^{-n} \cdot n^{-5/2} & (\nu \neq \nu_c) \\ \kappa_{p,q}(\nu_c) \cdot t_c(\nu_c)^{-n} \cdot n^{-7/3} & (\nu = \nu_c) \end{cases}$$

Moreover, $t_c(\nu)$ is C^2 -continuous on $(1, \infty)$ and analytic on $(1, \nu_c) \cup (\nu_c, \infty)$.

DQR

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Previous results

Let $t_c(\nu)$ is the radius of convergence of $t \mapsto z_{l,0}(t,\nu)$. Let $\nu_c = 1 + 2\sqrt{7}$.

Theorem (Bernardi-Bousquet-Mélou 11, Albenque-Laurent-Schaeffer 18)

For all $\nu > 1$ and $(p,q) \neq (0,0)$, we have

$$\begin{bmatrix} t^n \end{bmatrix} z_{p,q}(t,\nu) \underset{n \to \infty}{\sim} \begin{cases} \kappa_{p,q}(\nu) \cdot t_c(\nu)^{-n} \cdot n^{-5/2} & (\nu \neq \nu_c) \\ \kappa_{p,q}(\nu_c) \cdot t_c(\nu_c)^{-n} \cdot n^{-7/3} & (\nu = \nu_c) \end{cases}$$

Moreover, $t_c(\nu)$ is C^2 -continuous on $(1,\infty)$ and analytic on $(1,\nu_c) \cup (\nu_c,\infty)$.

(Easy) Corollaries

- $t_c(\nu)$ is also the radius of convergence of $t \mapsto z_{p,q}(t,\nu)$ and $z_{p,q}(t_c(\nu),\nu) < \infty$, for all $\nu > 1$ and $(p,q) \neq (0,0)$.
- $-\lim_{n\to\infty}\frac{1}{n}\log[t^n]z_{p,q}(t,\nu) = \log t_c(\nu)$. Thus $\log t_c(\nu)$ is the free energy density.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Previous results

Let $t_c(\nu)$ is the radius of convergence of $t \mapsto z_{l,0}(t,\nu)$. Let $\nu_c = 1 + 2\sqrt{7}$.

Theorem (Bernardi-Bousquet-Mélou 11, Albenque-Laurent-Schaeffer 18)

For all $\nu > 1$ and $(p,q) \neq (0,0)$, we have

$$\begin{bmatrix} t^n \end{bmatrix} z_{p,q}(t,\nu) \underset{n \to \infty}{\sim} \begin{cases} \kappa_{p,q}(\nu) \cdot t_c(\nu)^{-n} \cdot n^{-5/2} & (\nu \neq \nu_c) \\ \kappa_{p,q}(\nu_c) \cdot t_c(\nu_c)^{-n} \cdot n^{-7/3} & (\nu = \nu_c) \end{cases}$$

Moreover, $t_c(\nu)$ is C^2 -continuous on $(1,\infty)$ and analytic on $(1,\nu_c) \cup (\nu_c,\infty)$.

(Easy) Corollaries

- $t_c(\nu)$ is also the radius of convergence of $t \mapsto z_{p,q}(t,\nu)$ and $z_{p,q}(t_c(\nu),\nu) < \infty$, for all $\nu > 1$ and $(p,q) \neq (0,0)$.
- $-\lim_{n\to\infty}\frac{1}{n}\log[t^n]z_{p,q}(t,\nu) = \log t_c(\nu)$. Thus $\log t_c(\nu)$ is the free energy density.

We will focus on the case $t = t_c(\nu)$ ("maximal volume") and $\nu > 1$ (ferromagnetic). From now on, we assume $t = t_c(\nu)$ and omit the parameter t from the notations.

Main results

Linxiao Chen

Phase transition in the Ising model on a random 2D lattice

15 / 21

Let $u_c(\nu)$ be the radius of convergence of $Z_0(u; \nu)$.

Continuous phase transition in the "surface tension" *

 $u_c(\nu)$ is positive and continuous on $(1,\infty)$, and is analytic everywhere except at ν_c .

Let $u_c(\nu)$ be the radius of convergence of $Z_0(u; \nu)$.

Continuous phase transition in the "surface tension" *

 $u_c(\nu)$ is positive and continuous on $(1,\infty)$, and is analytic everywhere except at ν_c .

Theorem (Fixed-temperature asymptotics)

Fix $\nu > 1$. In the limit where $q \to \infty$ with p fixed, and then $p \to \infty$, we have

 $z_{p,q}(\nu) \sim a_p(\nu) \cdot u_c(\nu)^{-q} \cdot q^{-\alpha_0}$ and $a_p(\nu) \sim b(\nu) \cdot u_c(\nu)^{-p} \cdot p^{-\alpha_1}$.

200

・ロト ・四ト ・ヨト ・ヨト

Let $u_c(\nu)$ be the radius of convergence of $Z_0(u; \nu)$.

Continuous phase transition in the "surface tension" *

 $u_c(\nu)$ is positive and continuous on $(1,\infty)$, and is analytic everywhere except at ν_c .

Theorem (Fixed-temperature asymptotics)

Fix $\nu > 1$. In the limit where $q \to \infty$ with p fixed, and then $p \to \infty$, we have

$$z_{p,q}(\nu) \sim a_p(\nu) \cdot u_c(\nu)^{-q} \cdot q^{-\alpha_0}$$
 and $a_p(\nu) \sim b(\nu) \cdot u_c(\nu)^{-p} \cdot p^{-\alpha_1}$

In the limit where $p, q \to \infty$ and $q/p \to \lambda$ for some fixed $\lambda \in (0, \infty)$, we have

 $z_{p,q}(\nu) \sim c(\lambda)b(\nu) \cdot u_c(\nu)^{-(p+q)} \cdot p^{-\alpha_2}$ where $\alpha_2 = \alpha_0 + \alpha_1$, and

200

・ロト ・四ト ・ヨト ・ヨト

Let $u_c(\nu)$ be the radius of convergence of $Z_0(u; \nu)$.

Continuous phase transition in the "surface tension" *

 $u_c(\nu)$ is positive and continuous on $(1,\infty)$, and is analytic everywhere except at ν_c .

Theorem (Fixed-temperature asymptotics)

Fix $\nu > 1$. In the limit where $q \to \infty$ with p fixed, and then $p \to \infty$, we have

$$z_{p,q}(\nu) \sim a_p(\nu) \cdot u_c(\nu)^{-q} \cdot q^{-\alpha_0}$$
 and $a_p(\nu) \sim b(\nu) \cdot u_c(\nu)^{-p} \cdot p^{-\alpha_1}$

In the limit where $p, q \to \infty$ and $q/p \to \lambda$ for some fixed $\lambda \in (0, \infty)$, we have

 $z_{p,q}(\nu) \sim c(\lambda)b(\nu) \cdot u_c(\nu)^{-(p+q)} \cdot p^{-\alpha_2}$ where $\alpha_2 = \alpha_0 + \alpha_1$, and

	$\nu < \nu_c$	$\nu = \nu_c$	$\nu > \nu_c$			
α_0	5/2	7/3	5/2		$(1+\lambda)^{-5/2}$	$(\nu < \nu_c)$
α_1	0	4/3	5/2	$c(\lambda) = \langle$	$\frac{4}{3}\int_0^\infty (1+r)^{-\frac{1}{3}} (\lambda+r)^{-\frac{1}{3}} dr$	$(\nu = \nu_c)$
α_2	5/2	11/3	5		$\lambda^{-5/2}$	$(\nu > \nu_c)$

200

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Let $u_c(\nu)$ be the radius of convergence of $Z_0(u; \nu)$.

Continuous phase transition in the "surface tension" *

 $u_c(\nu)$ is positive and continuous on $(1,\infty)$, and is analytic everywhere except at ν_c .

Theorem (Fixed-temperature asymptotics)

Fix $\nu > 1$. In the limit where $q \to \infty$ with p fixed, and then $p \to \infty$, we have

$$z_{p,q}(\nu) \sim a_p(\nu) \cdot u_c(\nu)^{-q} \cdot q^{-\alpha_0}$$
 and $a_p(\nu) \sim b(\nu) \cdot u_c(\nu)^{-p} \cdot p^{-\alpha_1}$

In the limit where $p, q \to \infty$ and $q/p \to \lambda$ for some fixed $\lambda \in (0, \infty)$, we have

 $z_{p,q}(\nu) \sim c(\lambda)b(\nu) \cdot u_c(\nu)^{-(p+q)} \cdot p^{-\alpha_2}$ where $\alpha_2 = \alpha_0 + \alpha_1$, and

* In both of the two limits above, we have $-\lim_{\mu \to a} \log(z_{p,q}(\mu)) = \log u_{\mathfrak{g}}(\nu)$.

Linxiao Chen

Theorem (Near-critical asymptotics)

Fix $\beta \in (0,\infty]$ and assume $|\nu - \nu_c| = p^{-\beta}$. In the limit where $q \to \infty$ with p fixed and then $p \to \infty$, we have

$$z_{p,q}(\nu) \sim \tilde{a}_q(\beta) \cdot u_c(\nu)^{-p} \cdot p^{-lpha_0(eta)} \qquad and \qquad a_p(\nu) \sim \tilde{b}(\beta) \cdot u_c(\nu)^{-p} \cdot p^{- ilde{lpha}_1(eta)}$$

When $p, q \to \infty$ and $q/p \to \lambda$ for some fixed $\lambda \in (0, \infty)$, we have

$$z_{p,q}(\nu) \sim \tilde{c}(\lambda;\beta) \cdot u_c(\nu)^{-(p+q)} \cdot p^{-\alpha_2(\beta)}$$

where the exponents $\alpha_0(\beta)$, $\tilde{\alpha}_1(\beta)$ and $\alpha_2(\beta)$ are given by

Theorem (Near-critical asymptotics)

Fix $\beta \in (0,\infty]$ and assume $|\nu - \nu_c| = p^{-\beta}$. In the limit where $q \to \infty$ with p fixed and then $p \to \infty$, we have

 $z_{p,q}(\nu) \sim \tilde{a}_q(\beta) \cdot u_c(\nu)^{-p} \cdot p^{-\alpha_0(\beta)}$ and $a_p(\nu) \sim \tilde{b}(\beta) \cdot u_c(\nu)^{-p} \cdot p^{-\tilde{\alpha}_1(\beta)}$

When $p, q \to \infty$ and $q/p \to \lambda$ for some fixed $\lambda \in (0, \infty)$, we have

$$z_{p,q}(\nu) \sim \tilde{c}(\lambda;\beta) \cdot u_c(\nu)^{-(p+q)} \cdot p^{-\alpha_2(\beta)}$$

where the exponents $\alpha_0(\beta)$, $\tilde{\alpha}_1(\beta)$ and $\alpha_2(\beta)$ are given by

Local weak limit of the distributions $\mathbb{P}_{p,q}^{\nu}$

The *local distance* between two Ising-triangulations (\mathfrak{t}, σ) and (\mathfrak{t}', σ') is defined by

$$d_{\texttt{loc}}((\mathfrak{t},\sigma),(\mathfrak{t}',\sigma')) = 2^{-\sup\{r \in \mathbb{N} \colon B_r(\mathfrak{t},\sigma) = B_r(\mathfrak{t}',\sigma')\}}$$

where B_r denotes the ball of radius r (w.r.t. the graph distance) around the root.

590

・ロト ・日 ・ ・ 日 ・ ・ 日 ・

Local weak limit of the distributions $\mathbb{P}_{p,q}^{\nu}$

The *local distance* between two Ising-triangulations (\mathfrak{t}, σ) and (\mathfrak{t}', σ') is defined by

$$d_{\texttt{loc}}((\mathfrak{t},\sigma),(\mathfrak{t}',\sigma')) = 2^{-\sup\{r \in \mathbb{N} \colon B_r(\mathfrak{t},\sigma) = B_r(\mathfrak{t}',\sigma')\}}$$

where B_r denotes the ball of radius r (w.r.t. the graph distance) around the root.

Local weak limit of the distributions $\mathbb{P}_{p,q}^{\nu}$

Theorem (Critical and off-critical local limits)

For each $\nu > 1$, one can construct probability distributions $(\mathbb{P}_p^{\nu})_{p\geq 0}$ and $\mathbb{P}_{\infty}^{\nu}$ such that $\mathbb{P}_{p,q}^{\nu} \xrightarrow[q \to \infty]{} \mathbb{P}_p^{\nu} \xrightarrow[p \to \infty]{} \mathbb{P}_{\infty}^{\nu}$ weakly with respect to the local distance. In the limit $p, q \to \infty$ and $q/p \to \lambda \in (0, \infty)$, the convergence becomes $\mathbb{P}_{p,q}^{\nu} \to \mathbb{P}_{\infty}^{\nu}$.

・ロト ・回 ト ・ヨト ・ヨト

Theorem (Critical and off-critical local limits)

For each $\nu > 1$, one can construct probability distributions $(\mathbb{P}_p^{\nu})_{p\geq 0}$ and $\mathbb{P}_{\infty}^{\nu}$ such that $\mathbb{P}_{p,q}^{\nu} \xrightarrow[q \to \infty]{} \mathbb{P}_p^{\nu} \xrightarrow[p \to \infty]{} \mathbb{P}_{\infty}^{\nu}$ weakly with respect to the local distance. In the limit $p, q \to \infty$ and $q/p \to \lambda \in (0, \infty)$, the convergence becomes $\mathbb{P}_{p,q}^{\nu} \to \mathbb{P}_{\infty}^{\nu}$. Moreover

- For $\nu > 1$ and $p < \infty$, \mathbb{P}_p^{ν} is supported on the set of one-ended triangulations with one infinite boundary (i.e. triangulations of the half plane).
- For $\nu \geq \nu_c$, $\mathbb{P}^{\nu}_{\infty}$ is also supported on the above set.
- For $\nu \in (1, \nu_c)$, $\mathbb{P}_{\infty}^{\nu}$ is supported on the set of two-ended triangulations.

SQ C

<ロト < 回 > < 回 > < 回 > < 回 > < 三

Theorem (Critical and off-critical local limits)

For each $\nu > 1$, one can construct probability distributions $(\mathbb{P}_p^{\nu})_{p\geq 0}$ and $\mathbb{P}_{\infty}^{\nu}$ such that $\mathbb{P}_{p,q}^{\nu} \xrightarrow[q \to \infty]{} \mathbb{P}_p^{\nu} \xrightarrow[p \to \infty]{} \mathbb{P}_{\infty}^{\nu}$ weakly with respect to the local distance. In the limit $p, q \to \infty$ and $q/p \to \lambda \in (0, \infty)$, the convergence becomes $\mathbb{P}_{p,q}^{\nu} \to \mathbb{P}_{\infty}^{\nu}$. Moreover

- For $\nu > 1$ and $p < \infty$, \mathbb{P}_p^{ν} is supported on the set of one-ended triangulations with one infinite boundary (i.e. triangulations of the half plane).
- For $\nu \geq \nu_c$, $\mathbb{P}^{\nu}_{\infty}$ is also supported on the above set.
- For $\nu \in (1, \nu_c)$, $\mathbb{P}_{\infty}^{\nu}$ is supported on the set of two-ended triangulations.

Theorem (Near-critical local limit)

When
$$\nu \to \nu_c$$
 at the same time as $p, q \to \infty$, we have $\mathbb{P}_{p,q}^{\nu} \xrightarrow[q \to \infty]{} \mathbb{P}_p^{\nu_c}$,
 $\mathbb{P}_p^{\nu} \xrightarrow[p \to \infty]{} \mathbb{P}_{\infty}^{\nu_c}$ and $\mathbb{P}_{p,q}^{\nu} \xrightarrow[p,q \to \infty]{} \mathbb{P}_{\infty}^{\nu_c}$ weakly with respect to the local distance

590

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Scaling limit of the main interface (work in progress)

Let $L_{p,q}^{\nu}$ be the length^{*} of the left-most Ising interface going from ρ to ρ' in a Boltzmann Ising-triangulation of law $\mathbb{P}_{p,q}^{\nu}$.

590

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Scaling limit of the main interface (work in progress)

Let $L_{p,q}^{\nu}$ be the length^{*} of the left-most Ising interface going from ρ to ρ' in a Boltzmann Ising-triangulation of law $\mathbb{P}_{p,q}^{\nu}$.

Theorem (off-critical and critical limit)

Fix $\nu > 1$ and $\lambda \in (0, \infty)$. In the limit $p, q \to \infty$ and $q/p \to \lambda$, the random variable $L_{p,q}^{\nu}/p$ converges in law to 0 if $\nu > \nu_c$, to a deterministic value $\ell(\lambda; \nu) > 0$ if $\nu < \nu_c$, and to the random variable of density $\frac{1}{\mathbb{Z}}(1+\mu x)^{-7/3}(\lambda+\mu x)^{-7/3}\mathbb{1}_{\{x>0\}}$ if $\nu = \nu_c$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Scaling limit of the main interface (work in progress)

Let $L_{p,q}^{\nu}$ be the length^{*} of the left-most Ising interface going from ρ to ρ' in a Boltzmann Ising-triangulation of law $\mathbb{P}_{p,q}^{\nu}$.

Theorem (off-critical and critical limit)

Fix $\nu > 1$ and $\lambda \in (0, \infty)$. In the limit $p, q \to \infty$ and $q/p \to \lambda$, the random variable $L_{p,q}^{\nu}/p$ converges in law to 0 if $\nu > \nu_c$, to a deterministic value $\ell(\lambda; \nu) > 0$ if $\nu < \nu_c$, and to the random variable of density $\frac{1}{\mathbb{Z}}(1+\mu x)^{-7/3}(\lambda+\mu x)^{-7/3}\mathbb{1}_{\{x>0\}}$ if $\nu = \nu_c$.

Conjecture (near-critical limit)

 $\text{Fix }\beta>0 \text{ and }\lambda\in(0,\infty). \text{ In the limit } p,q\to\infty\text{, }q/p\to\lambda\text{ and }|\nu-\nu_c|=p^{-\beta}\text{,}$

- if $\nu > \nu_c$, or $\nu < \nu_c$ and $\beta > 1/3$, then $L_{p,q}^{\nu}/p^{\delta(\beta)}$ converges in distribution to a non-trivial random variable on $(0, \infty)$, where $\delta(\beta) = 2\alpha_0(\beta) \alpha_2(\beta) \in (0, 1]$.
- if $\nu < \nu_c$ and $\beta < \frac{1}{3}$, then $L_{p,q}^{\nu}/p$ converges to a deterministic value $\ell(\lambda; \beta) > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

Thank you for your attention !

SQ P

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト