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The 2D Ising model

Input: e A finite graph G embedded in R”. e A coupling constant v > 0.

The nearest-neighbor Ising model on the faces of G is a random assignment of the
numbers +1 and —1 (spins) to the faces of G according to the probability distribution
such that for all o = (o) ,ep(c) € {+1, —1}7(9,

P(o) ey o=oy} . E(G0)

: the graph G
: the dual graph of G
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The coupling constant is related to the

physical parameters by v = exp (%)

~ large v : “low temperature”,
small v : “high temperature”.
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The 2D Ising model

Input: e A finite graph G embedded in R”. e A coupling constant v > 0.

The nearest-neighbor Ising model on the faces of G is a random assignment of the
numbers +1 and —1 (spins) to the faces of G according to the probability distribution
such that for all o = (o) ,ep(c) € {+1, —1}7(9,

P(o) ey o=oy} . E(G0)

The coupling constant is related to the

physical parameters by v = exp (%)

~ large v : “low temperature”,
small v : “high temperature”.

The usually studied case:
1 (ferromagnetic).
: the graph G oV
. ch (gjrj; raoh of G e G is a subgraph of a regular 2D lattice
fffff ' grap (A, O or O).
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The 2D Ising model

Initial motivation: e Model of ferromagnet: Competition between

“weight of € > weight of <" and Entropy
e Demonstrate the existence of phase transition in a mathematically tractable model.
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The 2D Ising model

Initial motivation: e Model of ferromagnet: Competition between

“weight of €@ > weight of <p"

e Demonstrate the existence of phase transition in a mathematically tractable model.

and Entropy

high temperature

Ve

>
low temperature v
Why would this extremely idealized model be related to the real physics?
Linxiao Chen

~> Universality: the phenomenon that some macroscopic observables of the system
at or near criticality is independent from microscopic details of the system.

[m]

— Distinction between non-universal observables and universal observables.
&
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The 2D Ising model

How to describe the phase transition mathematically?
e Non-analyticity at v = v, of the free energy density when the system size — co.
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The 2D Ising model

How to describe the phase transition mathematically?

e Non-analyticity at v = v, of the free energy density when the system size — co.
e Asymptotic decay rate of the correlation functions.

e.g.. when v # v E[ogo,] < exp(—|x|/n), withn =n(v) - co as v — v,.
when v = v: Elogo,] < |x[~% with § =1/8.
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The 2D Ising model

How to describe the phase transition mathematically?
e Non-analyticity at v = v, of the free energy density when the system size — co.
e Asymptotic decay rate of the correlation functions.
e.g.. when v # v E[ogo,] < exp(—|x|/n), withn =n(v) - co as v — v,.
when v = v: Elogo,] < |x[~% with § =1/8.
+ Higher order correlations and correlations between other observables ~» CFT
e Limit of geometric observables (connection probabilities, interfaces, ...) ~ SLE

A very simplified history:
e Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)
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The 2D Ising model

How to describe the phase transition mathematically?
e Non-analyticity at v = v, of the free energy density when the system size — co.
e Asymptotic decay rate of the correlation functions.
e.g.. when v # v E[ogo,] < exp(—|x|/n), withn =n(v) - co as v — v,.
when v = v: Elogo,] < |x[~% with § =1/8.
+ Higher order correlations and correlations between other observables ~» CFT
e Limit of geometric observables (connection probabilities, interfaces, ...) ~ SLE

A very simplified history:
e Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)

e Onsager 1944 (exact partition function on 2D square lattice, critical temperature)
© 1940’-1980": more exact computations and the values of various critical exponents.
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How to describe the phase transition mathematically?
e Non-analyticity at v = v, of the free energy density when the system size — co.
e Asymptotic decay rate of the correlation functions.
e.g.. when v # v E[ogo,] < exp(—|x|/n), withn =n(v) - co as v — v,.
when v = v: Elogo,] < |x[~% with § =1/8.
+ Higher order correlations and correlations between other observables ~» CFT
e Limit of geometric observables (connection probabilities, interfaces, ...) ~ SLE

A very simplified history:

e Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)

e Onsager 1944 (exact partition function on 2D square lattice, critical temperature)

© 1940’-1980": more exact computations and the values of various critical exponents.

¢ 1980°-1990": development of the CFT and its predictions of the scaling limits of the
Ising correlation functions.
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How to describe the phase transition mathematically?
e Non-analyticity at v = v, of the free energy density when the system size — co.
e Asymptotic decay rate of the correlation functions.
e.g.. when v # v E[ogo,] < exp(—|x|/n), withn =n(v) - co as v — v,.
when v = v: Elogo,] < |x[~% with § =1/8.
+ Higher order correlations and correlations between other observables ~» CFT
e Limit of geometric observables (connection probabilities, interfaces, ...) ~ SLE

A very simplified history:

e Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)
e Onsager 1944 (exact partition function on 2D square lattice, critical temperature)

© 1940’-1980": more exact computations and the values of various critical exponents.
¢ 1980°-1990": development of the CFT and its predictions of the scaling limits of the

Ising correlation functions.
® 2000+: proof of the convergence of correlation functions to the predicted limits.
prediction and proof of the scaling limits of the interfaces (SLE, CLE)
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Random planar maps

A (finite) planar map is a proper embedding of a finite connected graph into the
sphere S, seen up to the orientation-preserving homeomorphisms of S,.
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Random planar maps

A (finite) planar map is a proper embedding of a finite connected graph into the
sphere S, seen up to the orientation-preserving homeomorphisms of S,.

planar map =
planar graph + embedding
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Random planar maps

A (finite) planar map is a proper embedding of a finite connected graph into the
sphere S, seen up to the orientation-preserving homeomorphisms of S,.
planar map =

Tee

planar graph + embedding
AW W . faces

Linxiao Chen
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Random planar maps

A (finite) planar map is a proper embedding of a finite connected graph into the
sphere S, seen up to the orientation-preserving homeomorphisms of S,.

planar map =
planar graph + embedding
AW W . faces

To avoid symmetry problems, we mark a corner (called the root) of the planar map.
The resulting object is a rooted planar map, which will be called map in the sequel.
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A (finite) planar map is a proper embedding of a finite connected graph into the
sphere S, seen up to the orientation-preserving homeomorphisms of S,.

planar map =
planar graph + embedding
AW W . faces

To avoid symmetry problems, we mark a corner (called the root) of the planar map.
The resulting object is a rooted planar map, which will be called map in the sequel.

External face: the face containing the root. Internal faces: the other faces.
Boundary: the edges/vertices incident to the external face.
Perimeter: the number of the boundary edges.

A (rooted planar) triangulation is a map whose all faces are triangles.*
When only the internal faces are triangles, we talk about triangulation with boundary.J
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Random planar maps

A (finite) planar map is a proper embedding of a finite connected graph into the
sphere S, seen up to the orientation-preserving homeomorphisms of S,.

planar map =
planar graph + embedding
AW W . faces

To avoid symmetry problems, we mark a corner ( called the root) of the planar map.
The resulting object is a rooted planar map, which will be called map in the sequel.

External face: the face containing the root. Internal faces: the other faces.
Boundary: the edges/vertices incident to the external face.
Perimeter: the number of the boundary edges.

A (rooted planar) triangulation is a map whose all faces are triangles.*
When only the internal faces are triangles, we talk about triangulation with boundary.J

% triangles «— quadrangles = triangulation <— quadrangulation
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Random planar maps

A planar triangulation A quadrangulation A more general map
with a boundary with a boundary



Random planar maps

A planar triangulation A quadrangulation A more general map
with a boundary with a boundary

A uniform triangulation of size n is a random triangulation chosen uniformly among
the (rooted planar) triangulations with 7 faces.

A Boltzmann triangulation of weight ¢ is a random triangulation chosen among all
the triangulations with a probability P(t) oc ¢#/aces(t),
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Random planar maps

A planar triangulation A quadrangulation A more general map
with a boundary with a boundary

A uniform triangulation of size n is a random triangulation chosen uniformly among
the (rooted planar) triangulations with n faces.

A Boltzmann triangulation of weight ¢ is a random triangulation chosen among all
the triangulations with a probability P(t) oc ¢#/aces(t),

The partition function: Z(t) := . #faces() = S° 7 .1
t n
where T, := #{triangulations with n faces}.
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Random planar maps

Asymptotic counting formula: 7 .. t;n.n75/2J with ¢ = -8 and , = 2

— 256"
n—» 00

327

This is the standard asymptotic behavior of the number of planar maps:

e planar maps with n edges: ¢ = % and £, = 5,
e triangulations with a perimeter of p and n internal faces: ¢ = ¢(p) and t. = t.(p),
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Random planar maps

Asymptotic counting formula: 7 ~ e t;"~n75/2J with ¢ = % and t, = %.

This is the standard asymptotic behavior of the number of planar maps:
e planar maps with n edges: ¢ = = and f, =

NG 12’
e triangulations with a perimeter of p and n internal faces: ¢ = ¢(p) and t. = t.(p),
To be compared with the standard asymptotic behavior of the number of plane trees:

#{plane trees with n edges} ~ c¢-t "- nig/zJ
n—oo
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Random planar maps

32/m — 256"

Asymptotic counting formula: 7 o .. t;n,n*S/ZJ with ¢ = =5 and 1, = Z
n— 00

This is the standard asymptotic behavior of the number of planar maps:
e planar maps with n edges: ¢ = = and f, =

NG 12’
e triangulations with a perimeter of p and n internal faces: ¢ = ¢(p) and t. = t.(p),
To be compared with the standard asymptotic behavior of the number of plane trees:

#{plane trees with n edges} ~ c¢-t "- n73/2J
n—oo

~ Two universality classes.
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Random planar maps

Asymptotic counting formula: 7 ~ e t;n.n75/2J with ¢ = W\ff and t, = %.
n oo

This is the standard asymptotic behavior of the number of planar maps:
e planar maps with n edges: ¢ = == and ¢, =

ﬁ i
e triangulations with a perimeter of p and n internal faces: ¢ = ¢(p) and t. = t.(p),

To be compared with the standard asymptotic behavior of the number of plane trees:

#{plane trees with n edges} ~ c¢-t "- niS/ZJ
n—oo

~ Two universality classes. --+ Other universal observables? ~- Yes, many!
Theorem (Aldous 1990, etc.)

Let ¥,, be a random tree of size n chosen uniformly from one of many classes of
rooted plane trees,

(fs l/zdg) (T, d)

n—o0

in distribution, where (7, d) is Adlous’ Continuous Random Tree (a compact metric
space of Haudorff dimension 2, independent of the choice of the class).
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Random planar maps

Theorem (Le Gall & Paulin 2008, Le Gall 2013, Miermont 2013, etc.)

Let m, be a random map of size n chosen uniformly from one of many classes of
rooted planar maps,

(m,,, nl%d;ﬁ) Y, (M, D)

n— 00

in distribution, where (M, D) is the Browninan map (a compact metric space of
Haudorff dimension 4 and homeomorphic to the sphere, independent of the class).
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Random planar maps

Theorem (Le Gall & Paulin 2008, Le Gall 2013, Miermont 2013, etc.)

Let m, be a random map of size n chosen uniformly from one of many classes of
rooted planar maps,

n—o0

(m,,, nl—%d;ﬁ) S (M, D)

in distribution, where (M, D) is the Browninan map (a compact metric space of
Haudorff dimension 4 and homeomorphic to the sphere, independent of the class).

W
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Random planar maps

A very simplified history:
1960": enumeration of maps using combinatorial methods (Tutte et al.)
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Can we escape from the Brownian map universality class?

~ Yes. One way to do so: couple the law of the random map to a model of
statistical physics, i.e. instead of choosing the random map uniformly or with a
weight that only depends on its size, we choose P(m) o< Zy,, where Z,, is the
partition function of some statistical physics model living on the map m.
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statistical physics, i.e. instead of choosing the random map uniformly or with a
weight that only depends on its size, we choose P(m) o< Zy,, where Z,, is the
partition function of some statistical physics model living on the map m.

Tutte 1960”: already enumerated maps weighted by additional functions, such as
Tutte’s polynomial (of which Ising partition function is a specialization).
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~2000": discovery of bijections (Schaeffer et al.)

~2010": construction of the Browninan map and related limit objects.

Can we escape from the Brownian map universality class?

~ Yes. One way to do so: couple the law of the random map to a model of
statistical physics, i.e. instead of choosing the random map uniformly or with a
weight that only depends on its size, we choose P(m) o< Zy,, where Z,, is the
partition function of some statistical physics model living on the map m.

Tutte 1960”: already enumerated maps weighted by additional functions, such as
Tutte’s polynomial (of which Ising partition function is a specialization).
Boulatov & Kazakov 1987: asymptotics enumeration of triangulations weighted by the
Ising model, predicted a phase transition and some of its properties.
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Random planar maps

A very simplified history:

1960": enumeration of maps using combinatorial methods (Tutte et al.)

1970": maps as Feynmann diagrammes associated with matrix integrals ('t Hooft et al.)
1980": maps as a discretization of Liouville quantique gravity (Polyakov, et al.)

~2000": discovery of bijections (Schaeffer et al.)

~2010": construction of the Browninan map and related limit objects.

Can we escape from the Brownian map universality class?

~ Yes. One way to do so: couple the law of the random map to a model of
statistical physics, i.e. instead of choosing the random map uniformly or with a
weight that only depends on its size, we choose P(m) o< Zy,, where Z,, is the
partition function of some statistical physics model living on the map m.

Tutte 1960”: already enumerated maps weighted by additional functions, such as
Tutte’s polynomial (of which Ising partition function is a specialization).
Boulatov & Kazakov 1987: asymptotics enumeration of triangulations weighted by the
Ising model, predicted a phase transition and some of its properties.
~2000+: rigorous and more systematic methods for the enumeration of various
classes of maps with additional structures.
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Ising-triangulation of the disk

Let 7; be the set of triangulations with a simple boundary, endowed with a partition
of its boundary into 2 intervals. Denote by p(t) and g(t) the lengths of these intervals.
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Ising-triangulation of the disk

Let 7; be the set of triangulations with a simple boundary, endowed with a partition
of its boundary into 2 intervals. Denote by p(t) and g(t) the lengths of these intervals.
/

/ p

+

B
Consider the set of Ising-decorated triangulations (Ising-triangulation for short):

IT..={(t,0) | teT; and o € {+,- Y=V}

The elements of Z7T,_ are endowed with Dobrushin boundary condition: we assign a
sequence of p(t) spins + followed by ¢(t) spins - to the outside of the boundary.

Let £(t,0) be the number of monochromatic edges in (¢, o).
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Ising-triangulation of the disk

Let 7; be the set of triangulations with a simple boundary, endowed with a partition
of its boundary into 2 intervals. Denote by p(t) and g(t) the lengths of these intervals.
/

4 ~
1% - ' p

Consider the set of Ising-decorated triangulations (Ising-triangulation for short):

+
Example: (t,0) € Z7,.-
p(t) =2, q(t) =3,
#faces(t) =7, E(t,0) = 5.

IT..={(t,0) | teT; and o € {+,- Y=V}

The elements of Z7T,_ are endowed with Dobrushin boundary condition: we assign a
sequence of p(t) spins + followed by ¢(t) spins - to the outside of the boundary.

Let £(t,0) be the number of monochromatic edges in (¢, o).
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Boltzmann-Ising triangulation

Generating functions
Zuwvty) = 3 OO0,
(t,0)€ZT,-
Zy(us t,v) := [V Z(u, v; t,v)
zp q(t, V) == WPV Z(u, v; t,v) = [P Z,(u; t,v)

By convention zg o(¢,v) = Z(0,0;t,v) =1

Linxiao Chen Phase transition in the Ising model on a random 2D lattice 13/21



Boltzmann-Ising triangulation

Generating functions
Zuwvty) = 3 OO0,
(t,0)€ZT,-
Zy(us t,v) := [V Z(u, v; t,v)
zp q(t, V) == WPV Z(u, v; t,v) = [P Z,(u; t,v)

By convention zg o(¢,v) = Z(0,0;t,v) = 1.

For all p,g > 0 and ¢, v > 0 such that z, ,(f,) < oo, we define a probability
measure on the set {(t,0) € Z7,. | p(t) = p and g(t) = g} by

FHE() JE(Lo)

PL¥(t,0) =
F’,q( 70) qu(t, l/)

We call a random variable of law IP’;;}; Boltzmann Ising-triangulation of (p, q)-gon.
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Previous results

Let £.(v) is the radius of convergence of t — z (¢, v). Let v, = 1+ 2/7.

Theorem (Bernardi-Bousquet-Mélou 11, Albenque-Laurent-Schaeffer 18)
For allv > 1 and (p, q) # (0,0), we have

("pglt,v) ~ {””’“(”)'tcw)-"-n-wz (v # )

e KPﬂ(VC) : tc(Vc)_n .p /3 (1/ = yc)

Moreover, t.(v) is C*-continuous on (1,00) and analytic on (1,v,) U (v, 00).
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Previous results

Let £.(v) is the radius of convergence of t — z (¢, v). Let v, = 1+ 2/7.
Theorem (Bernardi-Bousquet-Mélou 11, Albenque-Laurent-Schaeffer 18)
For allv > 1 and (p, q) # (0,0), we have
. tC —n —5/2 A
[tn]zp,q(ta I/) ~ {“mq(”) (l/) n (V 7é 4 )

n—00 Kp,q(%:) . tc(yc)_” . I’l_7/3 (1/ = yc)

Moreover, t.(v) is C*-continuous on (1,00) and analytic on (1,v,) U (v, 00).

(Easy) Corollaries

e f.(v) is also the radius of convergence of t — z, ,(t,) and z, 4(%:(v),v) < oo,
for all v > 1 and (p, g) # (0, 0).

o —lim 1log[t"|z, 4(t,v)=log t.(v). Thus log f.(v) is the free energy density.
n—oo

Linxiao Chen Phase transition in the Ising model on a random 2D lattice "2




Previous results

Let £.(v) is the radius of convergence of t — z (¢, v). Let v, = 1+ 2/7.

Theorem (Bernardi-Bousquet-Mélou 11, Albenque-Laurent-Schaeffer 18)
For all v > 1 and (p, q) # (0,0), we have

[t"zp,q(t,v) ~

n—o0

{wm )T (v # )

Kpq(Ve) - t(ve) ™" - n (v =1u,)

Moreover, t.(v) is C*-continuous on (1,00) and analytic on (1,v,) U (v, 00).

(Easy) Corollaries

e f.(v) is also the radius of convergence of t — z, ,(t,) and z, 4(%:(v),v) < oo,
for all v > 1 and (p, g) # (0, 0).

o —lim 1log[t"|z, 4(t,v) = log t.(v). Thus log t.(v) is the free energy density.
n—oo

We will focus on the case = f.(v) (“maximal volume”) and v > 1 (ferromagnetic).
From now on, we assume ¢ = f.(v) and omit the parameter ¢ from the notations.
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Asymptotics of the partition functions z, ,(1/)

Let u.(v) be the radius of convergence of Zy(u; v).

Continuous phase transition in the “surface tension” *

uc(v) is positive and continuous on (1, 0), and is analytic everywhere except at v,. J
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Asymptotics of the partition functions z, ,(v)

Let u.(v) be the radius of convergence of Zy(u; v).

Continuous phase transition in the “surface tension” *

uc(v) is positive and continuous on (1, 0), and is analytic everywhere except at v,.

Theorem (Fixed-temperature asymptotics)
Fix v > 1. In the limit where g — oo with p fixed, and then p — oo, we have

2pq(V) ~ ap(v) - u(w)" g~ and  ap(v) ~ b(v) - u(v)"" - pm.
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Asymptotics of the partition functions z, ,(v)

Let u.(v) be the radius of convergence of Zy(u; v).

Continuous phase transition in the “surface tension” *

uc(v) is positive and continuous on (1, 0), and is analytic everywhere except at v,.

Theorem (Fixed-temperature asymptotics)

Fix v > 1. In the limit where g — oo with p fixed, and then p — oo, we have
Zq(V) ~ ap(v) - u (V)" g7 and  ay(v) ~ b(v) - u(v)"" - p.

In the limit where p,q — oo and q/p — X for some fixed A € (0,00), we have

2p.4(V) ~ c(A\)b(V) - u(v) =P+ . p= where oy = ag + v, and

Linxiao Chen Phase transition in the Ising model on a random 2D lattice 16 /21




Asymptotics of the partition functions z, ,(v)

Let u.(v) be the radius of convergence of Zy(u; v).

Continuous phase transition in the “surface tension” *

uc(v) is positive and continuous on (1, 0), and is analytic everywhere except at v,.

Theorem (Fixed-temperature asymptotics)

Fix v > 1. In the limit where g — oo with p fixed, and then p — oo, we have
2pq(V) ~ ap(v) - u(v)=7- g~ and ay(v) ~ b(v) - u(v)™?-p~™.

In the limit where p,q — oo and q/p — X for some fixed A € (0,00), we have

2p.4(V) ~ c(A\)b(V) - u(v) =P+ . p= where oy = ag + v, and

VLV | V=V, | V> U
a | 5/2 | 7/3 | 5/2 (1+A)~/2 (v < ve

0 4/3 5/2 | c(A) =42 [C0+r)T3A+n)8dr (v=1,
a | 5/2 11/3 5 A5/2

NN
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Asymptotics of the partition functions z, ,(v)

Let u.(v) be the radius of convergence of Zy(u; v).
Continuous phase transition in the “surface tension” *

uc(v) is positive and continuous on (1, 0), and is analytic everywhere except at v,.

Theorem (Fixed-temperature asymptotics)

Fix v > 1. In the limit where g — oo with p fixed, and then p — oo, we have
2pq(V) ~ ap(v) - u(v)™1- g™ and apy(v) ~ b(v) - u(v)=? - p~™.
In the limit where p,q — oo and q/p — X for some fixed A € (0,00), we have

2p.4(V) ~ c(A\)b(V) - u(v) =P+ . p= where oy = ag + v, and

V<V | V=V, | V>, o -
a | 5/2 7/3 5/2 ag=5/2 !
0 4/3 5/2 ag=5/2 7/3 5/2
° —
az | 5/2 | 1173 5 PP e ae——

* In both of the two limits above, we have — lim ﬁ log (2p,4()) =logue(v).

Linxiao Chen Phase transition in the Ising model on a random 2D lattice 16 /21



Theorem (Near-critical asymptotics)

Fix B € (0, 00] and assume |v — v | = p~P. In the limit where g — oo with p fixed
and then p — oo, we have

Zpa(V) ~ g(B) - uc(v) P - p @ and  ay(v) ~ B(B) - uc(v) P - pm M
When p,q — oo and q/p — X for some fixed \ € (0,00), we have

Zpq(V) ~ C(X; B) - uc(y)—(p+q) ) p—az(ﬁ)

where the exponents o ([3), and o, (3) are given by
if v < v if v > v
1 1 5
3 Q2 Q2 3
5 Q « z 5
3 ‘0 0 3 5
_
1 @G,
3
3.5 B :
o 1 2 2 0
3 3 3
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Theorem (Near-critical asymptotics)

Fix B € (0, 00] and assume |v — v | = p~P. In the limit where g — oo with p fixed
and then p — oo, we have

Zpa(V) ~ g(B) - uc(v) P - p @ and  ay(v) ~ B(B) - uc(v) P - pm M
When p,q — oo and q/p — X for some fixed \ € (0,00), we have

Zpq(V) ~ C(X; B) - uc(y)_(p+q) ) p—az(ﬁ)

where the exponents o ([3), and o, (3) are given by
if v < v if v > v
________ a2 =5
5
Qg — %1
5
op =% D e - =5
- 0) 5
.z =3
1 @G,
3
S~ .8 B :
=0 o L1 2 2 0
3 3 3
fixed v < v, V= U fixed v > v, »
1 Ve o
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Local weak limit of the distributions Pz,q

The local distance between two Ising-triangulations (t, o) and (t', 0”) is defined by
droc((t,0), (¥, 07)) = 27 WP lrEN: Bi(to)=B(t',0")}

where B, denotes the ball of radius r (w.r.t. the graph distance) around the root.
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Local weak limit of the distributions Pz,q

The local distance between two Ising-triangulations (t, o) and (t', 0”) is defined by
droc((t,0), (¥, 07)) = 27 WP lrEN: Bi(to)=B(t',0")}

where B, denotes the ball of radius r (w.r.t. the graph distance) around the root.

G,, = complete binary
tree of height n,

pn = a vertex chosen
uniformly in the tree.
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Local weak limit of the distributions IP’Z

Theorem (Critical and off-critical local limits)

For each v > 1, one can construct probability distributions (P, ),>o and P%, such

that P , —> Py p—) PY_ weakly with respect to the local distance.

In the //mlt p,q — oo and q/p — X € (0,00), the convergence becomes P . — P%,
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Local weak limit of the distributions Pz,q

Theorem (Critical and off-critical local limits)

For each v > 1, one can construct probability distributions (P, ),>o and P%, such
that P , —> Py p—>—> PY_ weakly with respect to the local distance.
In the /lmlt p,q— oo and q/p — X € (0,00), the convergence becomes P}, . — P%_.
Moreover
@ Forv >1andp < oo, P, is supported on the set of one-ended triangulations
with one infinite boundary (i.e. triangulations of the half plane).
e Forv > v, P% is also supported on the above set.

e forv e (1,v.), PY is supported on the set of two-ended triangulations.
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Local weak limit of the distributions Pz,q

Theorem (Critical and off-critical local limits)

For each v > 1, one can construct probability distributions (P, ),>o and P%, such
that P , Py Py p—>—> PY_ weakly with respect to the local distance.
In the /lmlt p,q— oo and q/p — X € (0,00), the convergence becomes P}, . — P%_.
Moreover
@ Forv >1andp < oo, P, is supported on the set of one-ended triangulations
with one infinite boundary (i.e. triangulations of the half plane).
e Forv > v, P% is also supported on the above set.

e forv e (1,v.), PY is supported on the set of two-ended triangulations.

Theorem (Near-critical local limit)
When v — v, at the same time as p, g — oo, we have P;q — P,
4 g—oo’ P

Py " PZ and Py Py P weakly with respect to the local distance.
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Scaling limit of the main interface (work in progress)

Let Ly , be the length* of the left-most Ising interface going from p to p’ in a
Boltzmann Ising-triangulation of law P} .
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Scaling limit of the main interface (work in progress)

Let Ly , be the length* of the left-most Ising interface going from p to p’ in a
Boltzmann Ising-triangulation of law P} .

Theorem (off-critical and critical limit)

Fix v > 1and A € (0,00). In the limit p, g — oo and g/p — A, the random variable
L, ./ p converges in law to 0 if v > v, to a deterministic value £(\;v) > 0 if v < v,

and to the random variable of density £ (1+ pux)~"/3(A + px) "L nqy if v = ve.
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Scaling limit of the main interface (work in progress)

Let L, . be the length* of the left-most Ising interface going from p to p in a
Boltzmann Ising-triangulation of law P} .

Theorem (off-critical and critical limit)

Fix v > 1and A € (0,00). In the limit p, g — oo and g/p — A, the random variable
L, ./ p converges in law to 0 if v > v, to a deterministic value £(\;v) > 0 if v < v,

and to the random variable of density £ (1+ pux)~"/3(A + px) "L nqy if v = ve.

Conjecture (near-critical limit)
Fix 8> 0 and A € (0,00). In the limit p,q — 00, g/p — X and |v — v| = p~¥,

Q ifv >, orv<v,and g >1/3, then Lz,q/p‘s(ﬂ) converges in distribution to a
non-trivial random variable on (0, 00), where 0(8) = 2ao(8) — a2(8) € (0,1].

Q ifv <v.and § < 3, then L, ,/p converges to a deterministic value £(); 3) > 0.
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Thank you for your attention!
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