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Ising model on finite domains

Let ΛL := [−L,L]2 ∩ Z2. The classical Ising model at temperature
T on ΛL with free boundary conditions and with external field H is
the probability measure PΛL,f,H on {−1,+1}ΛL , such that for any
σ ∈ {−1,+1}ΛL ,

PΛL,f,H(σ) =
1

ZL,H
e

(1/T )
∑
{u,v} σuσv+H

∑
u∈ΛL

σu
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Phase transition (H = 0; on aZ2)

Picture from https://www.zybuluo.com/lostpg/note/625388
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Some history for critical Ising (H = 0; on Z2)

Peierls 1936 proved the existence of phase transition.

Onsager 1944 computed the free energy

fβ := −β−1 lim
L→∞

lnZL
(2L+ 1)2

The specific heat, i.e., −k0β
2∂

2(βfβ)

∂β2
, has singularity at

βc = ln(1 +
√

2)/2

Yang 1952 proved for each β > βc,

〈σ0〉+β,0 = (1− sinh(β)−4)1/8

Wu 1966, Chelkak, Hongler and Izyurov 2015 proved

〈σxσy〉βc,0 ∼ C|x− y|−1/4
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Some history for near-critical Ising (H > 0; on Z2)

Camia, Garban and Newman 2014, Camia, J. and Newman
2017 proved

〈σ0〉βc,H ∼ H1/15

Camia, J. and Newman 2017 proved

C1(H)e−C2H8/15|x−y| ≤ 〈σx;σy〉βc,H ≤ C3(H)e−C4H8/15|x−y|
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Near-critical scaling limit (for general d ≥ 2)

We are interested in the a ↓ 0 behavior on aZd with T = Tc and
H = a(d+2−η)/2h (for h = 0 and h > 0). Φh is generalized random
field: for test fcn. f on Rd

Φh(f) := lim
a↓0

Φa,h(f) = lim
a↓0

a(d+2−η)/2
∑
x∈aZd

σxf(x).

Remark 1

The exponent in H follows from

〈σ~0σ~x〉βc,0 ≈ |~x|
−d+2−η for ~0, ~x ∈ Zd.
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Some known results about Φh

d = 2 and h = 0, Φh is non-Gaussian.
Aizenman 1982, Camia, Garban and Newman 2015

d > 4 and h = 0, Φh is Gaussian.
Aizenman 1982, Fröhlich 1982

d = 4 and h = 0, Φh is Gaussian.
Aizenman and Duminil-Copin 2019

d = 2 and h > 0, Φh is non-Gaussian.
Camia, Garban and Newman 2016
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Why is Φh of interest? (d = 2)

Zamolodchikov (’89) conjecture: related quantum field has 8
particles with masses m1 < m2 < . . . < m8 related to Lie Algebra
E8 and

m2/m1 = 2 cos(π/5),

...

m4/m1 = 4 cos(π/5) cos(7π/30),

...

m8/m1 = 8
(

cos(π/5)
)2

cos(2π/15).
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Masses are related to exponential decay rates of covariances.

Theorem 1 (Camia, J., Newman, 2017)

For 0 ≤ f, g ∈ C∞0 (R2),∣∣∣Cov
(

Φh(f),Φh(g)
)∣∣∣

≤ C0

∫ ∫
R2×R2

f(x)g(y)

|x− y|1/4
e−Ch

8/15|x−y|dxdy.

This proves (roughly) m1 > 0.
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Covariance function

Masses are related to exponential decay rates of covariances. Let
H(t, y) be the covariance function of Φh. Loosely speaking,

H(t, y) = Cov
(

Φh(t0, y0),Φh(t0 + t, y0 + y)
)
∀(t0, y0) ∈ R2.

Note that H is a function only of the radial variable
√
t2 + y2.

H(
√
t2 + y2) = H(t, y).
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A Gaussian process

We define a mean zero stationary Gaussian process {Xs : s ∈ R}
by

Cov(X(s), X(t)) = K(t− s) :=

∫ ∞
−∞

H(t− s, y)dy ∀s, t ∈ R.

We can prove

Theorem 2 (Camia, J., Newman, 2019)

K(t) =

∫ ∞
m1

e−m|t|dρ(m),

where ρ(m) is a mass spectral measure of the relativistic quantum
field theory obtained from Φh via the Osterwalder-Schrader
reconstruction theorem.
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An example-Gaussian free field

For the massive Gaussian free field on Rd with d ≥ 2, the
covariance function is

H̃(~z) = C

∫
Rd

ei
~ξ·~z 1

|~ξ|2 +m2
d~ξ, z ∈ Rd,m > 0.

An explicit computation gives

K̃(t) = C

∫
Rd−1

H̃(t, ~y)d~y = Ce−m|t|.

Therefore, {X̃s : s ∈ R} is an Ornstein-Uhlenbeck process.
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Theorem 3 (Camia, J., Newman, 2019)

lim
λ↓0

λ1/4H(λy) = H0(y) = C1|y|−1/4, y ∈ R \ {0}.

Moreover,

lim
ε↓0

K(0)−K(ε)

ε3/4
= 2

∫ ∞
0

[
H0(y)−H0(

√
1 + y2)

]
dy.

The main ingredient is the scaling relation for Φh:

λ1/8Φh(λx)
d
= Φλ15/8h(x) ∀h > 0, λ > 0.
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One remark

Remark 2

K(0)−K(ε) ∼ ε1−η where η = 1/4.

So X(t) has continuous sample paths. Loosely speaking, the
sample path of X(t) behaves locally like t3/8, which is rougher
than a 1D Brownian motion.
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Why is X(s) of interest?

We conjecture

1 d = 2, for large |t|

K(t) = B1e
−m1|t| +B2e

−m2|t| +B3e
−m3|t| +O(e−2m1|t|).

2 d = 3
K(0)−K(ε) ∼ ε1−η where η > 0.

3 d ≥ 5
K(t) = Ce−m1t.

4 d = 4, there is the possibility of log correction.
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Construct X(s) from Φh

We define a family of stochastic processes {XM (s) : s ≥ 0}:

XM (s) :=
Φh
(
1[−M,M ](y)δs(t)

)
− EΦh

(
1[−M,M ](y)δs(t)

)
√

2M
.

Theorem 4 (Camia, J., Newman, 2019)

For any n ∈ N and distinct s1, . . . , sn ∈ R, we have

(XM (s1), . . . , XM (sn))⇒ (X(s1), . . . , X(sn)) as M →∞,
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Some intuition

Mass hyperbola E2 − p2 = m2
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Construct X(s) from the near-critical Ising model

We define another family of stochastic processes {XL(s) : s ≥ 0}:

XL(s) :=
a7/8

∑
k∈aZ∩[−L,L]

[
σ(sa,k) − 〈σ(sa,k)〉

]
√

2L
.

Theorem 5 (Camia, J., Newman, 2020+)

Suppose L(a) > 0 is a function of a satisfying L(a)→∞ as a ↓ 0.
Then for any n ∈ N and distinct s1, . . . , sn ∈ R, we have(

XL(a)(s1), . . . , XL(a)(sn)
)
⇒ (X(s1), . . . , X(sn)) as a ↓ 0.
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Key ingredients for the proof of Theorems 5

Proposition 1

For fixed L ∈ (0,∞) and s, t ∈ R, we have

lim
a↓0

a3/4
∑

k∈aZ∩[−L,L]

〈σ(sa,0);σ(ta,k)〉 =

∫ L

−L
H(t− s, y)dy,

lim
a↓0

a1/4〈σza ;σwa〉 = H(|z − w|), for all z 6= w ∈ R2.

Remark 3

The second limit generalizes the classical Wu result, which
corresponds to h = 0.
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Key ingredients for the proof of Theorems 5

An inequality for FKG systems:
Suppose U1, . . . , Um have finite variance and satisfy the FKG
inequalities; then for any r1, . . . , rm,∣∣∣∣∣

〈
exp

(
i

m∑
l=1

rlUl

)〉
−

m∏
l=1

〈exp (irlUl)〉

∣∣∣∣∣
≤ 1

2

∑∑
l 6=n

|rlrn|Cov(Ul, Un)
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