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Abstract

We construct a class of discontinuous superprocesses with dependent spatial motion and
general branching mechanism. The process arises as the weak limit of critical interacting-
branching particle systems where the spatial motions of the particles are not independent.
The main work is to solve the martingale problem. When we turn to the uniqueness of
the process, we generalize the localization method introduced by [D.W. Stroock, Diffusion
processes associated with Lévy generators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete,
32(1975) 209–244] to the measure-valued context. As for existence, we use particle system
approximation and a perturbation method. This work generalizes the model introduced
in [D.A. Dawson, Z. Li, H. Wang, Superprocesses with dependent spatial motion and gen-
eral branching densities, Electron. J. Probab. 6(2001), no.25, 33 pp. (electronic)] where
quadratic branching mechanism was considered. We also investigate some properties of the
process.
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1 Introduction

Notation: For reader’s convenience, we introduce here our main notation. Let R̂ denote the
one-point compactification of R. Let R̂

n denote the n-fold Cartesian product of R̂. Let M(R)
denote the space of finite measure endowed with topological of weak convergence. We denote by
λn the Lebesgue measure on R

n. Given a topological space E, let B(E) denote borel σ-algebra
on E. Let B(E) denote the set of bounded measurable functions on E and let C(E) denote
its subset comprising of bounded continuous functions. Let Ĉ(Rn) be the space of continuous
functions on R

n which vanish at infinity and let C∞
c (Rn) be functions with compact support and

bounded continuous derivatives of any order. Let C2(Rn) denote the set of functions in C(Rn)
which is twice continuously differential functions with bounded derivatives up to the second
order. Let C2

c (Rn) denote the set of functions in C2(Rn) with compact support. Let Ĉ2(Rn)
be the subset of C2(Rn) of functions that together with their derivatives up to the second order
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vanish at infinity.
Let

C2
∂(Rn) = {f + c : c ∈ R and f ∈ Ĉ2(Rn)}

and
C2

0 (Rn) = {f : f ∈ C2
∂(Rn) and (1 + |x|2)Dαf(x) ∈ Ĉ(Rn), α = 1, 2},

where D1f =
n
∑

i=1
|∂f/∂xi| and D2f =

n
∑

i,j=1
|∂2f/∂xi∂xj |. We use the superscript “+” to denote

the subsets of non-negative elements of the function spaces, and “++” is used to denote the
subsets of non-negative elements bounded away from zero, e.g., B(Rn)+, C(Rn)++. Let f i denote
the first order partial differential derivatives of the function f(x1, · · · , xn) with respect to xi and
let f ij denote the second order partial differential derivatives of the function f(x1, · · · , xn) with
respect to xi and xj . We denote by C ([0,∞), E) the space of continuous paths taking values
in E. Let D ([0,∞), E) denote the Skorokhod space of càdlàg paths taking values in E. For
f ∈ C(R) and µ ∈M(R) we shall write 〈f, µ〉 for

∫

fdµ.

A class of superprocesses with dependent spatial motion (SDSM) over the real line R were
introduced and constructed in [18, 19]. A generalization of the model was then given in [4]. We
first briefly describe the model constructed in [4]. Suppose that c ∈ C2(R) and h ∈ C(R) is
square-integrable. Let

ρ(x) =

∫

R

h(y − x)h(y)dy, (1.1)

and a(x) = c(x)2 + ρ(0) for x ∈ R. We assume in addition that ρ ∈ C2(R) and |c| is bounded
away from zero. Let σ be a nonnegative function in C2(R) and can be extended continuously
to R̂. Given a finite measure µ on R, the SDSM with parameters (a, ρ, σ) and initial state µ is
the unique solution of the (L, µ)-martingale problem, where

LF (µ) := AF (µ) + BF (µ), (1.2)

AF (µ) :=
1

2

∫

R

a(x)
d2

dx2

δF (µ)

δµ(x)
µ(dx)

+
1

2

∫

R2

ρ(x− y)
d2

dxdy

δ2F (µ)

δµ(x)δµ(y)
µ(dx)µ(dy), (1.3)

BF (µ) :=
1

2

∫

R

σ(x)
δ2F (µ)

δµ(x)2
µ(dx), (1.4)

for some bounded continuous functions F (µ) on M(R). The variational derivative is defined by

δF (µ)

δµ(x)
= lim

r→0+

1

r
[F (µ+ rδx) − F (µ)], x ∈ R, (1.5)

if the limit exists and δ2F (µ)/δµ(x)δµ(y) is defined in the same way with F replaced by
(δF/δµ(y)) on the right hand side. Clearly, the SDSM reduces to a usual critical Dawson-
Watanabe superprocess if h(·) ≡ 0 (see [2]). A general SDSM arises as the weak limit of
critical interacting-branching particle systems. In contrast to the usual branching particle sys-
tem, the spatial motions of the particles in the interacting-branching particle system are not
independent. The spatial motions of the particles can be described as follows. Suppose that
{W (t, x) : x ∈ R, t ≥ 0} is space-time white noise based on Lebesgue measure, the common
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noise, and {Bi(t) : t ≥ 0, i = 1, 2, · · · } is a family of independent standard Brownian motions,
the individual noises, which are independent of {W (t, x) : x ∈ R}. The migration of a particle
in the approximating system with label i is defined by the stochastic equations

dxi(t) = c(xi(t))dBi(t) +

∫

R

h(y − xi(t))W (dt, dy), t ≥ 0, i = 1, 2, · · · , (1.6)

where W (dt, dy) denotes the time-space stochastic integral relative to {Wt(B)}. For each integer
m ≥ 1, {(x1(t), · · · , xm(t)) : t ≥ 0} is an m-dimensional diffusion process which is generated by
the differential operator

Gm :=
1

2

m
∑

i=1

a(xi)
∂2

∂x2
i

+
1

2

m
∑

i,j=1,i6=j

ρ(xi − xj)
∂2

∂xi∂xj
. (1.7)

In particular, {xi(t) : t ≥ 0} is a one-dimensional diffusion process with generator G :=
(a(x)/2)∆. Because of the exchangeability, a diffusion process generated by Gm can be regarded
as an interacting particle system or a measure-valued process. Heuristically, a(·) represents the
speed of the particles and ρ(·) describes the interaction between them. The diffusion process
generated by A arises as the high density limit of a sequence of interacting particle systems
described by (1.6); see Wang [18, 19] and Dawson et al [4]. There are at least two different
ways to look at the SDSM. One is as a superprocess in random environment and the other as
an extension of models of the motion of the mass by stochastic flows (see [13]). Some other
related models were introduced and studied in Skoulakis and Adler [15]. The SDSM possesses
properties very different from those of the usual Dawson-Watanabe superprocess. For example,
a Dawson-Watanabe superprocess in M(R) is usually absolutely continuous whereas the SDSM
with c(·) ≡ 0 is purely atomic; see Konno and Shiga [10] and [3, 20], respectively.

To best of our knowledge, in all of the work which considered the SDSM and related models
only continuous processes have been introduced and studied. In this paper, we construct a class
of discontinuous superprocesses with dependent spatial motion. A modification of the above
martingale problem is to replace operator B in (1.2) by

BF (µ) =
1

2

∫

R

σ(x)
δ2F (µ)

δµ(x)2
µ(dx)

+

∫

R

µ(dx)

∫ ∞

0

(

F (µ+ ξδx) − F (µ) −
δF (µ)

δµ(x)
ξ

)

γ(x, dξ), (1.8)

whose coefficients satisfy:

(i) σ ∈ C2
∂(R)+,

(ii) γ(x, dξ) is a kernel from R to (0,+∞) such that sup
x

[
∫ +∞
0 ξ ∧ ξ2γ(x, dξ)] < +∞,

(iii)
∫

Γ ξ ∧ ξ
2γ(x, dξ) ∈ C2

∂(R) for each Γ ∈ B((0,∞)).

A Markov process generated by L is a measure-valued branching process with branching mech-
anism given by

Ψ(x, z) :=
1

2
σ(x)z2 +

∫ ∞

0
(e−zξ − 1 + zξ)γ(x, dξ).

This process is naturally called a superprocess with dependent spatial motion (SDSM) with
parameters (a, ρ,Ψ). This modification is related to the recent work of Dawson et al [4], where
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it was assumed that γ(x, dξ) = 0. Though our model is an extension of the model introduced
in Wang [18, 19] and Dawson et al [4], the construction of our model differ from theirs. We
describe our approach to the construction of our model in the following.

The main work of this paper is to solve the (L, µ)-martingale problem. As for uniqueness,
following the idea of Stroock [16] a localization procedure is developed. Therefore, we do not
consider the (L, µ)-martingale problem directly. Instead, we will first solve the (L′, µ)-martingale
problem, where

L′F (µ) := AF (µ) + B′F (µ), (1.9)

B′ :=
1

2

∫

R

σ(x)
δ2F (µ)

δµ(x)2
µ(dx) −

∫

R

µ(dx)

∫ ∞

l

δF (µ)

δµ(x)
ξγ(x, dξ)

+

∫

R

µ(dx)

∫ l

0

(

F (µ+ ξδx) − F (µ) −
δF (µ)

δµ(x)
ξ

)

γ(x, dξ). (1.10)

and we make the convention that
∫ l

0
=

∫

(0,l)
and

∫ ∞

l
=

∫

[l,∞)

for 0 < l < ∞. We regard the (L′, µ)-martingale problem as the ‘killed’ martingale problem.
We shall see that the Markov process associated with the ‘killed’ martingale problem also arises
as high density limit of a sequence of interacting-branching particle system and it is an SDSM
with branching mechanism given by

Ψ0(x, z) :=
1

2
σ(x)z2 +

∫ ∞

l
ξγ(x, dξ)z +

∫ l

0
(e−zξ − 1 + zξ)γ(x, dξ).

It is easy to see from the branching mechanism that the process is a subcritical branching process
with all ‘big’ jumps such that the jump size is larger than l been ‘killed’. We will use duality
method to show the uniqueness of the ‘killed’ martingale problem. We shall construct a dual
process and show its connection with the solutions of the ‘killed’ martingale problem which gives
the uniqueness. When we establish the dual relationship, we point out that there exists a gap in
the proof of establishing the dual relationship in [4]; see Remark 2.2 in Section 2 of this paper
for details. Then a localization argument is developed to show that if the (L′, µ) martingale
problem is well-posed then uniqueness holds for the (L, µ)-martingale problem. The argument
consists of three parts.

In the first part, we show that each solution of the (L, µ)-martingale problem , say X, behaves
the same as the solution of the killed martingale problem until it has a ‘big jump’ whose jump
size is larger than l. Intuitively, one can think of the branching particle system as follows. In
the branching particle system corresponding to the (L, µ)-martingale problem, if a particle dies
and it leaves behind a large number of offsprings, say more than 500, which always be regarded
as a ‘big jump’ event, we kill all its offsprings. Then we get a new branching particle system and
before the jump event happens the two systems are the same. The evolution of the new particle
system represents the behavior of the solution to the ‘killed’ martingale problem. It is clear that if
the original branching particle system is a critical system, the new particle system is a subcritical
branching system. Since the ‘killed’ martingale problem is well-posed, X is uniquely determined
before it has a ‘big jump’. Next, we show that when a ‘big jump’ event happens, the jump size
is uniquely determined. This conclusion is not surprising either. Given a branching mechanism,
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in a branching particle system, when a particle dies, the distribution of its offspring number
is uniquely determined by the position of the particle itself (we assume that the branching
mechanism is independent of time). Thus we can find a predictable representation for the jump
size. According to the argument in the first part, we see the jump size is uniquely determined. At
last, we can prove by induction that the distribution of X is uniquely determined, since after the
first ‘big jump’ event happens, X also behaves the same as the solution of the ‘killed’ martingale
problem until the second ‘big jump’ event happens. Before we use the localization procedure, we
follow an argument taken from El-Karoui and Roelly-Coppoletta [7] to decompose each solution
of the (L, µ)-martingale problem into a continuous part and a purely discontinuous part. We
will use this argument again when we show the existence of solutions to the (L, µ)-martingale
problem; see next two paragraphs.

When we turn to the existence we also first consider the existence of the ‘killed’ martingale
problem. Although the solution of the ‘killed’ martingale problem is also an SDSM which arises
as high density limit of a sequence of interacting-branching particle systems, in order to deduce
the martingale formula the techniques developed in Wang [18, 19] and Dawson et al [4] can
not be used directly because of the third item in the branching mechanism Ψ0. We will use
the martingale decomposition and special semi-martingale’s representation to get the desired
result. Our approach is stimulated by El-Karoui and Roelly-Coppoletta [7], who considered the
martingale problem of the usual Dawson-Watanabe superprocess. We briefly describe the main
idea in next paragraph.

First, a sequence of subcritical branching particle systems is constructed. Let X = (Xt)t≥0

denote a limit of the particle systems. Then we derive the special semi-martingale property of
{exp{−〈φ,Xt〉} : t ≥ 0} with φ bounded away from zero by using particle system approximation,
and obtain a representation for this semi-martingale. This approach is different from that of
[7], where log-laplace equation was used to deduce the semi-martingale property. Next, we
consider an integer-valued random measure N(ds, dν) =

∑

s>0 1{∆Xs 6=0}δ(s,∆Xs)(ds, dν) and by
an approximation procedure we can show

Mt(φ) := 〈φ,Xt〉 − 〈φ,X0〉 −
1

2

∫ t

0
〈aφ′′,Xs〉ds +

∫ t

0
ds〈

∫ ∞

l
ξγ(·, dξ)φ,Xs〉 (1.11)

is square-integrable martingale which can be decompose into a continuous martingale {M c
t (φ) :

t ≥ 0} and a purely discontinuous martingale {Md
t (φ) : t ≥ 0}. We have

〈φ,Xt〉 = 〈φ,X0〉 +
1

2

∫ t

0
〈aφ′′,Xs〉ds +M c

t (φ) +Md
t (φ) −

∫ t

0
ds〈

∫ ∞

l
ξγ(·, dξ)φ,Xs〉, (1.12)

and Md(φ) can be represented as a stochastic integral with respect to the corresponding mar-
tingale measure of N(ds, dν). This argument is also different from the argument of [7], where
according to the semi-martingale property of {exp{−〈φ,Xt〉} : t ≥ 0} only semi-martingale
property of {〈φ,Xt〉 : t ≥ 0} with φ bounded away from zero was derived. By the martingale
decomposition (1.12) we can obtain another representation for semi-martingale {exp{−〈φ,Xt〉} :
t ≥ 0}. By identifying two representations for {exp{−〈φ,Xt〉} : t ≥ 0} mentioned above, we
know the explicit form of the quadratic variation process of {M c

t (φ) : t ≥ 0} and the compen-
sator of the random measure N(ds, dν). Then we can deduce X satisfies the martingale formula
for the (L′, µ)-martingale problem. At last by a perturbation method we show the existence of
the (L, µ)-martingale problem.

The remainder of the paper is organized as follows. In Section 2, we first introduce the ‘killed’
martingale problem and define a dual process and investigate its connection to the solutions of
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the ‘killed’ martingale problem which gives the uniqueness of the ‘killed’ martingale problem.
Then we deduce that the uniqueness holds for the (L, µ)-martingale problem. In Section 3, we
first give a formulation of the system of branching particles with dependent spatial motion and
obtain the existence of the solution of the ‘killed’ martingale problem by taking high density
limit of particle systems. Then a perturbation argument is used to show the existence of the
(L, µ)-martingale problem. We compute the first and second order moment formulas of the
process in Section 4.

Remark 1.1 By Theorem 8.2.5 of [6], the closure of {(f,Gmf) : f ∈ C∞
c (Rm)} which we still

denote by Gm is single-valued and generates a Feller semigroup (Pm
t )t≥0 on Ĉ(Rm). Note that

this semigroup is given by a transition function and can therefore be extended to all of B(Rm).
We also have that (1, 0) is in the bp-closure of Gm.

2 Uniqueness

2.1 Killed martingale problem

In this section, we first introduce the killed martingale problem for the SDSM and show the
uniqueness holds for the killed martingale problem.

Definition 2.1 Let D(L) =
⋃∞

m=0

{

F (µ) = f(〈φ1, µ〉, · · · , 〈φm, µ〉), f ∈ C2
0 (Rm), {φi} ⊂ C2

c (R)+
}

.
For µ ∈ M(R) and an M(R)-valued càdlàg process {Xt : t ≥ 0}, we say X is a solution of the
(L, µ)-martingale problem if X0 = µ and

F (Xt) − F (X0) −

∫ t

0
LF (Xs)ds, t ≥ 0, (2.1)

is a local martingale for each F ∈ D(L) and for l > 1, we say X is a solution of the (L′, µ)-
martingale problem if X0 = µ and

F (Xt) − F (X0) −

∫ t

0
L′F (Xs)ds, t ≥ 0, (2.2)

is a local martingale for each F ∈ D(L).

Let D0(L) =
⋃∞

m=0{f(〈φ1, µ〉, · · · , 〈φm, µ〉), f ∈ C2
0 (Rm), {φi} ⊂ C2(R)++}. Note that for

F (µ) ∈ D0(L) ∪ D(L),

AF (µ) =
1

2

m
∑

j=1

f i(〈φ1, µ〉, · · · , 〈φm, µ〉)〈aφ
′′
i , µ〉

+
1

2

m
∑

i,j=1

f ij(〈φ1, µ〉, · · · , 〈φm, µ〉)

∫

R2

ρ(x− y)φ′i(x)φ
′
j(y)µ

2(dxdy), (2.3)

BF (µ) =
1

2

m
∑

i,j=1

f ij(〈φ1, µ〉, · · · , 〈φm, µ〉)〈σφiφj , µ〉
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+

∫

R

µ(dx)

∫ ∞

0
{f(〈φ1, µ〉 + ξφ1(x), · · · , 〈φm, µ〉 + ξφm(x))

− f(〈φ1, µ〉, · · · , 〈φm, µ〉) − ξ

m
∑

i=1

f i(〈φ1, µ〉, · · · , 〈φm, µ〉)φi(x)}γ(x, dξ) (2.4)

and

B′F (µ) =
1

2

m
∑

i,j=1

f ij(〈φ1, µ〉, · · · , 〈φm, µ〉)〈σφiφj , µ〉

−

∫

R

µ(dx)

∫ ∞

l
ξγ(x, dξ)

m
∑

i=1

f i(〈φ1, µ〉, · · · , 〈φm, µ〉)φi(x)

+

∫

R

µ(dx)

∫ l

0
{f(〈φ1, µ〉 + ξφ1(x), · · · , 〈φm, µ〉 + ξφm(x))

− f(〈φ1, µ〉, · · · , 〈φm, µ〉) − ξ

m
∑

i=1

f i(〈φ1, µ〉, · · · , 〈φm, µ〉)φi(x)}γ(x, dξ).(2.5)

Thus for every F ∈ D0(L), both LF and L′F are bounded functions on M(R).

Remark 2.1 Let h ∈ C2
c (Rm) satisfy 1B(0,1) ≤ h ≤ 1B(0,2) and hk(x) = h(x/k) ∈ C2

c (Rm).
Then for each φ ∈ C2(R)++, it can be approximated by {φhk} ⊂ C2

c (R)+ in such a way that
not only φ but its derivatives up to second order are approximated boundedly and pointwise.
Therefore when X is a solution of (L, µ)-martingale problem (or (L′, µ)-martingale problem),
(2.1) (or (2.2)) is a martingale for F ∈ D0(L). On the other hand, for every φ ∈ C2

c (R)+,
we can approximate φ by {φ + 1/n} ⊂ C2

∂(R)++ ⊂ C2(R)++ in the same way. Thus if (2.1)
(or (2.2)) is a martingale for every F ∈ D0(L), it is a local martingale for every F ∈ D(L).
We shall see that any solution of the (L′, µ)-martingale problem has bounded moment of any
order. Thus if X is a solution of the (L′, µ)-martingale problem, (2.2) is a martingale for every
F ∈ D0(L) ∪ D(L).

We shall see that the Markov process associated with (L′, µ)-martingale problem is a subcritical
measure-valued branching process with branching mechanism given by

Ψ0(x, z) :=
1

2
σ(x)z2 +

∫ ∞

l
ξγ(x, dξ)z +

∫ l

0
(e−zξ − 1 + zξ)γ(x, dξ).

For i ≥ 2, let σi := supx[
∫ l
0 ξ

iγ(x, dξ)]. We first show that each solution of the (L′, µ)-martingale
problem has bounded moment of any order.

Lemma 2.1 Suppose that Q′
µ is a probability measure on D([0,+∞),M(R)) such that under

Q′
µ ω0 = µ a.s. and {ωt : t ≥ 0} is a solution of the (L′, µ)-martingale problem. Then for

n ≥ 1, t ≥ 0 we have

Q′
µ{〈1, ωt〉

n} ≤ σ2t/2 + 〈1, µ〉n + C1(n, γ)

∫ t

0
Q′

µ{〈1, ωs〉}ds

+C2(n, σ, γ)

∫ t

0
Q′

µ{〈1, ωs〉
n−1}ds+ C3(n, γ)

∫ t

0
Q′

µ{〈1, ωs〉
n}ds, (2.6)

where C1(n, γ), C2(n, σ, γ) and C3(n, γ) are constants which depend on n, σ and γ.
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Proof. Let n ≥ 1 be fixed. For any k ≥ 1, take fk ∈ C2
0 (R) such that fk(z) = zn for 0 ≤ z ≤ k

and |f ′k(z)| ≤ nzn−1, f ′′k (z) ≤ n2zn−2 for all z > k. Let Fk(µ) = fk(〈1, µ〉). Then AFk(µ) = 0
and

B′Fk(µ) =
1

2
f ′′k (〈1, µ〉)〈σ, µ〉 −

∫

R

µ(dx)

∫ ∞

l
ξf ′k(〈1, µ〉)γ(x, dξ)

+

∫

R

µ(dx)

∫ l

0
{fk(〈1, µ〉 + ξ) − fn(〈1, µ〉) − ξf ′k(〈1, µ〉)}γ(x, dξ)

≤
1

2
n2||σ||〈1, µ〉n−1 + sup

x
[

∫ ∞

1
ξγ(x, dξ)]n〈1, µ〉n

+

∫

R

µ(dx)

∫ l

0

1

2
n2(〈1, µ〉 + ξ)n−2ξ2γ(x, dξ).

Then we deduce that

B′Fk(µ) ≤ C1(n, γ)〈1, µ〉 + C2(n, σ, γ)〈1, µ〉
n−1 + n sup

x
[

∫ ∞

1
ξγ(x, dξ)]〈1, µ〉n,

where C2(n, σ, γ) = n2||σ||/2 + 1
2σ2n

22(n−3)∨0 and

C1(n, γ) =

{

n22(n−3)∨0σn/2, n ≥ 2,

0, n = 1.

We have used the Taylor’s expansion and elementary inequality

(c+ d)β ≤ 2(β−1)∨0(cβ + dβ), for all β, c, d ≥ 0.

Note that Fk ∈ D0(L). Thus

Fk(ωt) − Fk(ω0) −

∫ t

0
L′Fk(ωs)ds, t ≥ 0,

is a martingale. We get

Q′
µfk(〈1, ωt〉) ≤ fk(〈1, µ〉) + C1(n, γ)

∫ t

0
Q′

µ(〈1, ωs〉)ds

+C2(n, σ, γ)

∫ t

0
Q′

µ(〈1, ωs〉
n−1)ds+ C3(n, γ)

∫ t

0
Q′

µ(〈1, ωs〉
n)ds,

where C3(n, γ) = n supx[
∫ ∞
1 ξγ(x, dξ)]. Now inequality (2.6) follows from Fatou’s Lemma. �

Observe that, if Fm,f (µ) = 〈f, µm〉 for f ∈ C2(Rm), then

AFm,f (µ) =
1

2

∫

Rm

m
∑

i=1

a(xi)f
ii(x1, · · · , xm)µm(dx1, · · · , dxm)

+
1

2

∫

Rm

m
∑

i,j=1,i6=j

ρ(xi − xj)f
ij(x1, · · · , xm)µm(dx1, · · · , dxm)

= Fm,Gmf (µ), (2.7)

and

B′Fm,f (µ) =
1

2

m
∑

i,j=1,i6=j

∫

Rm−1

Ψijf(x1, · · · , xm−1)µ
m−1(dx1, · · · , dxm−1)
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+
m

∑

a=2

∫

Rm−a+1

∑

{a}

Φi1,··· ,iaf(x1, · · · , xm−a+1)µ
m−a+1(dx1, · · · , dxm−a+1)

−

m
∑

i=1

∫

Rm

∫ ∞

l
ξγ(xi, dξ)f(x1, · · · , xm)µm(dx1, · · · , dxm), (2.8)

where {a} = {1 ≤ i1 < i2 < · · · < ia ≤ m}. Ψij denotes the operator from B(Rm) to B(Rm−1)
defined by

Ψijf(x1, · · · , xm−1) = σ(xm−1)f(x1, · · · , xm−1, · · · , xm−1, · · · , xm−2), (2.9)

where xm−1 is in the places of the ith and the jth variables of f on the right hand side and
Φi1,··· ,ia denotes the operator from B(Rm) to B(Rm−a+1) defined by

Φii,··· ,iaf(x1, · · · , xm−a+1) = f(x1, · · · , xm−a+1, · · · , xm−a+1, · · · , xm−a)

∫ l

0
ξaγ(xm−a+1, dξ),

(2.10)
where xm−a+1 is in the places of the i1th, i2th, · · · , iath variables of f on the right hand side.
For x = (x1, · · · , xm) ∈ R

m, let b(x) =
∑m

i=1

∫ ∞
l ξγ(xi, dξ). It follows that

L′Fm,f (µ) = Fm,Gmf (µ) − Fm,bf (µ)

+
1

2

m
∑

i,j=1,i6=j

Fm−1,Ψijf (µ) +

m
∑

a=2

∑

{a}

Fm−a+1,Φi1,··· ,iaf (µ). (2.11)

Lemma 2.2 Suppose that Q′ is a probability measure on D([0,+∞),M(R)) such that under Q′

{ωt : t ≥ 0} is a solution of the (L′, µ)-martingale problem. Then

F (ωt) − F (ω0) −

∫ t

0
L′F (ωs)ds, t ≥ 0, (2.12)

under Q′ is a martingale for each F (µ) = Fm,f (µ) = 〈f, µm〉 with f ∈ C2(Rm).

Proof. For any k ≥ 1, take fk ∈ C2
0 (Rm) such that for 0 ≤ x2

i ≤ k, 1 ≤ i ≤ m,

fk(x1, · · · , xm) =

m
∏

i=1

xi.

For {φi} ⊂ C2(R)++, let Fk(µ) = fk(〈φ1, µ〉, · · · , 〈φm, µ〉). Then limk→∞ Fk(µ) = Fm,f (µ) for
all µ ∈M(R) and if for every 1 ≤ i ≤ m, 0 ≤ 〈φi, µ〉

2 + l2||φi||
2 ≤ k, we have

L′Fk(µ) = L′Fm,f (µ).

Introduce a sequence stopping times

τk := inf{t ≥ 0, there exists i ∈ {1, · · ·m} such that 〈φi, ωt〉
2 + l2||φi||

2 ≥ k} ∧ k.

Then τk → ∞ as k → ∞. Suppose that {Hi}
n
i=1 ⊂ C(M(R)) and 0 ≤ t1 < · · · < tn < tn+1. By

Lemma 2.1 and the dominated convergence theorem we deduce that

Q′

{

[

Fm,f (ωtn+1) − Fm,f (ωtn) −

∫ tn+1

tn

L′Fm,f (ωs)ds
]

n
∏

i=1

H(ωti)

}
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= lim
k→∞

Q′

{

[

Fk(ωtn+1) − Fk(ωtn) −

∫ tn+1

tn

L′Fk(ωs)ds
]

n
∏

i=1

H(ωti)

}

+ lim
k→∞

Q′

{

[

∫ tn+1

tn

L′Fk(ωs)1{τk≤s}ds−

∫ tn+1

tn

L′Fm,f (ωs)1{τk≤s}ds
]

n
∏

i=1

H(ωti)

}

= 0.

That is under Q′

Fm,f (ωt) − Fm,f (ω0) −

∫ t

0
L′Fm,f (ωs)ds, t ≥ 0,

is a martingale for f =
∏m

i=1 φi with {φi} ⊂ C2(R)++(and therefore {φi} ⊂ C2(R)). Since
f ∈ C2(R) can be approximated by polynomials in such a way that not only f but its derivatives
up to second order are approximated uniformly on compact sets, by an approximating procedure
(2.12) is a martingale for F (µ) = 〈f, µm〉 with f ∈ C2

c (Rm) (see [6], p.501). By Remark
1.1, (1, 0) is in the bp-closure of Gm. In fact, let h ∈ C2

c (Rm) satisfy 1B(0,1) ≤ h ≤ 1B(0,2)

and hk(x) = h(x/k) ∈ C2
c (Rm). Then for f ∈ C2(Rm), we can approximate (f,Gmf) by

{fhk, G
mfhk}. According to (2.11) and Lemma 2.1, we see the desired result follows by another

approximating procedure. �

Let Gm
b := Gm − b. By Theorem 5.11 of [5], there exists a diffusion process on Ĉ(Rm) generated

by Gm
b |C2

c (Rm) (and therefore Gm
b |Ĉ2(Rm)). Its transition density qm(t, x, y) is the fundamental

solution of the equation
∂u

∂t
= Gm

b u. (2.13)

The semigroup corresponding to the operator Gm
b is defined by

Tm
t f(x) =

∫

qm(t, x, y)f(y)dy (2.14)

for f ∈ Ĉ(Rm) and can therefore be extended to all of B(Rm). According to 0.24.A2 of [5], for
f ∈ C(Rm)

lim
t→0

∫

qm(t, x, y)f(y)dy = f(x) (x ∈ R
m),

where the convergence is uniform on every bounded subset. On the other hand, (Tm
t )t≥0 is

strong Feller, i.e., for f ∈ B(Rm) and t > 0, Tm
t f ∈ C(Rm). In fact, according to 1◦ of the proof

of Theorem 5.11 of [5], Tm
t f ∈ C2(Rm) satisfies equation (2.13). Hence for f ∈ C2(Rm)

Tm
t f(x) − f(x)

t
=
ut(x) − f(x)

t
=

1

t

∫ t

0
Gm

b us(x)ds.

Therefore

lim
t→0

Tm
t f(x) − f(x)

t
= Gm

b f(x),

where the convergence is bounded and pointwise. Let G̃m
b denote the weak generator of (Tm

t )t≥0.
Thus C2(Rm) belong to the domain of G̃m

b and Tm
t C

2(Rm) ⊂ C2(Rm). Also, G̃m
b |C2(Rm) =

Gm
b |C2(Rm). Let pm(t, x, y) denote the transition density corresponding to the semigroup (Pm

t )t≥0.
According to 6◦ of the proof of Theorem 5.11 of [5], we see for all t > 0, x ∈ R

m, A ∈ B(Rm),

∫

A
pm(t, x, y)dy ≥

∫

A
qm(t, x, y)dy.
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Therefore, for f ∈ B(Rm)+,
Pm

t f(x) ≥ Tm
t f(x).

Next, we define a dual process and reveal its connection to the solutions of the (L′, µ)-martingale
problem.

Let {Mt : t ≥ 0} be a nonnegative integer-valued càdlàg Markov process. For i ≥ j, the
transition intensities {qij} defined by

qij =























∑

i6=j −qij if j = i

1
2 i(i− 1) +

(

i
2

)

if j = i− 1
(

i
j − 1

)

if 1 ≤ j ≤ i− 2

and qij = 0 for i < j. Let τ0 = 0 and τM0 = ∞, and let {τk : 1 ≤ k ≤ M0 − 1} be the sequence
of jump times of {Mt : t ≥ 0}. That is τ1 = inf{t ≥ 0 : Mt 6= M0}, · · · , τk = inf{t > τk−1 : Mt 6=
Mτk−1

}.
Let {Γk : 1 ≤ k ≤M0 − 1} be a sequence of random operators which are conditionally indepen-
dent given {Mt : t ≥ 0} and satisfy

P{Γk = Ψij |M(τk−) = l,M(τk) = l − 1} =
1

2l(l − 1)
, 1 ≤ i 6= j ≤ l,

P{Γk = Φi1,i2|M(τk−) = l,M(τk) = l − 1} =
1

l(l − 1)
, 1 ≤ i1 < i2 ≤ l,

and for a ≥ 3,

P{Γk = Φi1,··· ,ia |M(τk−) = l,M(τk) = l − a+ 1} =
1

(

l
a

) , 1 ≤ i1 < · · · < ia ≤ l,

where Ψij and Φi1,··· ,ia are defined by (2.9) and (2.10) respectively. Let B denote the topological
union of {B(Rm) : m = 1, 2, · · · } endowed with pointwise convergence on each B(Rm). Then

Yt = T
Mτk
t−τk

ΓkT
Mτk−1
τk−τk−1

Γk−1 · · ·T
Mτ1
τ2−τ1Γ1T

M0
τ1 Y0, τk ≤ t < τk+1, 0 ≤ k ≤M0 − 1, (2.15)

defines a Markov process {Yt : t ≥ 0} taking values from B. Clearly, {(Mt, Yt) : t ≥ 0} is also a
Markov process. Let E

σ,γ
m,f denote the expectation given M0 = m and Y0 = f ∈ B(Rm).

Theorem 2.1 Suppose that {Xt : t ≥ 0} is a càdlàg M(R)-valued process. If {Xt : t ≥ 0} is a
solution of the (L′, µ)-martingale problem and assume that {Xt : t ≥ 0} and {(Mt, Yt) : t ≥ 0}
are defined on the same probability space and independent of each other, then

E 〈f,Xm
t 〉 = E

σ,γ
m,f

[ 〈

Yt, µ
Mt

〉

exp
{

∫ t

0
(2Ms +

Ms(Ms − 1)

2
−Ms − 1)ds

}]

(2.16)

for any t ≥ 0, f ∈ B(Rm) and integer m ≥ 1.

Proof. In this proof we set Fµ(m, f) = Fm,f (µ) = 〈f, µm〉. By Lemma 2.1, we have that for
each m ≥ 1, E[〈1,Xt〉

m] is a locally bounded function of t ≥ 0. Then by martingale inequality
we have that E[sup0≤s≤t〈1,Xs〉

m] is a locally bounded function of t ≥ 0.
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By the definition of Y and elementary properties of M , we know that {(Mt, Yt) : t ≥ 0} has
weak generator L∗ given by

L∗Fµ(m, f) = Fµ(m,Gm
b f) +

1

2

m
∑

i,j=1,i6=j

[Fµ(m− 1,Ψijf) − Fµ(m, f)]

+
m

∑

k=2





∑

{1≤i1<···<ik≤m}

[Fµ(m− k + 1,Φi1,··· ,ıkf) − Fµ(m, f)]



 (2.17)

with f ∈ C2(Rm). In view of (2.11) we have

L∗Fµ(m, f) = L′Fm,f (µ) − (2m +
1

2
m(m− 1) −m− 1)Fµ(m, f). (2.18)

Then it is easy to verify that the inequalities in Theorem 4.4.11 of [6] are satisfied. Then the
desired conclusion follows from Corollary 4.4.13 of [6]. �

Remark 2.2 We point out that there exists a gap in the proof of establishing the dual relation-
ship of [4]. There it was assumed σ is a bounded measurable function and γ = 0. When they
established the dual relationship, they used a relationship which is similar to (2.18). However,
note that (2.18) makes sense if f ∈ D(Gm

b ) and Yt need not always take values in D(Gm
b ) if

we only assume that σ is a bounded measurable function and Gm is elliptic. If we assume that
σ ∈ C2

∂(R) and Gm is uniformly elliptic, then the argument there can be applied to establish the
dual relationship there. If c = 0, Gm need not always be uniformly elliptic. Our methods cannot
be applied to obtain the uniqueness of the corresponding martingale problem. Dawson and Li
[3] constructed SDSM from one-dimensional excursion when c = 0 and γ(x, dξ) = 0. From the
construction there, an important property of the SDSM was revealed. That is when c = 0, the
process always lives in the space of purely atomic measures. We can also follow the idea there
to construct discontinuous SDSM.

Theorem 2.2 Suppose that for each µ ∈M(R) there is a probability measure Q′
µ on D([0,∞),M(R))

such that Q′
µ{〈1, ωt〉

m} is locally bounded in t ≥ 0 for every m ≥ 1 and such that {ωt : t ≥ 0}
under Q′

µ is a solution of the (L′, µ)-martingale problem. Then Q′ := {Q′
µ : µ ∈M(R)} defines

a Markov process with transition semigroup (Q′
t)t≥0 given by

∫

M(R)
〈f, νm〉Q′

t(µ, dν) = E
σ,γ
m,f

[

〈

Yt, µ
Mt

〉

exp

{∫ t

0

(

2Ms +
Ms(Ms − 1)

2
−Ms − 1

)

ds

}]

(2.19)
for f ∈ B(Rm).

Proof. Let Q′
t(µ, ·) denote the distribution of ωt under Q′

µ. By Theorem 2.1, we obtain (2.19).
We first consider the case that σ(x) ≡ σ0 for a constant σ0 and γ(x, dξ) ≡ γ̂(dξ) such that
∫ ∞
l γ̂(dξ) = 0. In this case, {〈1, ωt〉 : t ≥ 0} is a critical continuous state branching process with

generator L given by

Lf(x) =
1

2
σ0xf

′′(x) + x

∫ l

0

(

f(x+ ξ) − f(x) − ξf ′(x)
)

γ̂(dξ) (2.20)

for f ∈ C2(R). By Kawazu and Watanabe [11] we deduce that
∫

M(R)
eλ〈1,ν〉Qt(µ, dν) = e〈1,µ〉ϕ(t,λ), t ≥ 0, λ ≥ 0,
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where ϕ(t, λ) is the solution of

{

∂ϕ
∂t (t, λ) = R(ϕ(t, λ)),

ϕ(0, λ) = λ,

and R(λ) is given as follows:

R(λ) = −
1

2
σ0λ

2 −

∫ l

0
(e−λξ − 1 + λξ)γ̂(dξ).

Then for each f ∈ B(R)+ the power series

∞
∑

m=0

1

m!

∫

M(R)
〈f, ν〉mQ′

t(µ, dν)λ
m (2.21)

has a positive radius of convergence. By this and Theorem 30.1 of [1], it is easy to show that
Q′

t(ν, ·) is the unique probability measure on M(R) satisfying (2.19). Now the result follows from
Theorem 4.4.2 of [6]. For general case, let σ0 = ||σ|| and f⊗m(x1, · · · , xm) = f(x1) · · · f(xm).
We can find a measure γ̂(dξ) on (0,+∞) such that for every k ≥ 2

Cγ := sup
x

[

∫ 1

0
ξ2γ(x, dξ) +

∫ l

1
ξγ(x, dξ)] ≤

∫ l

0
ξkγ̂(dξ) <∞

and
∫ ∞
l γ̂(dξ) = 0. In fact, since l > 1, we can let γ̂(dξ) = (kl +1)Cγ1(0,l)(ξ)dξ, where dξ denotes

the Lebesgue measure and kl = min{k ≥ 2 : lk/(k + 1) > 1}. We obtain that for each k ≥ 2

sup
x

[

∫ l

0
ξkγ(x, dξ)] ≤ lk

∫ l

0
ξkγ̂(dξ).

By (2.19) and (2.15) we have

∫

M(R)
〈f, ν〉mQ′

t(µ, dν) ≤ E
σ0,γ̂
m,lmf⊗m

[

〈

Yt, µ
Mt

〉

exp

{∫ t

0

(

2Ms +
Ms(Ms − 1)

2
−Ms − 1

)

ds

}]

for f ∈ B(R)+. Then the power series (2.21) also has a positive radius of convergence and the
desired result follows as in previous case. �

Remark 2.3 From (2.11), we may regard the Markov process associated with (L′, µ)-martingale
problem as a measure-valued branching process with branching mechanism given by

Ψ1(x, z) :=
1

2
σ(x)z2 +

∫ l

0
(e−zξ − 1 + zξ)γ(x, dξ).

and its spatial motion is a diffusion process generated by

1

2

m
∑

i=1

a(xi)
∂2

∂x2
i

+
1

2

m
∑

i,j=1,i6=j

ρ(xi − xj)
∂2

∂xi∂xj
−

m
∑

i=1

∫ ∞

l
ξγ(xi, dξ)

which represents ‘Gm-diffusion killed at a rate
∑m

i=1

∫ ∞
l ξγ(xi, dξ)’; see Rogers and Williams

[14] and references therein for more details of ‘Markov process with killing’.
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2.2 Uniqueness for (L, µ)-martingale problem

In this section, we will consider a localization procedure suggested by Stroock [16] to show that
the uniqueness for the (L, µ)-martingale problem follows from the uniqueness of the (L′, µ)-
martingale problem. Although some arguments in this subsection are similar to those of [7] and
[16], we shall give the details for the convenience of the reader. We assume that the for each
µ ∈ M(R), (L′, µ)-martingale problem is well-posed. The existence for the (L′, µ)-martingale
problem will be revealed in Section 3. Let Q′ denote the Markovian system defined in Theorem
2.2. Let Q′

s,µ = Q′(·|ωs = µ). Then Q′
s,µ is also a Markovian system starting from (s, µ) whose

transition semigroup is the same with Q′.

Let {ωt : t ≥ 0} denote the coordinate process of D([0,∞),M(R)). Let Ω = D([0,∞),M(R)).
Set Ft = σ{ωs : 0 ≤ s ≤ t}, and take F t = σ{ωs : t ≤ s}.

Definition 2.2 For µ ∈ M(R), we say a probability measure Qs,µ on (Ω,Fs) is a solution of
the (L, µ)-martingale problem if Qs,µ(ωs = µ) = 1 and

F (ωt) − F (µ) −

∫ t

s
LF (ωu)du, t ≥ s, (2.22)

is a local martingale for each F ∈ D(L).

In the following we will write Qµ instead of Q0,µ and write F instead of F0. Let S(R) denote
the space of finite signed Borel measures on R endowed with the σ-algebra generated by the
mappings µ 7→ 〈f, µ〉 for all f ∈ C(R). Let S(R)◦ = S(R) \ {0} and M(R)◦ = M(R) \ {0}. The
following theorem is analogous to Théorèm 7 of [7].

Theorem 2.3 Suppose that a probability measure Qµ on (Ω,F) is a solution of the (L, µ)-
martingale problem. Define an optional random measure N(ds, dν) on [0,∞) × S(R)◦ by

N(ds, dν) =
∑

s>0

1{∆ωs 6=0}δ(s,∆ωs)(ds, dν),

where ∆ωs = ωs − ωs− ∈ S(R). Let N̂(ds, dν) denote the predictable compensator of N(ds, dν)
and let Ñ(ds, dν) denote the corresponding martingale measure under Qµ. Then N̂(ds, dν) =
dsK(ωs, dν) with K(µ, dν) given by

∫

M(R)◦
F (ν)K(µ, dν) =

∫

R

µ(dx)

∫ ∞

0
F (ξδx)γ(x, dξ),

and for φ ∈ C2(R)+,

Mt(φ) := 〈φ, ωt〉 − 〈φ, µ〉 −
1

2

∫ t

0
〈aφ′′, ωs〉ds, t ≥ 0, (2.23)

is a martingale and we also have that

Mt(φ) = M c
t (φ) +Md

t (φ),

where M c
t (φ) under Qµ is a continuous martingale with quadratic variation process given by

〈M c(φ)〉t =

∫ t

0
〈σφ2, ωs〉ds+

∫ t

0
ds

∫

R

〈h(z − ·)φ′, ωs〉
2dz, (2.24)
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and

Md
t (φ) =

∫ t+

0

∫

M(R)◦
〈φ, ν〉Ñ(ds, dν) (2.25)

is a purely discontinuous martingale under Qµ.

Proof . Some arguments in the proof of this theorem are similar to those of Theorem 6.1.3 of
[2]. The proof will be divided into 4 steps.

Step 1. Since e−〈φ,ν〉 ∈ D0(L) for φ ∈ C2(R)++,

Wt(φ) := e−〈φ,ωt〉 −

∫ t

0
e−〈φ,ωs〉[−

1

2
〈aφ′′, ωs〉 +

1

2

∫

R

〈h(z − ·)φ′, ωs〉
2dz + 〈Ψ(φ), ωs〉]ds, t ≥ 0,

(2.26)
is a Qµ-martingale with φ ∈ C2(R)++, where Ψ(φ) := Ψ(x, φ(x)). Therefore, {Wt(φ)} is a local
martingale for φ ∈ C2(R)+. Let

Zt(φ) := exp{−〈φ, ωt〉},

Ht(φ) := exp

{

− 〈φ, ωt〉 +

∫ t

0

[1

2
〈aφ′′, ωs〉 −

1

2

∫

R

〈h(z − ·)φ′, ωs〉
2dz − 〈Ψ(φ), ωs〉

]

ds

}

and

Yt(φ) := exp

{ ∫ t

0

[1

2
〈aφ′′, ωs〉 −

1

2

∫

R

〈h(z − ·)φ′, ωs〉
2dz − 〈Ψ(φ), ωs〉

]

ds

}

.

By integration by parts,

∫ t

0
Ys(φ)dWs(φ)

=

∫ t

0
Ys(φ)dZs(φ)

−

∫ t

0
Ys(φ)e−〈φ,ωs〉

[

−
1

2
〈aφ′′, ωs〉 +

1

2

∫

R

〈h(z − ·)φ′, ωs〉
2dz + 〈Ψ(φ), ωs〉

]

ds

= Ht(φ) − Z0(φ)

is a Qµ-local martingale. We also have

Zt(φ) = Y −1
t (φ)Ht(φ),

and, again by integration by parts,

dZt(φ) = Y −1
t (φ)dHt(φ) +Ht−(φ)dY −1

t (φ)
= Y −1

t (φ)dHt(φ)

+Zt−(φ)
[

−
1

2
〈aφ′′, ωt−〉 +

1

2

∫

R

〈h(z − ·)φ′, ωt−〉
2dz + 〈Ψ(φ), ωt−〉

]

dt. (2.27)

Then {Zt(φ) : t ≥ 0} is a special semi-martingale with φ ∈ C2(R)+ (see Definitions 1.4.21 of
[9]).

Step 2. By the same argument as in the proof of Lemma 2.1, we have that

Qµ[ωt(1)] ≤ 〈1, µ〉 + C1(σ, γ)

∫ t

0
Qµ[ωs(1)]ds,
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where C1(σ, γ) := ||σ|| + 2 supx

∫ ∞
1 ξγ(x, dξ) + supx

∫ 1
0 ξ

2γ(x, dξ). By Gronwall’s inequality

Qµ[ωt(1)] ≤ 〈1, µ〉eC1(σ,γ)t. (2.28)

For any k ≥ 1, take fk ∈ C2
0 (R) such that fk(x) = x for |x| ≤ k and |f ′k(x)| ≤ 1 for all x ∈ R.

We see for each φ ∈ C2(R)++,

lim
k→∞

fk(〈φ, µ〉) = 〈φ, µ〉 and lim
k→∞

Lfk(〈φ, µ〉) =
1

2
〈aφ′′, µ〉.

Since fk(〈φ, µ〉) ∈ D0(L), by (2.28) and dominated convergence theorem an approximation
argument shows that for φ ∈ C2(R)++

〈φ, ωt〉 = 〈φ, µ〉 +
1

2

∫ t

0
〈aφ′′, ωs〉ds+Mt(φ),

where {Mt(φ) : t ≥ 0} is a martingale. For φ ∈ C2(R)+, we have {Mt(φ + ε)} are martingales
for ε > 0. By letting ε→ 0, (2.28) ensures that

Mt(φ) = 〈φ, ωt〉 − 〈φ, µ〉 −
1

2

∫ t

0
〈aφ′′, ωs〉ds, t ≥ 0,

is a martingale for φ ∈ C2(R)+. By Corollary 2.2.38 of [9], {Mt(φ)} admits a unique represen-
tation

Mt(φ) = M c
t (φ) +Md

t (φ),

where {M c
t (φ)} is a continuous local martingale with quadratic variation process {Ct(φ)} and

Md
t (φ) =

∫ t+

0

∫

S(R)◦
〈φ, ν〉Ñ (ds, dν) (2.29)

is a purely discontinuous local martingale. Moreover, {〈φ, ωt〉} is a semimartingale. An appli-
cation of Itô’s formula for semimartingale (see Theorem 1.4.57 of [9]) yields

dZt(φ) = Zt−(φ)[−dUt(φ) +
1

2
dCt(φ) +

∫

S(R)◦
(e−〈φ,ν〉 − 1 + 〈φ, ν〉)N(dt, dν)]

+d(loc.mart.), (2.30)

where Ut(φ) = 1
2

∫ t
0 〈aφ

′′, ωs〉ds is of locally bounded variation. Note that

0 ≤ Zs−(φ)(e−〈φ,ν〉 − 1 + 〈φ, ν〉) ≤ C(|〈φ, ν〉| ∧ |〈φ, ν〉2|)

for some constant C ≥ 0. According to Theorem 1.4.47 of [9],
∑

s≤t(〈φ,∆ωs〉)
2 <∞. Thus the

first term in (2.30) has finite variation over each finite interval [0, t]. Since {Zt(φ)} is a special
semimartingale, Proposition 1.4.23 of [9] implies that

∫ t+

0

∫

S(R)◦
Zs−(φ)(e−〈φ,ν〉 − 1 + 〈φ, ν〉)N(ds, dν)

is of locally integrable variation. Thus it is locally integrable. According to Proposition 2.1.28
of [9],

∫ t+

0

∫

S(R)◦
Zs−(φ)(e−〈φ,ν〉 − 1 + 〈φ, ν〉)Ñ (ds, dν)
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=

∫ t+

0

∫

S(R)◦
Zs−(φ)(e−〈φ,ν〉 − 1 + 〈φ, ν〉)N(ds, dν)

−

∫ t+

0

∫

S(R)◦
Zs−(φ)(e−〈φ,ν〉 − 1 + 〈φ, ν〉)N̂ (ds, dν)

is a purely discontinuous local martingale. Therefore,

dZt(φ) = Zt−(φ)[−dUt(φ) +
1

2
dCt(φ) +

∫

S(R)◦
(e−〈φ,ν〉 − 1 + 〈φ, ν〉)N̂ (dt, dν)]

+d(loc.mart.). (2.31)

Step 3. Since Zt(φ) is a special semimartingale we can identify the predictable components
of locally integrable variation in the two decompositions (2.27) and (2.31) to get that

Zt−(φ)[−
1

2
〈aφ′′, ωt−〉 +

1

2

∫

R

〈h(z − ·)φ′, ωt−〉
2dz + 〈Ψ(φ), ωt−〉]dt

= Zt−(φ)[−dUt(φ) +
1

2
dCt(φ) +

∫

S(R)◦
(e−〈φ,ν〉 − 1 + 〈φ, ν〉)N̂ (dt, dν)].

Then
∫ t

0
[−

1

2
〈aφ′′, ωs〉 +

1

2

∫

R

〈h(z − ·)φ′, ωs〉
2dz + 〈Ψ(φ), ωs〉]ds

= −Ut(φ) +
1

2
Ct(φ) +

∫ t

0

∫

S(R)◦
(e−〈φ,ν〉 − 1 + 〈φ, ν〉)N̂ (ds, dν). (2.32)

According to (2.28) and (2.29), we can deduce that Ct(θφ) = θ2Ct(φ) with θ > 0. Replacing φ
by θφ with θ > 0 in (2.32), we have

−θ

∫ t

0

1

2
〈aφ′′, ωs〉ds +

θ2

2

∫ t

0

∫

R

〈h(z − ·)φ′, ωs〉
2dzds +

θ2

2

∫ t

0
〈σφ2, ωs〉ds

+

∫ t

0
ds

∫

R

ωs(dx)

∫ ∞

0
γ(x, dξ)(e−θξφ(x) − 1 + θξφ(x))

= −θUt(φ) +
θ2

2
Ct(φ) +

∫ t

0

∫

S(R)◦
(e−θ〈φ,ν〉 − 1 + θ〈φ, ν〉)N̂(ds, dν). (2.33)

We conclude that

Ct(φ) =

∫ t

0
ds

∫

R

〈h(z − ·)φ′, ωs〉
2dz +

∫ t

0
〈σφ2, ωs〉ds (2.34)

and
∫ t

0

∫

S(R)◦
(e−θ〈φ,ν〉 − 1 + θ〈φ, ν〉)N̂ (ds, dν)

=

∫ t

0
ds

∫

R

ωs(dx)

∫ ∞

0
γ(x, dξ)(e−ξ〈δx ,θφ〉 − 1 + ξ〈δx, θφ〉),

where θ > 0 and φ ∈ C2(R)+. That is, under Qµ the jump measure N has compensator

N̂(ds, dν) = dsωs(dx)γ(x, dξ) · δξδx
(dν), ν ∈M(R). (2.35)
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In particular this implies that the jumps of ω are Qµ-a.s. in M(R), i.e. positive measures.
Observe that for {φi}

2
i=1 ⊂ C2(R)+, M c

t (φ1 + φ2) = M c
t (φ1) +M c

t (φ2). According to (2.34),

〈M c(φ1),M
c(φ2)〉t =

1

2

∫ t

0

∫

R2

ρ(x− y)φ′1(x)φ
′
2(y)ωs(dx)ωs(dy)ds

+
1

2

∫ t

0

∫

R2

ρ(x− y)φ′2(x)φ
′
1(y)ωs(dx)ωs(dy)ds

+

∫ t

0
〈σφ1φ2, ωs〉ds. (2.36)

Step 4. Let J1(φ, ν) = 〈φ, ν〉1{〈1,ν〉≥1} and J2(φ, ν) = 〈φ, ν〉1{〈1,ν〉<1}. First, one can check
that

Qµ

[
∫ t

0

∫

J1(φ, ν)N̂ (ds, dν)

]

<∞ and Qµ

[
∫ t

0

∫

J2(φ, ν)
2N̂(ds, dν)

]

<∞

for φ ∈ C2(R)+. Then following the argument in Section 2.3 of [12] we obtain the martingale
property of Md(φ). By Proposition 2.1.28 and Theorem 2.1.33 of [9] we can deduce that

∫ t+

0

∫

M(R)◦
J1(φ, ν)Ñ (ds, dν) =

∫ t+

0

∫

M(R)◦
J1(φ, ν)N(ds, dν)

−

∫ t

0

∫

M(R)◦
J1(φ, ν)N̂(ds, dν), t ≥ 0,

is a martingale and
∫ t+

0

∫

M(R)◦
J2(φ, ν)Ñ (ds, dν), t ≥ 0,

is a square-integrable martingale with quadratic variation process given by

〈

∫ ·+

0

∫

M(R)◦
J2(φ, ν)Ñ(ds, dν)〉t =

∫ t

0

∫

M(R)◦
J2(φ, ν)

2N̂(ds, dν).

Recall that
M c

t (φ) = Mt(φ) −Md
t (φ).

The fact that both Md(φ) and M(φ) above are martingales yields the martingale property of
M c(φ). We are done. �

Lemma 2.3 Let Qµ be a probability measure on (Ω,F) such that it is a solution of the (L, µ)-
martingale problem. Then

Qµ[ sup
0≤s≤t

〈1, ωs〉] <∞.

Proof. According to Theorem 2.3 and Step 4 in its proof, we have

〈1, ωt〉 = 〈1, µ〉 +M c
t (1) +

∫ t

0

∫

M(R)◦
〈1, ν〉Ñ (ds, dν)

is a martingale and we obtain

Qµ

[

sup
0≤s≤t

〈1, ωs〉

]

≤ 〈1, µ〉 + Qµ

[

sup
0≤s≤t

|M c
s (1)|

]

+ Qµ

[

sup
0≤s≤t

|

∫ s

0

∫

J2(1, ν)Ñ (ds, dν)|

]
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+Qµ

[

sup
0≤s≤t

∫ s

0

∫

J1(1, ν)N(ds, dν)

]

+Qµ

[

sup
0≤s≤t

∫ s

0

∫

J1(1, ν)N̂ (ds, dν)

]

≤ 〈1, µ〉 + 4Qµ[Ct(1)] + 2 + Qµ

[

sup
0≤s≤t

[

∫ s

0

∫

J2(1, ν)Ñ (ds, dν)]2
]

+2 sup
x

∫ ∞

1
ξγ(x, dξ)

∫ t

0
Qµ[〈1, ωs〉]ds

≤ 〈1, µ〉 + 2 + 4||σ||

∫ t

0
Qµ[〈1, ωs〉]ds+ 4 sup

x

∫ 1

0
ξ2γ(x, dξ)

∫ t

0
Qµ[〈1, ωs〉]ds

+2 sup
x

∫ ∞

1
ξγ(x, dξ)

∫ t

0
Qµ[〈1, ωs〉]ds

≤ 〈1, µ〉 + 2 + C2(σ, γ)〈1, µ〉t,

where C2(σ, γ) := 4||σ|| + 2 supx

∫ ∞
1 ξγ(x, dξ) + 4 supx

∫ 1
0 ξ

2γ(x, dξ) and the second and the
third inequalities follow from Doob’s inequality and the elementary inequality |x| ≤ x2 + 1. We
complete the proof. �

In accordance with the notation used in Theorem 2.3, set

XL
t := ωt −

∫ t+

0

∫

M(R)◦
ν · 1{〈1,ν〉≥l}N(ds, dν).

By Theorem 2.3,

〈φ,XL
t 〉 = 〈φ, µ〉 +

∫ t

0
〈aφ′′, ωs〉ds +M c

t (φ) +

∫ t+

0

∫

M(R)◦
〈φ, ν〉1{〈1,ν〉<l}Ñ(ds, dν)

−

∫ t+

0

∫

M(R)◦
〈φ, ν〉1{〈1,ν〉≥l}N̂(ds, dν). (2.37)

Thus if F (µ) = f(〈φ1, µ〉, · · · , 〈φm, µ〉) ∈ D(L), then by Itô’s formula

It := F (XL
t ) +

1

2

m
∑

i=1

∫ t

0
ds

∫

R

ωs(dx)

∫ ∞

l
γ(x, dξ)f i(〈φ1,X

L
s 〉, · · · , 〈φn,X

L
s 〉)ξφi(x)

−
1

2

m
∑

i=1

∫ t

0
f i(〈φ1,X

L
s 〉, · · · , 〈φn,X

L
s 〉)〈aφ

′′
i , ωs〉ds

−
1

2

m
∑

i,j=1

∫ t

0
f ij(〈φ1,X

L
s 〉, · · · , 〈φn,X

L
s 〉)d〈M

c(φi),M
c(φj)〉s

−

∫ t

0
ds

∫

R

ωs(dx)

∫ l

0
γ(x, dξ)

{

f(〈φ1,X
L
s 〉 + ξφ1(x), · · · , 〈φn,X

L
s 〉 + ξφn(x))

− f(〈φ1,X
L
s 〉, · · · , 〈φn,X

L
s 〉) − ξ

m
∑

i=1

φi(x)f
i(〈φ1,X

L
s 〉, · · · , 〈φn,X

L
s 〉)

}

is a local martingale under Qµ.

Let τ1 = inf{t ≥ 0 : 〈1, ωt〉 ≥ l + 〈1, µ〉} ∧ T and τ2 = inf{t ≥ 0 : |〈1, ωt〉 − 〈1, ωt−〉| ≥ l}. Set
τ = τ1 ∧ τ2. The following lemma gives another martingale characterization for XL.
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Lemma 2.4 Let Pµ be a probability measure on (Ω,F) such that Pµ(ω0 = µ) = 1. Then

It(φ) := exp

{

− 〈φ,XL
t∧τ 〉 +

∫ t∧τ

0
[〈aφ′′, ωs〉 −

∫

R

〈h(z − ·)φ′, ωs〉
2dz]ds

−

∫ t∧τ

0
ds

∫

R

ωs(dx)

∫ ∞

l
ξφ(x)γ(x, dξ)

−

∫ t∧τ

0
ds

∫

R

ωs(dx)

∫ l

0
(e−ξφ(x) − 1 + ξφ(x))γ(x, dξ)

}

(2.38)

is a Pµ-martingale for every φ ∈ C2(R)++ if and only if {It∧τ} is a Pµ-martingale for each
F ∈ D(L).

Proof . The desired result follows from the formula of integration by parts and the same
argument as in the proof of Théorèm 7 of [7]. �

The next two theorems are analogous to Theorem (3.1) and Theorem (3.3) of [16].

Theorem 2.4 Given a probability measure P on (Ω,F) such that P(ω(0) = µ) = 1 and {I(t ∧
τ) : t ≥ 0} is a P-martingale. Define

Sω = δω ⊗ Q′
{τ(ω),XL

τ(ω)
}

and
P′(A) = P[Sω(A)], A ∈ F ,

where Sω is a measure on (Ω,F) satisfying

Sω(A1 ∩A2) = 1A1(ω)Q′
{τ(ω),XL

τ(ω)
}
(A2)

for A1 ∈ σ(
⋃

0≤s<τ(ω) Fs) and A2 ∈ Fτ(ω). Define Fτ− = σ{XL
t∧τ : t ≥ 0}. Then P′ is also a

solution of (L′, µ)-martingale problem and P = Q′
µ on Fτ−. In particular, we can take P = Qµ.

Proof . Let 0 ≤ t1 < t2 and A ∈ Ft1 . Given ω ∈ Ω, for this proof only, let y(t, ω) denote the
position of ω at time t for convenient. Let F ∈ D(L). Then

P′[1AF (yt2)] = P[1A∩{τ>t2}F (XL
t2)] + P[1A∩{t1<τ≤t2}Q

′
τ(ω),XL

τ(ω)
[F (yt2)]]

+P[1{τ≤t1}Sω[1AF (yt2)]] = I1 + I2 + I3.

By the martingale formula of Q′

I2 = P[1A∩{t1<τ≤t2}F (XL
τ )] + P′[1A∩{t1<τ≤t2}

∫ t2

τ
L′F (yu)du],

and

I1 + I2 = P[1A∩{τ>t1}F (XL
τ∧t2)] + P′[1A∩{t1<τ≤t2}

∫ t2

τ
L′F (yu)du]

= P[1A∩{τ>t1}F (XL
t1)] + P[1A∩{τ>t1}

∫ τ∧t2

t1

L′F (yu)du]

+P′[1A∩{τ>t1}

∫ t2

τ∧t2

L′F (yu)du]
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= P′[1A∩{τ>t1}F (yt1)] + P′[1A∩{τ>t1}

∫ t2

t1

L′F (yu)du],

where the second equality follows from that {It∧τ} is a martingale and the fact that F (XL
t )−It =

∫ t
0 L

′F (ωs)ds for τ > t. On the other hand,

I3 = P′[1A∩{τ≤t1}F (yt1)] + P′[1A∩{τ≤t1}

∫ t2

t1

L′F (yu)du].

Thus P′ solves the (L′, µ)-martingale problem. Then the desired conclusion follows from the
uniqueness of the (L′, µ)-martingale problem. �

Theorem 2.5 Let Ml(R) = {ν : 〈1, ν〉 ≥ l}. There is a Fτ−-measurable function τ ′ : Ω → [0, T ]
such that for Γ ∈ B(Ml(R)),

Qµ[

∫ τ+

0
N(ds,Γ)|Fτ−] =

∫ τ ′

0
exp{−

∫ t

0
ds

∫

R

XL
s∧τ (dx)

∫ ∞

l
γ(x, dξ)}K(XL

t∧τ ,Γ)dt (2.39)

holds for any solution Qµ to the (L, µ)-martingale problem. In particular, Qµ is uniquely deter-
mined on Fτ .

Proof. In accordance with the notation used in Theorem 2.3, we have

∫ t+

0
N(ds,Γ) =

∫ t+

0
Ñ(ds,Γ) +

∫ t

0
N̂(ds,Γ), (2.40)

where N̂(ds,Γ) is determined by (2.35). An application of Itô’s formula and integration by parts
shows that

Jα
t := exp[α

∫ t+

0
N(ds,Γ) −

∫ t

0
(eα − 1)N̂ (ds,Γ)]

is a Qµ-martingale for all α ∈ R. Combing (2.37) and (2.40) together and using Itô’s formula
and integration by parts again we see It(φ)Jα

t is a Qµ-martingale for all φ ∈ C2(R)++. By
Theorem 2.4 and Lemma 2.4, It(φ), Jα

t , Q′, Qµ and Fτ− satisfy the requirement of Theorem
(3.2) in [16]. Hence, for any bounded stopping time t0,

Qµ[Jα
t0 |Fτ−] = 1 (a.s.,Qµ). (2.41)

Since τ1 is a stopping time and τ1 ≤ T , we can find a measurable function f : (M(R))N → [0, T ]
and 0 ≤ t1 < · · · < tn < · · · ≤ T such that

τ1 = f(ωt1, · · · , ωtn , · · · ).

Define
τ ′ = f(XL

t1∧τ , · · · ,X
L
tn∧τ , · · · ).

Note that τ1 = τ ′ if τ1 < τ2. On the other hand,

Qµ[τ ≤ t|Fτ−] = 1[0,t](τ
′)Qµ[τ2 > τ1|Fτ−] + Qµ[τ2 ≤ τ1 ∧ t|Fτ−]

= 1[0,t](τ
′)Qµ[1 −

∫ τ+

0
N(ds,Ml(R))|Fτ−]
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+Qµ[

∫ (t∧τ)+

0
N(ds,Ml(R))|Fτ−].

According to (2.41),

Qµ[

∫ (t∧τ)+

0
N(ds,Γ)|Fτ−]

= Qµ[

∫ t∧τ

0
N̂(ds,Γ)|Fτ−]

=

∫ t

0
Qµ[τ > s|Fτ−]

∫

R

XL
s∧τ (dx)

∫ ∞

0
γ(x, dξ)1{ξδx∈Γ}ds (2.42)

for any Γ ∈ B(Ml(R)). Thus

Qµ[τ ≤ t|Fτ−] = 1[0,t](τ
′)

(

1 −

∫ t

0
Qµ[τ > s|Fτ−]

∫

R

XL
s∧τ (dx)

∫ ∞

0
γ(x, dξ)1{ξδx∈Ml(R)}ds

)

+

∫ t

0
Qµ[τ > s|Fτ−]

∫

R

XL
s∧τ (dx)

∫ ∞

0
γ(x, dξ)1{ξδx∈Ml(R)}ds

and so

Qµ[τ > t|Fτ−] = 1(t,∞)(τ
′) exp{−

∫ t

0
ds

∫

R

XL
s∧τ (dx)

∫ ∞

l
γ(x, dξ)}.

Plugging this back into (2.42) and setting t = T , we obtain (2.39).

Finally, since ωτ = XL
τ +

∫ τ+
0

∫

ν1{〈1,ν〉≥l}N(ds, dν), we see that the distribution of ωτ under
Qµ given Fτ− is uniquely determined, and, therefore Qµ is uniquely determined on Fτ . �

Lemma 2.5 Let Qµ be a solution of (L, µ)-martingale problem. Given a finite stopping time
β, let Qω be a regular conditional probability distribution of Qµ|Fβ. Then there is an N ∈ Fβ

such that Qµ(N) = 0 and when ω /∈ N

F (ω′
t∨β(ω)) − F (ω′

β(ω)) −

∫ t∨β(ω)

β(ω)
LF (ω′

s)ds

under Qω is a martingale for F ∈ D0(L). In particular, it is a local martingale for all F ∈ D(L).

Proof . The argument in this proof is exactly the same as that in Theorem 6.1.3 of [17]. We
omit it here. �

Now, we come to our main theorem in this subsection.

Theorem 2.6 Suppose that for l > 1, the (L′, µ)-martingale problem is well-posed. Then
uniqueness hold for (L, µ)-martingale problem.

Proof. Suppose Qµ is a solution of (L, µ)-martingale problem. Define β0 = 0 and

βn+1 = (inf{t ≥ βn : |〈1, ωt〉 − 〈1, ωt−〉| ≥ l or 〈1, ωt〉 − 〈1, ωβn
〉 ≥ l}) ∧ (βn + l).

Then for each n ≥ 1, βn is a stopping time bounded by nl. By Lemma 2.5 and Theorem 2.5,
we can prove by induction that Qµ is uniquely determined on Fβn

for all n ≥ 1. In order to get
the desired conclusion we only need to show that Qµ(βn ≤ t) → 0 as n→ ∞ for each t > 0.
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Let β1
0 = 0 and β2

0 = 0. Define

β1
n+1 = inf{t ≥ β1

n : 〈1, ωt〉 − 〈1, ωβ1
n
〉 ≥ l}

and
β2

n+1 = inf{t ≥ β2
n : 〈1, ωt〉 − 〈1, ωt−〉 ≥ l}.

It is easy to see that in order to get the desired conclusion it suffices to show that Qµ(β1
n ≤ t) → 0

and Qµ(β2
n ≤ t) → 0 as n→ ∞. First, by Lemma 2.3, we can deduce that

lim
n→∞

Qµ(β1
n ≤ t) = 0.

Then
∑

0<s≤t

1{〈1,∆ωs〉≥l} ≤
∑

0<s≤t

〈1,∆ωs〉1{〈1,∆ωs〉≥l}

=

∫ t+

0

∫

M(R)◦
〈1, ν〉1{〈1,ν〉≥l}N(ds, dν).

But according to the Step 4 in the proof of Theorem 2.3,

Qµ

[ ∫ t+

0

∫

M(R)◦
〈1, ν〉1{〈1,ν〉≥l}N(ds, dν)

]

<∞,

which yields that
lim

n→∞
Qµ(β2

n ≤ t) = 0.

�

3 Existence

3.1 Interacting-branching particle system

We first give a formulation of the interacting-branching particle system. Then we construct a
solution of the (L′, µ)-martingale problem by using particle system approximation. We recall
that

Gm :=
1

2

m
∑

i=i

a(xi)
∂2

∂x2
i

+
1

2

m
∑

i,j=1,i6=j

ρ(xi − xj)
∂2

∂xi∂xj
.

Suppose that Xt = (x1(t), · · · , xm(t)) is a Markov process in R
m generated by Gm. By Lemma

2.3.2 of [2] we know that Xt = (x1(t), · · · , xm(t)) is an exchangeable Feller process. Let N(R)
denote the space of integer-valued measures on R. For θ > 0, let Mθ(R) = {θ−1σ : σ ∈ N(R)}.
Let ζ be the mapping from ∪∞

m=1R
m to Mθ(R) defined by

ζ(x1, · · · , xm) =
1

θ

m
∑

i=1

δxi
, m ≥ 1.

By Proposition 2.3.3 of [2] we know that ζ(Xt) is a Feller Markov process inMθ(R) with generator
Aθ given by

AθF (µ) =
1

2

∫

R

a(x)
d2

dx2

δF (µ)

δµ(x)
µ(dx) +

1

2θ

∫

R2

c(x)c(y)
d2

dxdy

δ2F (µ)

δµ(x)δµ(y)
δx(dy)µ(dx)
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+
1

2

∫

R2

ρ(x− y)
d2

dxdy

δ2F (µ)

δµ(x)δµ(y)
µ(dx)µ(dy). (3.1)

In particular, if

F (µ) = f (〈φ1, µ〉, · · · , 〈φn, µ〉) , µ ∈Mθ(R), (3.2)

for f ∈ C2(Rn) and {φi} ⊂ C2(R), then

AθF (µ) =
1

2

n
∑

i=1

f i (〈φ1, µ〉, · · · , 〈φn, µ〉) 〈aφ
′′
i , µ〉

+
1

2θ

n
∑

i,j=1

f ij (〈φ1, µ〉, · · · , 〈φn, µ〉) 〈c
2φ′iφ

′
j , µ〉

+
1

2

n
∑

i,j=1

f ij (〈φ1, µ〉, · · · , 〈φn, µ〉)

∫

R2

ρ(x− y)φ′i(x)φ
′
j(y)µ(dx)µ(dy). (3.3)

Now we introduce a branching mechanism to the interacting particle system. Suppose that for
each x ∈ R we have a discrete probability distribution p(x) = {pi(x) : i = 0, 1, · · · } such that
each pi(·) is a Borel measurable function on R. This serves as the distribution of the offspring
number produced by a particle that dies at site x ∈ R. We assume that

∞
∑

i=1

ipi(x) ≤ 1, (3.4)

and

σp(x) :=

∞
∑

i=1

i2pi(x) (3.5)

is bounded in x ∈ R. For 0 ≤ z ≤ 1, let

g(x, z) :=
∞
∑

i=0

pi(x)z
i. (3.6)

Let Γθ(µ, dν) be the probability kernel on Mθ(R) defined by

∫

Mθ(R)
F (ν)Γθ(µ, dν) =

1

〈1, µ〉

〈

∞
∑

j=0

pj(x)F
(

µ+ (j − 1)θ−1δx
)

, µ

〉

, (3.7)

where µ ∈Mθ(R) is given by

µ =
1

θ

θ〈1,µ〉
∑

i=1

δxi
.

For a constant λ > 0, we define the bounded operator Bθ on B(Mθ(R) by

BθF (µ) = λθ(θ ∧ 〈1, µ〉)

∫

Mθ(R)
[F (ν) − F (µ)]Γθ(µ, dν). (3.8)

For Aθ generates a Markov process on Mθ(R), then Lθ := Aθ + Bθ also generates a Markov
process; see Problem 4.11.3 of [6]. By martingale inequality and Theorem 4.3.6 of [6], we obtain
that the corresponding Markov process has a modification with sample paths inD([0,∞),Mθ(R)).
We shall call the process generated by Lθ an interacting-branching particle system with para-
meter (a, ρ, γ, λ, p) and unit mass 1/θ.
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3.2 Particle system approximation

Recall that

Ψ0(x, z) :=
1

2
σ(x)z2 +

∫ ∞

l
ξγ(x, dξ)z +

∫ l

0
(e−zξ − 1 + zξ)γ(x, dξ). (3.9)

According to the conditions (i) and (iii) on the σ and γ(x, dξ), Ψ0(x, φ(x)) ∈ C(R) can be
extended continuously to R̂ for φ ∈ C2

∂(R)++. And, if

F (µ) = f(〈φ1, µ〉, · · · , 〈φn, µ〉), µ ∈M(R), (3.10)

for f ∈ C2(Rn) and {φi} ⊂ C2(R), then

AF (µ) =
1

2

n
∑

j=1

f i(〈φ1, µ〉, · · · , 〈φn, µ〉)〈aφ
′′
i , µ〉

+
1

2

n
∑

i,j=1

f ij(〈φ1, µ〉, · · · , 〈φn, µ〉)

∫

R2

ρ(x− y)φ′i(x)φ
′
j(y)µ

2(dxdy) (3.11)

and

B′F (µ) =
1

2

n
∑

i,j=1

f ij(〈φ1, µ〉, · · · , 〈φn, µ〉)〈σφiφj , µ〉

−

∫

R

µ(dx)

∫ ∞

l
ξγ(x, dξ)

n
∑

i=1

f i(〈φ1, µ〉, · · · , 〈φn, µ〉)φi(x)

+

∫

R

µ(dx)

∫ l

0
{f(〈φ1, µ〉 + ξφ1(x), · · · , 〈φn, µ〉 + ξφn(x))

− f(〈φ1, µ〉, · · · , 〈φn, µ〉) − ξ

n
∑

i=1

f i(〈φ1, µ〉, · · · , 〈φn, µ〉)φi(x)}γ(x, dξ).(3.12)

Suppose {X
(k)
t : t ≥ 0} is a sequence of cádlág interacting-branching particle systems with

parameters (a, ρ, γ, λk, p
(k)) and unit mass 1/k and initial states Xk

0 = µk ∈ Mk(R). We can

regard {X
(k)
t : t ≥ 0} as a process with state space M(R̂). Let σk

p and gk be defined by (3.5)

and (3.6) respectively with pi replaced by p
(k)
i . Let

ψk(x, z) := kλk[gk(x, 1 − z/k) − (1 − z/k)], 0 ≤ z ≤ k. (3.13)

We have that d
dzψk(x, 0+) = λk[1 − d

dz gk(x, 1)] and d2

dz2ψk(x, 0+) = λkσ
k
p/k.

Lemma 3.1 Suppose that the sequence {λkσ
k
p/k} and {〈1, µk〉} are bounded. Then {X

(k)
t : t ≥

0} form a tight sequence in D([0,+∞),M(R̂)).

Proof. By (3.4), it is easy to see that {〈1,X
(k)
t 〉 : t ≥ 0} is a supermartingale. By using

martingale inequality, one can check that {X
(k)
t : t ≥ 0} satisfies the compact containment

condition. Let Lk denote the generator of {X
(k)
t : t ≥ 0} and let F be given by (3.10) with

f ∈ C2
0 (Rn) and with each φi ∈ C2

∂(R)++. Then

F (X
(k)
t ) − F (X

(k)
0 ) −

∫ t

0
LkF (X(k)

s )ds, t ≥ 0,
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is a martingale and the desired tightness result follows from Theorem 3.9.4 of Ethier and Kurtz
[6]. �

In the sequel of this subsection, we assume {φi} ⊂ C2
∂(R). In this case, (3.10), (3.11) and

(3.12) can be extended to continuous functions on M(R̂). Let ÂF (µ) and B̂′F (µ) be defined
respectively by the right hand side of the (3.11) and (3.12) and let L̂′F (µ) = ÂF (µ) + B̂′F (µ),
all defined as continuous functions on M(R̂).

Lemma 3.2 Let D0(L̂
′) be the totality of all functions of the form (3.10) with f ∈ C2

0 (Rn)
and with each φi ∈ C2

∂(R)++. Suppose that µk → µ ∈ M(R̂) as k → +∞ and the sequence
{λkσ

k
p/k} is bounded. If for each h ≥ 0, ψk(x, z) → Ψ0(x, z) uniformly on R × [0, h] and

d
dzψk(x, 0+) → d

dz Ψ0(x, 0) uniformly on R as k → +∞, then for each F ∈ D0(L̂
′),

F (ωt) − F (ω0) −

∫ t

0
L̂′F (ωs)ds, t ≥ 0, (3.14)

is a martingale under any limit point Qµ of the distributions of {X
(k)
t : t ≥ 0}, where {ωt : t ≥ 0}

denotes the coordinate process of D([0,∞),M(R̂)).

Proof. By passing to a subsequence if it is necessary, we may assume that the distribution of

{X
(k)
t : t ≥ 0} on D([0,+∞),M(R̂)) converges to Qµ. Using Skorokhod’s representation, we

may assume that the processes {X
(k)
t : t ≥ 0} are defined on the same probability space and

the sequence converges almost surely to a càdlàg process {Xt : t ≥ 0} with distribution Qµ on

D([0,∞),M(R̂)) ([6], p.102). Let K(X) = {t ≥ 0 : P{Xt = Xt−} = 1}. By Lemma 3.7.7 of [6],
the complement of the set K(X) is at most countable and by Proposition 3.5.2 of [6], for each

t ∈ K(X) we have a.s. limk→∞X
(k)
t = Xt. Our proof will be divided into 3 steps.

Step 1. We shall show that

Mt(φ) := 〈φ,Xt〉 − 〈φ,X0〉 −
1

2

∫ t

0
〈aφ′′,Xs〉ds +

∫ t

0
ds

∫

R

Xs(dx)φ(x)

∫ ∞

l
ξγ(x, dξ), t ≥ 0,

(3.15)
is a square-integrable martingale with φ ∈ C2

∂(R). First, Fatou’s Lemma tells us E〈1,Xt〉 ≤

lim inf
k→∞

E〈1,X
(k)
t 〉. On the other hand, for µk ∈Mk(R) we can get that

Lk〈φ, µk〉 =
1

2
〈aφ′′, µk〉 −

k ∧ µk(1)

µk(1)
〈
d

dz
ψk(x, 0+)φ(x), µk〉.

Then for t ∈ K(X)

E〈1,Xt〉 ≤ lim inf
k→∞

E〈1,X
(k)
t 〉 ≤ lim inf

k→∞
E〈1,X

(k)
0 〉 ≤ 〈1,X0〉 (3.16)

and a.s.

lim
k→∞

Lk〈φ,X
(k)
t 〉 = L̂′〈φ,Xt〉 =

1

2
〈aφ′′,Xt〉 −

∫

R

Xt(dx)φ(x)

∫ ∞

l
ξγ(x, dξ).

Suppose that {Hi}
n
i=1 ⊂ C(M(R̂)) and {ti}

n+1
i=1 ⊂ K(X) with 0 ≤ t1 < · · · < tn < tn+1. Then

E
{[

〈φ,Xtn+1〉 − 〈φ,Xtn〉 −

∫ tn+1

tn

L̂′〈φ,Xs〉ds
]

n
∏

i=1

Hi(Xti)
}
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= E
{

〈φ,Xtn+1〉
n

∏

i=1

Hi(Xti)
}

− E
{

〈φ,Xtn〉
n

∏

i=1

Hi(Xti)
}

−

∫ tn+1

tn

E
{

L̂′〈φ,Xs〉

n
∏

i=1

Hi(Xti)
}

ds

= lim
k→∞

E
{

〈φ,X
(k)
tn+1

〉

n
∏

i=1

Hi(X
(k)
ti

)
}

− lim
k→∞

E
{

〈φ,X
(k)
tn 〉

n
∏

i=1

Hi(X
(k)
ti

)
}

− lim
k→∞

∫ tn+1

tn

E
{

Lk〈φ,X
(k)
s 〉

n
∏

i=1

Hi(X
(k)
ti

)
}

ds

= lim
k→∞

E
{

[〈φ,X
(k)
tn+1

〉 − 〈φ,X
(k)
tn 〉 −

∫ tn+1

tn

Lk〈φ,X
(k)
s 〉ds]

n
∏

i=1

Hi(X
(k)
ti

)
}

= 0.

Since {Xt : t ≥ 0} is right continuous, the equality

E
{

[〈φ,Xtn+1〉 − 〈φ,Xtn〉 −

∫ tn+1

tn

L̂′〈φ,Xs〉ds]
n

∏

i=1

Hi(Xti)
}

= 0

holds without the restriction {ti}
n+1
i=1 ⊂ K(X). That is (3.15) is a martingale. Observe that if

F (µ) = f(〈1, µ〉) with f ∈ C2
0 (R), then AθF (µ) = 0 and BθF(µ) is equal to

λ[θ ∧ 〈1, µ〉]

2θ〈1, µ〉

+∞
∑

j=1

(j − 1)2〈pjf
′′(〈1, µ) + ξj), µ〉 (3.17)

for some constant 0 < ξj < (j − 1)/θ. This follows from Taylor’s expansion. Recall that the
sequence {λkσ

k
p/k} and {〈1, µk〉} are bounded. By the same argument as in the proof of Lemma

2.1, we have
sup

k
E〈1,X(k)

s 〉2 <∞.

It follows from the Fatou’s Lemma that E〈1,Xt〉
2 ia a locally bounded function of t ≥ 0. Thus

(3.15) is a square-integrable martingale.

Step 2. We shall show that under Qµ

exp{−〈φ, ωt〉} − exp{−〈φ, ω0〉} −

∫ t

0
L̂′ exp{〈φ, ωs〉}ds, t ≥ 0, (3.18)

is a martingale for φ ∈ C2
∂(R)++. Let µk ∈Mk(R) is given by

µk =
1

k

k〈1,µk〉
∑

i=1

δxi
.

Note that

Ak exp{−〈φ, µk〉} = −
1

2
exp{−〈φ, µk〉}〈aφ

′′, µk〉 +
1

2k
exp{−〈φ, µk〉}〈(cφ

′)2, µk〉

+
1

2
exp{−〈φ, µk〉}

∫

R2

ρ(x− y)φ′(x)φ′(y)µk(dx)µk(dy) (3.19)
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and

Bk exp{−〈φ, µk〉}

=
kλk(k ∧ µk(1))

µk(1)

〈

[
∞
∑

j=0

pj(x)e
−〈φ,µk〉−

j−1
k

φ(x) −
∞
∑

j=0

pj(x)e
−〈φ,µk〉], µk

〉

= exp{−〈φ, µk〉}

〈

kλk(k ∧ µk(1))

µk(1)
[
∞

∑

j=0

pj(x)(e
− j−1

k
φ(x) − 1)], µk

〉

= exp{−〈φ, µk〉}

〈

(k ∧ µk(1))

µk(1)
ψk(x, k − ke−φ(x)/k)eφ(x)/k, µk

〉

. (3.20)

Since for each h ≥ 0, ψk(x, z) → Ψ0(x, z) uniformly on R × [0, h], we conclude for t ∈ K(X)

a.s. limk→∞Lk exp{−〈φ,X
(k)
t 〉} = L̂′ exp{−〈φ,Xt〉} boundedly by (3.16), (3.19), (3.20) and the

definition of L̂′. By the same argument as in Step 1 we can get that (3.18) is a martingale. That
is

Wt(φ) := e−〈φ,Xt〉 −

∫ t

0
e−〈φ,Xs〉[−

1

2
〈aφ′′,Xs〉+

1

2

∫

R̂

〈h(z − ·)φ′,Xs〉
2dz + 〈Ψ0(φ),Xs〉]ds, t ≥ 0,

(3.21)
is a martingale with φ ∈ C2

∂(R)++, where Ψ0(φ) := Ψ0(x, φ(x)). Then {exp{−〈φ,Xt〉} : t ≥ 0}
is a special semi-martingale with φ ∈ C2

∂(R)++.

Step 3. Let S(R̂) denote the space of finite signed Borel measures on R̂ endowed with the
σ-algebra generated by the mappings µ 7→ 〈1, µ〉 for all f ∈ C(R̂). Let S(R̂)◦ = S(R̂) \ {0}. We
define the optional random measure N(ds, dν) on [0,∞) × S(R̂)◦ by

N(ds, dν) =
∑

s>0

1{∆Xs 6=0}δ(s,∆Xs)(ds, dν),

where ∆Xs = Xs−Xs− ∈ S(R̂). Let N̂(ds, dν) denote the predictable compensator of N(ds, dν)
and let Ñ(ds, dν) denote the corresponding measure. By the same argument as in the proof of
Theorem 2.3, we can obtain that for φ ∈ C2

∂(R)

〈φ,Xt〉 = 〈φ, µ〉 +

∫ t

0
〈aφ′′,Xs〉ds+M c

t (φ) +

∫ t+

0

∫

S(R̂)
ν(φ)Ñ(ds, dν)

−

∫ t

0
ds

∫

R̂

Xs(dx)φ(x)

∫ ∞

l
ξγ(x, dξ), (3.22)

where M c
t (φ) is a continuous local martingale. We also conclude that the jump measure of the

process X has compensator

N̂(ds, dν) = dsXs(dx)1{0<ξ<l}γ(x, dξ) · δξδx
(dν), ν ∈M(R̂) \ {0}, (3.23)

and for {φi}
2
i=1 ⊂ C2

∂(R)++,

〈M c(φ1),M
c(φ2)〉t =

1

2

∫ t

0

∫

R̂2

ρ(x− y)φ′1(x)φ
′
2(y)Xs(dx)Xs(dy)ds

+
1

2

∫ t

0

∫

R̂2

ρ(x− y)φ′2(x)φ
′
1(y)Xs(dx)Xs(dy)ds

+

∫ t

0
〈σφ1φ2,Xs〉ds. (3.24)
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Let f ∈ C2
0 (Rn) and {φi}

n
i=1 ⊂ C2

∂(R)++. By (3.22), (3.23), (3.24) and Itô’s formula, we obtain

f(〈φ1,Xt〉, · · · , 〈φn,Xt〉)

= f(〈φ1,X0〉, · · · , 〈φn,X0〉) +
1

2

n
∑

i=1

∫ t

0
f i(〈φ1,Xs〉, · · · , 〈φn,Xs〉)〈aφ

′′
i ,Xs〉ds

+
1

2

n
∑

i,j=1

∫ t

0
f ij(〈φ1,Xs〉, · · · , 〈φn,Xs〉)d〈M

c(φi),M
c(φj)〉t

−
1

2

n
∑

i=1

∫ t

0
ds

∫

R̂

Xs(dx)

∫ ∞

l
γ(x, dξ)f i(〈φ1,Xs〉, · · · , 〈φn,Xs〉)ξφi(x)

+

∫ t

0
ds

∫

R̂

Xs(dx)

∫ l

0
γ(x, dξ){f(〈φ1,Xs〉 + ξφ1(x), · · · , 〈φn,Xs〉 + ξφn(x))

− f(〈φ1,Xs〉, · · · , 〈φn,Xs〉) − ξ

n
∑

i=1

φi(x)f
i(〈φ1,Xs〉, · · · , 〈φn,Xs〉)}

+(loc.mart.).

Hence

F (Xt) − F (X0) −

∫ t

0
L̂′F (Xs)ds, t ≥ 0,

is a local martingale for each F ∈ D0(L̂
′). Since f ∈ C2

0 (Rn) and φi ∈ C2
∂(R)++, both F and

L̂′F are bounded functions on M(R̂). Thus (3.14) is martingale. We complete the proof. �

Lemma 3.3 Let D0(L̂
′) be as in Lemma 3.2. Then for each µ ∈ M(R̂), there is a probability

measure Qµ on D([0,∞),M(R̂)) under which (3.14) is a martingale for each F ∈ D0(L̂
′).

Proof. We only need to construct a sequence ψk(x, z) such that for each h ≥ 0, ψk(x, z) →
Ψ0(x, z) uniformly on R × [0, h], and d

dzψk(x, 0+) → d
dz Ψ0(x, 0) uniformly on R as k → +∞.

Moreover, { d2

dz2ψk(x, 0+)} should be a bounded sequence.

Let Ψ1(x, z) = 1
2σ(x)z2 +

∫ l
0(e−zξ − 1 + zξ)γ(x, dξ). We first define the sequences

λ1,k = 1 + k||σ|| + sup
x

∫ l

0
ξ(1 − e−kξ)γ(x, dξ)

and

g1,k(x, z) = z +
Ψ1(x, k(1 − z))

kλ1,k
.

It is easy to check that g1,k(x, 1) = 1 and

dn

dzn
g1,k(x, z) ≥ 0, x ∈ R, 0 ≤ z ≤ 1,

for all integer n ≥ 0. Consequently, g1,k(x, ·) is a probability generating function. Let ψ1,k(x, z)
be defined by (3.13) with (λk, gk) replaced by (λ1,k, g1,k). Then

ψ1,k(x, z) = Ψ1(x, z) for 0 ≤ z ≤ k.

Let b(x) :=
∫ ∞
l ξγ(x, dξ). Suppose ||b|| > 0. Set

g2,k(x, z) = z + ||b||−1b(x)(1 − z).
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Then g2,k(x, ·) is a probability generating function. Let λ2,k = ||b|| and let ψ2,k(x, z) be defined
by (3.13) with (λk, gk) replaced by (λ2,k, g2,k). Then we have

ψ2,k(x, z) = b(x)z.

Finally we let λk = λ1,k + λ2,k and gk = λ−1
k (λ1,kg1,k + λ2,kg2,k). Then the sequence ψk defined

by (3.13) is equal to ψ1,k + ψ2,k which satisfies the required conditions obviously. �

Theorem 3.1 Let {ωt : t ≥ 0} denote the coordinate process of D([0,∞),M(R)). Then for
each µ ∈ M(R) there is a probability measure Qµ on D([0,∞),M(R)) such that {ωt : t ≥ 0}
under Qµ is a solution of the (L′, µ)-martingale problem.

Proof . For each µ ∈M(R), let Qµ be the probability measure on D([0,∞),M(R̂)) provided by
Lemma 3.2. We claim that for any T > 0

Qµ{ωt({∂}) = 0 for all t ∈ [0, T ]} = 1.

Consequently, Qµ is supported by D([0,∞),M(R)). In fact, for any φ ∈ C2
∂(R)+, by Step 1 in

the proof of Lemma 3.2,

Mt(φ) := 〈φ, ωt〉− 〈φ, µ〉−
1

2

∫ t

0
〈aφ′′, ωs〉ds+

∫ t

0
ds

∫

R̂

ωs(dx)φ(x)

∫ ∞

l
ξγ(x, dξ), t ≥ 0, (3.25)

is a càdlàg square-integrable martingale with quadratic variation process given by

〈M(φ)〉t =

∫ t

0

〈

(σ +

∫ l

0
ξ2γ(·, dξ))φ2, ωs

〉

ds +

∫ t

0
ds

∫

R̂

〈h(z − ·)φ′, ωs〉
2dz.

For k ≥ 1, let

φk(x) =

{

exp{− 1
|x|2−k2}, if |x| > k,

0, if |x| ≤ k.

One can check that {φk} ⊂ C2
∂(R) such that lim|x|→∞ φk(x) = 1, lim|x|→∞ φk(x)

′ = 0 and
φk(·) → 1{∂}(·) boundedly and pointwise. ||φ′k|| → 0 and ||φ′′k|| → 0 as k → ∞. Let σ0 =

σ +
∫ l
0 ξ

2γ(·, dξ). By Theorem 1.6.10 of [8], we have

Qµ{ sup
0≤t≤T

|Mt(φk) −Mt(φj)|
2}

≤ 4

∫ T

0
Qµ{〈σ0(φk − φj)

2, ωs〉}ds + 4

∫ T

0
ds

∫

R̂

Qµ{〈h(z − ·)(φ′k − φ′j), ωs〉
2}dz.

By dominated convergence theorem, Qµ{sup0≤t≤T |Mt(φk)−Mt(φj)〉|
2} → 0 as k, j → 0. There-

fore, there exists M∂ = (M∂
t )t≥0 such that for every t > 0,

Qµ{|Mt(φk) −M∂
t |

2} → 0

and
sup

0≤s≤t
|Ms(φk) −M∂

s | → 0 in probabilty

as k → ∞. We obtain M∂ has càdlàg path. By Lemma 2.1.2 of [8], M∂ is a square-integrable
martingale with zero mean. It follows from (3.25) that

M∂
t := ωt({∂}) +

∫ t

0
dsωs({∂})

∫ ∞

l
ξγ(∂, dξ)
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is a càdlàg square-integrable martingale with zero mean. Thus Qµ(ωt({∂})) = 0. Then the
claim follows from the right continuity of

{

ωt({∂}) : t ≥ 0
}

. We have

F (ωt) − F (ω0) −

∫ t

0
L′F (ωs)ds, t ≥ 0,

is martingale for F ∈ D0(L̂
′). Thus by Remark 2.1, it is a local martingale for F ∈ D(L). �

Combining Theorem 2.2 and Theorem 3.1 we get that the (L′, µ)-martingale problem is well-
posed. The following theorem will show that the existence of solutions to (L, µ)-martingale
problem.

Theorem 3.2 For each µ ∈M(R) there is a probability measure Qµ on (Ω,F) such that Qµ is
a solution of the (L, µ)-martingale problem.

Proof . Let λn(µ) = 1{〈1,µ〉<n}

∫

µ(dx)
∫ ∞
l γ(x, dξ) and define a transition function on M(R) ×

B(M(R)) by

Γ(µ, dν) :=

{

δµ(dν),
∫

µ(dx)
∫ ∞
l γ(x, dξ) = 0,

(
∫

µ(dx)
∫ ∞
l γ(x, dξ))−1µ(dx)γ(x, dξ)δµ+ξδx

(dν), otherwise.

Define Bn on B(M(R)) by

BnF (µ) := λn(µ)

∫

(F (ν)−F (µ))Γ(µ, dν) = 1{〈1,µ〉<n}

∫

µ(dx)

∫ ∞

l
(F (µ+ξδx)−F (µ))γ(x, dξ).

Since the (L′, µ)-martingale problem is well-posed, there exists a semigroup (Q′
t)t≥0 on B(M(R))

with transition function given by (2.19) and full generator denoted by L′
0. We can follow from

Problem 4.11.3 of [6] to conclude that there exists a Markov process denoted by Xn = {Xn
t : t ≥

0} whose transition semigroup has full generator given by L′
0 + Bn. In the following we assume

that Xn
0 = µ a.s.. Thus (L′

0 +Bn, µ)-martingale problem is well-posed. Since L′+Bn ⊂ L′
0 +Bn,

Xn is also a solution of (L′ + Bn, µ)-martingale problem. Let Un := {µ ∈ M(R) : 〈1, µ〉 <
n}. According to Theorem 4.3.6 of [6], there is a modification of Xn with sample path in
D([0,∞),M(R)). Set

τn := inf{t ≥ 0 : 〈1,Xn
t 〉 ≥ n or 〈1,Xn

t−〉 ≥ n}

and X̃n = Xn
·∧τn . Then X̃n is a solution of the stopped martingale problem for (L, Un) and

by Theorem 4.6.1 of [6], X̃n is the unique solution of the stopped martingale problem for
(L′

0 + Bn, δµ, Un). Put

τn
k := inf{t ≥ 0 : 〈1, X̃n

t 〉 ≥ k or 〈1, X̃n
t−〉 ≥ k}.

For k < n, X̃n
·∧τn

k
is a solution of the stopped martingale problem for (L′

0 +Bk, δµ, Uk) and hence

has the same distribution as X̃k. On the other hand, since X̃n is a solution of the stopped
martingale problem for (L, Un), it follows from Lemma 2.3 that

sup
n

E sup
0≤s≤t

〈1, X̃n
s 〉 <∞.

Thus for each t > 0,
lim

n→∞
P{τn ≤ t} = 0.
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For any k, m ≥ 1, let Y k, Y m be two D([0,∞),M(R))-valued random variables such that they
have same distributions with X̃k and X̃m respectively and Y k(t) = Y m(t) for t ≤ τk∧m. Thus

the Skorohod distance between Y k and Y m is less than e−τk∧m
. By Corollary 3.1.6 of [6], we

conclude that there exist a process X∞ such that X̃n ⇒ X∞. Let

τ∞n = inf{t ≥ 0 : 〈1,X∞
t 〉 ≥ n or 〈1,X∞

t−〉 ≥ n}.

Since the distribution of X̃m
·∧τm

n
does not depend on m ≥ n, X∞

·∧τ∞
n

has the same distribution

with X̃n. Therefore,
P{τ∞n ≤ t} = P{τn ≤ t}

and for each F ∈ D(L)

F (X∞
t∧τ∞

n
) −

∫ t∧τ∞
n

0
LF (X∞

s )ds

is a martingale for each n. We see X∞ is a solution of the (L, µ)-martingale problem. �

Combining Theorem 2.6 and Theorem 3.2, we have that the (L, µ)-martingale problem is well-
posed. Thus we complete the construction of SDSM with general branching mechanism.The
next theorem gives another martingale characterization of SDSM which is a direct consequence
of Theorem 2.3 and Itô’s formula.

Theorem 3.3 Let {ωt : t ≥ 0} denote the coordinate process of D([0,∞),M(R)). Then a
probability measure Qµ on D([0,∞),M(R)) is a solution of (L, µ)-martingale problem if and
only if for µ ∈ M(R) and φ ∈ C2

c (R)+, {〈φ, ωt〉} is a semimartingale which has canonical
decomposition given by

〈φ, ωt〉 = 〈φ, µ〉 +

∫ t

0
〈aφ′′, ωs〉ds +M c

t (φ) +

∫ t+

0

∫

M(R)◦
〈φ, ν〉1{〈1,ν〉<1}Ñ(ds, dν)

+

∫ t+

0

∫

M(R)◦
〈φ, ν〉1{〈1,ν〉≥1}N(ds, dν) −

∫ t

0
ds

∫

R

ωs(dx)

∫ ∞

1
ξγ(x, dξ)φ(x),(3.26)

where {M c
t (φ) : t ≥ 0} is a continuous local martingale with quadratic variation process given by

〈M c(φ)〉t =

∫ t

0
〈σφ2, ωs〉ds+

∫ t

0
ds

∫

R

〈h(z − ·)φ′, ωs〉
2dz, (3.27)

and
N(ds, dν) =

∑

s>0

1{∆ωs 6=0}δ(s,∆ωs)(ds, dν)

is an optional random measure on [0,∞)×M(R)◦, where ∆ωs = ωs−ωs− ∈M(R) and Ñ(ds, dν)
denotes the corresponding martingale measure. The predictable compensator of N(ds, dν) is
given by N̂(ds, dν) = dsK(ωs, dν), where K(µ, dν) is determined by

∫

M(R)◦
F (ν)K(µ, dν) =

∫

R

µ(dx)

∫ ∞

0
F (ξδx)γ(x, dξ)

for F ∈ B(M(R)).



33

4 Moment formulas, mean and spatial covariance measures

In this section, we construct a dual process for SDSM and investigate some properties of SDSM.
In accordance with the notation used in Subsection 2.2, we can define a function-valued Markov
process by

Y ′
t = P

Mτk
t−τk

ΓkP
Mτk−1
τk−τk−1

Γk−1 · · ·P
Mτ1
τ2−τ1Γ1P

M0
τ1 Y0, τk ≤ t < τk+1, 0 ≤ k ≤M0 − 1. (4.1)

Let X = {Xt : t ≥ 0} be an SDSM which is the unique solution of the martingale problem for L.
If for m ≥ 2, supx[

∫ ∞
0 ξmγ(x, dξ)] < ∞, then by the same argument as in the proof of Lemma

2.1 and martingale inequality, we have that

E sup
0≤s≤t

〈1, ωs〉
m <∞.

Then it follows from the same argument of Theorem 2.1 that

E 〈f,Xm
t 〉 = E

σ,γ
m,f

[ 〈

Y ′
t , µ

Mt
〉

exp
{

∫ t

0
(2Ms +

Ms(Ms − 1)

2
−Ms − 1)ds

}]

(4.2)

for any t ≥ 0 and f ∈ B(Rm).

Skoulakis and Adler [15] computed moments as a limit of moments for the particle picture;
see Section 3 of [15]. Stimulated by [15], in this section, we compute moments via the dual
relationship (4.2). In fact, by the construction (4.1) of {Y ′

t : t ≥ 0} we have

E
σ,γ
m,f

[

〈Y ′
t , µ

Mt〉 exp{

∫ t

0
(2Ms +

Ms(Ms − 1)

2
−Ms − 1)ds}

]

= 〈Pm
t f, µm〉

+
1

2

m
∑

i,j=1,i6=j

∫ t

0
E

σ,γ
m−1,ΨijP m

u f

[

〈Y ′
t−u, µ

Mt−u〉 exp{

∫ t−u

0
(2Ms +

Ms(Ms − 1)

2
−Ms − 1)ds}

]

du

+
m

∑

a=2

( m
∑

{a}

∫ t

0
E

σ,γ
m−k+1,Φi1,··· ,iaP m

u f

[

〈Y ′
t−u, µ

Mt−u〉

× exp{

∫ t−u

0
(2Ms +

Ms(Ms − 1)

2
−Ms − 1)ds}

]

du

)

, (4.3)

where {a} = {1 ≤ i1 < i2 < · · · < ia ≤ m}. We remark that if infx∈R |c(x)| ≥ ǫ > 0, the
semigroup (Pm

t )t>0 is uniformly elliptic and has density pm
t (x, y) satisfying

pm
t (x, y) ≤ const · gm

εt (x, y), t > 0, x, y ∈ R
m,

where gm
t (x, y) denotes the transition density of the m-dimensional standard Brownian motion

(see Theorem 0.5 of [5]). In the following we always assume that supx[
∫

ξ2γ(x, dξ)] <∞.

Theorem 4.1 Suppose that (Ω,Xt,Qµ) is a realization of the SDSM with parameters (a, ρ,Ψ)
with infx |c(x)| ≥ ǫ > 0. Let f ∈ B(R) and t > 0. Then we have the first moment formula for
X as follows:

E(〈f,Xt〉) =

∫

R

∫

R

f(y)pt(x, y)dyµ(dx), (4.4)

and ∀ 0 < s ≤ t, f ∈ B(R) and g ∈ B(R), we have the second order moment formula

E(〈f,Xs〉〈g,Xt〉)
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= E(〈f,Xs〉〈Pt−sg,Xs〉)

=

∫

R

∫

R

∫

R2

f(y1)

(∫

R

g(z)pt−s(y2, z)dz

)

p2
s(x, y; y1, y2)dy1dy2µ(dy)µ(dx)

+

∫ s

0
du

∫

R

µ(dx)

∫

R

dy

∫

R2

dy1dy2ps−u(x, y)σ(y)p2
u(y, y; y1, y2)

× f(y1)

(
∫

R

pt−s(y2, z)g(z)dz

)

+

∫ s

0
du

∫

R

µ(dx)

∫

R

dy

∫

R2

dy1dy2ps−u(x, y)

(∫ ∞

0
ξ2γ(y, dξ)

)

p2
u(y, y; y1, y2)

× f(y1)

(
∫

R

pt−s(y2, z)g(z)dz

)

. (4.5)

Proof. (4.4) is a direct conclusion of (4.3). Using (4.4) and Markov property of X we have
E(〈f,Xs〉〈g,Xt〉) = E(〈f,Xs〉〈Pt−sg,Xs〉). Then (4.5) is also a direct conclusion of (4.3). �

Following [15], we define two deterministic measures as follows:

1. The mean measure mt defined on B(R) by

mt(A) = E(Xt(A)).

2. The spatial measure st defined on B(R × R) by

st(A1 ×A2) = E(Xt(A1)Xt(A2)).

By Theorem 4.1, we have following proposition.

Proposition 4.1 For all t > 0 the measures mt and st have densities with respect to Lebesgue
measure,denoted by m(t; y) and s(t; y1, y2), respectively. We have that

m(t; y) =

∫

R

pt(x, y)µ(dx)

for all y ∈ R and

s(t; y1, y2) =

∫

R2

p2
t (y, z; y1, y2)µ(dy)µ(dz)

+

∫ t

0
ds

∫

R

µ(dy)

∫

R

dzσ(z)p2
s(z, z; y1, y2)pt−s(y, z)

+

∫ t

0
ds

∫

R

µ(dy)

∫

R

dz

∫ ∞

0
ξ2γ(z, dξ)p2

s(z, z; y1, y2)pt−s(y, z) (4.6)

for all y1, y2 ∈ R.
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