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The 2D Ising model

Input: • A finite graph G embedded in R2. • A coupling constant ν > 0.

The nearest-neighbor Ising model on the faces of G is a random assignment of the
numbers +1 and −1 (spins) to the faces of G according to the probability distribution
such that for all σ ≡ (σx)x∈F(G) ∈ {+1,−1}F(G),

P(σ) ∝ ν#{x∼y:σx=σy} =: νE(G,σ)

: the graph G

WWww

: the dual graph of G

The coupling constant is related to the

physical parameters by ν = exp
(

2β
kBT

)
.

; large ν : “low temperature”,

;

small ν : “high temperature”.

The usually studied case:
• ν > 1 (ferromagnetic).
• G is a subgraph of a regular 2D lattice

•

(4, � or 9).
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The 2D Ising model

Initial motivation: • Model of ferromagnet: Competition between

Initial motivation: • Model of

“weight of ++ > weight of - + ” and Entropy
• Demonstrate the existence of phase transition in a mathematically tractable model.

νc νhigh temperature low temperature

Why would this extremely idealized model be related to the real physics?
; Universality : the phenomenon that some macroscopic observables of the system

;

at or near criticality is independent from microscopic details of the system.
−→ Distinction between non-universal observables and universal observables.
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The 2D Ising model

How to describe the phase transition mathematically?
• Non-analyticity at ν = νc of the free energy density when the system size →∞ .

• Asymptotic decay rate of the correlation functions.

•

e.g.: when ν 6= νc : E[σ0σx] � exp(−|x|/η), with η ≡ η(ν)→∞ as ν → νc .

• e.g.:

when ν = νc : E[σ0σx] � |x|−2δ with δ = 1/8.

•

+ Higher order correlations and correlations between other observables ; CFT
• Limit of geometric observables (connection probabilities, interfaces, . . .) ; SLE

A very simplified history:
• Lenz 1920 (the model) and Ising 1925 (one-dimensional case: no phase transition)
• Onsager 1944 (exact partition function on 2D square lattice, critical temperature)
• 1940’–1980’: more exact computations and the values of various critical exponents.
• 1980’–1990’: development of the CFT and its predictions of the scaling limits of the

• 1980’–1990’:

Ising correlation functions.
• 2000+ : proof of the convergence of correlation functions to the predicted limits.

• 2000+ :

prediction and proof of the scaling limits of the interfaces (SLE, CLE)
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Random planar maps

A (finite) planar map is a proper embedding of a finite connected graph into the
sphere S2, seen up to the orientation-preserving homeomorphisms of S2.

planar map =
planar graph + embedding 6==

: faces

To avoid symmetry problems, we mark a corner (called the root) of the planar map.
The resulting object is a rooted planar map, which will be called map in the sequel.

External face : the face containing the root. Internal faces : the other faces.
Boundary : the edges/vertices incident to the external face.
Perimeter : the number of the boundary edges.

A (rooted planar) triangulation is a map whose all faces are triangles.?

When only the internal faces are triangles, we talk about triangulation with boundary.

? triangles ←− quadrangles ⇒ triangulation ←− quadrangulation
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Random planar maps

A planar triangulation A quadrangulation A more general map
with a boundary with a boundary

A uniform triangulation of size n is a random triangulation chosen uniformly among
the (rooted planar) triangulations with n faces.
A Boltzmann triangulation of weight t is a random triangulation chosen among all
the triangulations with a probability P(t) ∝ t#faces(t).

The partition function: Z(t) :=∑
t
t#faces(t) =

∑
n
Tn · tn ,

The partition function:

where Tn := #{triangulations with n faces}.
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Random planar maps

Asymptotic counting formula: Tn ∼
n→∞

c · t−nc ·n−5/2 with c =
√
6

32
√
π
and tc =

27
256 .

This is the standard asymptotic behavior of the number of planar maps:
• planar maps with n edges: c = 2√

π
and tc =

1
12 ,

• triangulations with a perimeter of p and n internal faces: c = c(p) and tc = tc(p),

•

. . .

To be compared with the standard asymptotic behavior of the number of plane trees:

#{plane trees with n edges} ∼
n→∞

c · t−nc · n−3/2

; Two universality classes. 99K Other universal observables ? ; Yes, many !

Theorem (Aldous 1990, etc.)

Let Tn be a random tree of size n chosen uniformly from one of many classes of
rooted plane trees, (

Tn,
C

n1/2
dTn
gr

)
GM−→

n→∞
(T , d)

in distribution, where (T , d) is Adlous’ Continuous Random Tree (a compact metric
space of Haudor� dimension 2, independent of the choice of the class).
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space of Haudor� dimension 2, independent of the choice of the class).
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Random planar maps

Theorem (Le Gall & Paulin 2008, Le Gall 2013, Miermont 2013, etc.)

Let mn be a random map of size n chosen uniformly from one of many classes of
rooted planar maps, (

mn,
C

n1/4
dmn
gr

)
GM−→

n→∞
(M,D)

in distribution, where (M,D) is the Browninan map (a compact metric space of
Haudor� dimension 4 and homeomorphic to the sphere, independent of the class).

Linxiao Chen Phase transition in the Ising model on a random 2D lattice 9 / 21



Random planar maps

Theorem (Le Gall & Paulin 2008, Le Gall 2013, Miermont 2013, etc.)

Let mn be a random map of size n chosen uniformly from one of many classes of
rooted planar maps, (

mn,
C

n1/4
dmn
gr

)
GM−→

n→∞
(M,D)

in distribution, where (M,D) is the Browninan map (a compact metric space of
Haudor� dimension 4 and homeomorphic to the sphere, independent of the class).

Linxiao Chen Phase transition in the Ising model on a random 2D lattice 9 / 21



Random planar maps

A very simplified history:
1960’: enumeration of maps using combinatorial methods (Tutte et al.)

1970’: maps as Feynmann diagrammes associated with matrix integrals (’t Hooft et al.)
1980’: maps as a discretization of Liouville quantique gravity (Polyakov, et al.)
∼2000’: discovery of bijections (Schae�er et al.)
∼2010’: construction of the Browninan map and related limit objects.

Can we escape from the Brownian map universality class ?
; Yes. One way to do so : couple the law of the random map to a model of
statistical physics, i.e. instead of choosing the random map uniformly or with a
weight that only depends on its size, we choose P(m) ∝ Zm, where Zm is the
partition function of some statistical physics model living on the map m.

Tutte 1960’: already enumerated maps weighted by additional functions, such as

Tutte 1960’:

Tutte’s polynomial (of which Ising partition function is a specialization).
Boulatov & Kazakov 1987: asymptotics enumeration of triangulations weighted by the

Boulatov & Kaza

Ising model, predicted a phase transition and some of its properties.
∼2000+ : rigorous and more systematic methods for the enumeration of various

∼2000+ :

classes of maps with additional structures.
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The model: Boltzmann Ising-triangulation
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Ising-triangulation of the disk

Let T2 be the set of triangulations with a simple boundary, endowed with a partition
of its boundary into 2 intervals. Denote by p(t) and q(t) the lengths of these intervals.

-

-

-

+

+

ρ

ρ′

Example: (t, σ) ∈ IT+–
p(t) = 2, q(t) = 3,

#faces(t) = 7, E(t, σ) = 5.

Consider the set of Ising-decorated triangulations (Ising-triangulation for short):

IT+– = {(t, σ) | t ∈ T2 and σ ∈ {+, –}faces(t)}

The elements of IT+– are endowed with Dobrushin boundary condition : we assign a
sequence of p(t) spins + followed by q(t) spins – to the outside of the boundary.

Let E(t, σ) be the number of monochromatic edges in (t, σ).
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Boltzmann-Ising triangulation

Generating functions

Z(u, v; t, ν) :=
∑

(t,σ)∈IT+–

up(t)vq(t)t#F(t)νE(t,σ)

Zq(u; t, ν) := [vq]Z(u, v; t, ν)

zp,q(t, ν) := [upvq]Z(u, v; t, ν) = [up]Zq(u; t, ν)

By convention z0,0(t, ν) = Z(0, 0; t, ν) = 1.

For all p, q ≥ 0 and t, ν > 0 such that zp,q(t, ν) <∞, we define a probability
measure on the set {(t, σ) ∈ IT+– | p(t) = p and q(t) = q} by

Pt,νp,q(t, σ) =
t#F(t)νE(t,σ)

zp,q(t, ν)
.

We call a random variable of law Pt,νp,q Boltzmann Ising-triangulation of (p, q)-gon.
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Previous results

Let tc(ν) is the radius of convergence of t 7→ z1,0(t, ν). Let νc = 1+ 2
√
7.

Theorem (Bernardi-Bousquet-Mélou 11, Albenque-Laurent-Schae�er 18)

For all ν > 1 and (p, q) 6= (0, 0), we have

[tn]zp,q(t, ν) ∼
n→∞

{
κp,q(ν) · tc(ν)−n · n−5/2 (ν 6= νc)

κp,q(νc) · tc(νc)−n · n−7/3 (ν = νc)

Moreover, tc(ν) is C2-continuous on (1,∞) and analytic on (1, νc) ∪ (νc,∞).

(Easy) Corollaries

tc(ν) is also the radius of convergence of t 7→ zp,q(t, ν) and zp,q(tc(ν), ν) <∞,
for all ν > 1 and (p, q) 6= (0, 0).

− lim
n→∞

1
n log[t

n]zp,q(t, ν)= log tc(ν). Thus log tc(ν) is the free energy density.

We will focus on the case t = tc(ν) (“maximal volume”) and ν > 1 (ferromagnetic).

From now on, we assume t = tc(ν) and omit the parameter t from the notations.
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Main results
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Asymptotics of the partition functions zp,q(ν)

Let uc(ν) be the radius of convergence of Z0(u; ν).

Continuous phase transition in the “surface tension” ∗

uc(ν) is positive and continuous on (1,∞), and is analytic everywhere except at νc .

Theorem (Fixed-temperature asymptotics)

Fix ν > 1. In the limit where q →∞ with p fixed, and then p→∞, we have
zp,q(ν) ∼ ap(ν) · uc(ν)−q · q−α0 and ap(ν) ∼ b(ν) · uc(ν)−p · p−α1 .

In the limit where p, q →∞ and q/p→ λ for some fixed λ ∈ (0,∞), we have

zp,q(ν) ∼ c(λ)b(ν) · uc(ν)−(p+q) · p−α2 where α2 = α0 + α1 , and

ν < νc ν = νc ν > νc
α0 5/2 7/3 5/2
α1 0 4/3 5/2
α2 5/2 11/3 5

c(λ) =


(1+ λ)−5/2 (ν < νc)
4
3

∫∞
0 (1+ r)−

7
3 (λ+ r)−

7
3 dr (ν = νc)

λ−5/2 (ν > νc)

∗ In both of the two limits above, we have − lim 1
p+q log

(
zp,q(ν)

)
= log uc(ν).
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ν < νc ν = νc ν > νc
α0 5/2 7/3 5/2
α1 0 4/3 5/2
α2 5/2 11/3 5

c(λ) =


(1+ λ)−5/2 (ν < νc)
4
3

∫∞
0 (1+ r)−

7
3 (λ+ r)−

7
3 dr (ν = νc)

λ−5/2 (ν > νc)

∗ In both of the two limits above, we have − lim 1
p+q log

(
zp,q(ν)

)
= log uc(ν).
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Asymptotics of the partition functions zp,q(ν)
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Theorem (Near-critical asymptotics)

Fix β ∈ (0,∞] and assume |ν − νc| = p−β . In the limit where q →∞ with p fixed
and then p→∞, we have

zp,q(ν) ∼ ãq(β) · uc(ν)−p · p−α0(β) and ap(ν) ∼ b̃(β) · uc(ν)−p · p−α̃1(β)

When p, q →∞ and q/p→ λ for some fixed λ ∈ (0,∞), we have

zp,q(ν) ∼ c̃(λ;β) · uc(ν)−(p+q) · p−α2(β)

where the exponents α0(β), α̃1(β) and α2(β) are given by

α2

5
2 2

3

1
3

2
3

α0 5
2

5

2
3

β
0 0

α2

α0

if ν < νc: if ν > νc:

0

βα̃1

α̃11
2

1
3

7
6

11
3

7
3

11
3

7
3
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Local weak limit of the distributions Pνp,q

The local distance between two Ising-triangulations (t, σ) and (t′, σ′) is defined by

dloc((t, σ), (t
′, σ′)) = 2− sup{r∈N : Br(t,σ)=Br(t

′,σ′)}

where Br denotes the ball of radius r (w.r.t. the graph distance) around the root.

n

n
n→∞
dloc

Z2

n

n
n→∞
dloc

Z× N
ρ

ρ
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Gn = complete binary
tree of height n,
ρn = a vertex chosen
uniformly in the tree.

n→∞
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P = 1
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P = 1
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P = 1
16
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32

· · ·
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Local weak limit of the distributions Pνp,q

Theorem (Critical and o�-critical local limits)

For each ν > 1, one can construct probability distributions (Pνp )p≥0 and Pν∞ such
that Pνp,q −−−→q→∞

Pνp −−−→p→∞
Pν∞ weakly with respect to the local distance.

In the limit p, q →∞ and q/p→ λ ∈ (0,∞), the convergence becomes Pνp,q → Pν∞.

Moreover

For ν > 1 and p <∞, Pνp is supported on the set of one-ended triangulations
with one infinite boundary (i.e. triangulations of the half plane).

For ν ≥ νc , Pν∞ is also supported on the above set.

For ν ∈ (1, νc), Pν∞ is supported on the set of two-ended triangulations.

Theorem (Near-critical local limit)

When ν → νc at the same time as p, q →∞, we have Pνp,q −−−→q→∞
Pνcp ,

Pνp −−−→p→∞
Pνc∞ and Pνp,q −−−−→p,q→∞

Pνc∞ weakly with respect to the local distance.
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Scaling limit of the main interface (work in progress)

Let Lνp,q be the length∗ of the left-most Ising interface going from ρ to ρ′ in a
Boltzmann Ising-triangulation of law Pνp,q .

Theorem (o�-critical and critical limit)

Fix ν > 1 and λ ∈ (0,∞). In the limit p, q →∞ and q/p→ λ, the random variable
Lνp,q/p converges in law to 0 if ν > νc , to a deterministic value `(λ; ν) > 0 if ν < νc ,

and to the random variable of density 1
Z (1+ µx)−7/3(λ+ µx)−7/31{x>0} if ν = νc .

Conjecture (near-critical limit)

Fix β > 0 and λ ∈ (0,∞). In the limit p, q →∞, q/p→ λ and |ν − νc| = p−β ,
1 if ν > νc , or ν < νc and β > 1/3, then Lνp,q/p

δ(β) converges in distribution to a
non-trivial random variable on (0,∞), where δ(β) = 2α0(β)− α2(β) ∈ (0, 1].

2 if ν < νc and β <
1
3 , then L

ν
p,q/p converges to a deterministic value `(λ;β) > 0.
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Thank you for your attention !
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