On Seneta-Heyde Scaling for a stable branching random walk

Hui He, Jingning Liu and Mei Zhang

Abstract. We consider a discrete-time branching random walk in the boundary case, where the associated random walk is in the domain of attraction of an α-stable law with $1 < \alpha < 2$. We prove that the derivative martingale D_n converges to a non-trivial limit D_∞ under some regular conditions. We also study the additive martingale W_n, and prove $n^{\frac{1}{\alpha}}W_n$ converges in probability to a constant multiple of D_∞.

Key words and phrases: branching random walk, domain of attraction, stable distribution, Seneta-Hedye scaling, derivative martingale, additive martingale.

Mathematics Subject Classification (2010): 60J80, 60F05

1. Introduction

We consider a discrete-time one-dimensional branching random walk. It starts with an initial ancestor particle located at the origin. At time 1, the particle dies, producing a certain number of new particles. These new particles are positioned according to the distribution of the point process Θ. At time 2, these particles die, each giving birth to new particles positioned (with respect to the birth place) according to the law of Θ. And the process goes on with the same mechanism. We assume the particles produce new particles independently of each other at the same generation and of everything up to that generation. This system can be seen as a branching tree T with the origin as the root.

For each vertex x on T, we denote its position by $V(x)$. The family of the random variables $(V(x))$ is usually referred as a branching random walk (Biggins [12]).

Throughout the paper, we assume the boundary case (in the sense of [15]):

$$
\begin{align*}
E\left(\sum_{|x|=1} 1\right) &> 1, & E\left(\sum_{|x|=1} e^{-V(x)}\right) &= 1, & E\left(\sum_{|x|=1} V(x)e^{-V(x)}\right) &= 0,
\end{align*}
$$

(1.1)

where $|x|$ denotes the generation of x. Every branching random walk satisfying certain mild integrability assumptions can be reduced to this case by some renormalization; see Jaffuel [25] for more details. Note that (1.1) implies T is a super-critical Galton-Watson tree.

One could immediately see from (1.1) that

$$W_n := \sum_{|x|=n} e^{-V(x)}, \quad n \geq 0,$$

is a martingale, which is referred to as the additive martingale in the literature. Since (W_n) is nonnegative, it converges almost surely to 0 (see Biggins [8] and Lyons [28]). It is natural to ask at which rate W_n goes to 0, and this is our main issue to discuss.
This issue is usually called Seneta-Heyde norming problem. As for the Seneta-Heyde theorem for Galton-Watson processes, see Heyde [23], Seneta [30], etc. The study of the Seneta-Heyde norming for the branching random walk in a general case (i.e., without assumption (1.1)) goes back at least to Biggins and Kyprianou [13] and [16]. The boundary case has first been considered by Biggins and Kyprianou [15]. Later, the converging rate of W_n associated with the one-dimensional random walk with finite variance (see (1.2)) has been investigated by Hu and Shi [24]. Recently, Aidekon and Shi [3] established the exact rate for W_n under some weaker integrability assumptions.

Define

$$D_n := \sum_{|x|=n} V(x)e^{-V(x)}, \quad n \geq 0.$$

Under the assumption $E(\Sigma_{|x|=1} V(x)e^{-V(x)}) = 0$, one can easily check that (D_n) is also a martingale, which is referred as the derivative martingale associated with $(V(x))$. It is the basis of our discussion on additive martingale W_n. The convergence of derivative martingale and related questions have been extensively studied. One can see Barral [5], Biggins [9] and [10] for non-boundary cases, Kyprianou [26] and Liu [27] for the boundary case. Later, Biggins and Kyprianou [14] studied it by considering the branching random walks as multi-type branching processes and gave a Kesten-Stigum theorem for the mean convergence. However, there is a small “gap” between the necessary condition and the sufficient condition. Recently, Aidekon [1] and Chen [21] filled the “gap”. To state their results, we give the following integrability condition:

(1.2)

$$E\left(\sum_{|x|=1} V(x)^2 e^{-V(x)} \right) < \infty.$$

Theorem A (Biggins and Kyprianou [14]). Assume (1.1) and (1.2). Then there exists a nonnegative random variable D_∞ such that

$$D_n \to D_\infty, \quad P\text{-a.s.}$$

Theorem B (Aidekon [1], Chen [21]). Assume (1.1) and (1.2). Then $P(D_\infty > 0) > 0$ if and only if the following condition holds:

(1.3)

$$E(X \log_+^2 X + \bar{X} \log_+ \bar{X}) < \infty,$$

where $\log_+ y := \max\{0, \log y\}$, $\log_+^2 y := (\log_+ y)^2$ for any $y > 0$, and

(1.4)

$$X := \sum_{|x|=1} e^{-V(x)}, \quad \bar{X} := \sum_{|x|=1} V(x)^+ e^{-V(x)}.$$

with $V(x)^+ := \max\{V(x), 0\}$. Moreover, when D_n is non-trivial, $P(D_\infty = 0)$ equals to the extinction probability of the branching random walk.

Many discussions in this paper are trivial if T is finite. So let us introduce the conditional probability

$$P^*(\cdot) := P(\cdot | \text{non-extinction}).$$

Obviously $W_n \to 0, \quad P^*\text{-a.s.}$

Theorem C (Aidekon and Shi [3]). Assume (1.1), (1.2) and (1.3). Under P^*, we have

$$\lim_{n \to \infty} n^{1/2} W_n = \left(\frac{2}{\pi \sigma^2} \right)^{1/2} D_\infty, \quad \text{in probability},$$
where \(D_\infty > 0 \) is the random variable in Theorem A, and
\[
\sigma^2 := \mathbb{E} \left(\sum_{|x|=1} V(x)^2 e^{-V(x)} \right) < \infty.
\]

In this paper, instead of (1.2) and (1.3), we shall study \(W_n \) under the following assumptions:
\[
\begin{align*}
(i) & \quad \mathbb{E} \left(\sum_{|x|=1} 1_{\{V(x) \leq -y\}} e^{-V(x)} \right) = o(y^{-\alpha}), \quad y \to \infty; \\
(ii) & \quad \mathbb{E} \left(\sum_{|x|=1} 1_{\{V(x) \geq y\}} e^{-V(x)} \right) \sim \frac{c}{y^\alpha}, \quad y \to \infty; \\
(iii) & \quad \mathbb{E}(X(\log + X)^\alpha + \tilde{X}(\log + \tilde{X})^{\alpha-1}) < \infty,
\end{align*}
\]
where \(\alpha \in (1, 2) \), \(c > 0 \), \(X \) and \(\tilde{X} \) are defined by (1.4). Under these assumptions, the step of the one-dimensional random walk associated with \((V(x)) \) (see Section 2) belongs to the domain of attraction of an \(\alpha \)-stable law. We remark here that for some technical reasons, constant \(c \) in (1.6) can not be replaced by a general slowly varying function.

We are ready to state our main results.

Theorem 1.1. Assume (1.1), (1.5), (1.6). Then there exists a finite nonnegative random variable \(D_\infty \) such that
\[
D_n \to D_\infty, \quad \mathbb{P}-\text{a.s.}
\]
Moreover, if condition (1.7) holds additionally, then \(\mathbb{P}^*(D_\infty > 0) = 1 \).

Theorem 1.2. Assume (1.1), (1.5), (1.6) and (1.7). We have, under \(\mathbb{P}^* \),
\[
\lim_{n \to \infty} n^{\frac{1}{\alpha}} W_n = \frac{\theta}{\Gamma(1 - 1/\alpha)} D_\infty \quad \text{in probability},
\]
where \(D_\infty \) is given in Theorem 1.1, and \(\theta \) is a positive constant defined in (2.1).

Theorem 1.3. Assume (1.1), (1.5), (1.6) and (1.7). We have,
\[
\limsup_{n \to \infty} n^{\frac{1}{\alpha}} W_n = \infty \quad \mathbb{P}^*-\text{a.s.}
\]

Remark. Theorem 1.3 tells us that the convergence in probability in Theorem 1.2 is optimal, which it can not be strengthened to almost surely convergence.

2. **Stable random walk**

In this section, we first introduce an one-dimensional random walk associated with the branching random walk. Then we give some properties which are essential in the proofs of Theorems 1.1, 1.2 and 1.3.

Throughout, for any vertex \(x \), \(x_i \) \((0 \leq i \leq |x|)\) denotes the ancestor of \(x \) at the \(i \)-th generation (in particular, \(x_0 = \emptyset, x_{|x|} = x \)).

The many-to-one formula. For \(a \in \mathbb{R} \), we denote by \(\mathbb{P}_a \) the probability distribution associated to the branching random walk \((V(x)) \) starting from \(a \), and \(\mathbb{E}_a \) the corresponding expectation. Under (1.1), there exists a sequence of independently and identically distributed (i.i.d.) real-valued random variables \(S_1, S_2 - S_1, S_3 - S_2, \ldots \), such that for any \(n \geq 1, a \in \mathbb{R} \) and any measurable function \(g : \mathbb{R}^n \to [0, \infty) \),
\[
\mathbb{E}_a \left(\sum_{|x|=n} g(V(x_1), \ldots, V(x_n)) \right) = \mathbb{E}_a \left(e^{S_n - a} g(S_1, \ldots, S_n) \right),
\]
where, under \(\mathbf{P}_a \), we have \(S_0 = a \) almost surely. We will write \(\mathbf{P} \) and \(\mathbf{E} \) instead of \(\mathbf{P}_0 \) and \(\mathbf{E}_0 \). Since \(\mathbf{E}(\sum_{|x|=1} V(x)e^{-V(x)}) = 0 \), we have \(\mathbf{E}(S_1) = 0 \). Under conditions (1.5) and (1.6), \(S_1 \) belongs to the domain of attraction of a spectrally positive stable law with characteristic function

\[
G_{\alpha, -1}(t) := \exp \left\{ -c_0 |t|^\alpha (1 - i \frac{t}{|t|} \tan \frac{\pi \alpha}{2}) \right\}, \quad c_0 > 0.
\]

We denote by \(S \) and \(\theta \) where, under \(\mathbf{P} \)

Consequently, there exist constants \(c_2 \geq c_1 > 0 \) such that

\[
c_1 (1 + u) \leq R(u) \leq c_2 (1 + u), \quad u \geq 0.
\]

In the following, \(c_3, c_4, c_5, \ldots \) are positive constants.

Similarly we introduce the (strict) descending ladder heights \(H_0 < H_1 < H_2 < \ldots \), if \(H_k := S_{T_k} \), with \(T_0 := 0 \) and \(T_k := \inf \{i > T_{k-1} : S_i > \max_{0 \leq j \leq T_{k-1}} S_j \} \), \(k \geq 1 \), and define:

\[
K(u) := \sum_{k=0}^{\infty} \mathbf{P}\{|H_k| \leq u\}.
\]

Sinai [31] and Rogozin [29] proved that

\[
\mathbf{P}(H_1 \geq x) \sim \frac{c_3}{x^{\alpha-1}}, \quad x \to +\infty.
\]

By Feller [22, Chap. XIV, (3.4)],

\[
K(x) \sim \frac{1}{\Gamma(1-\alpha)} \frac{1}{\Gamma(1+\alpha)} \cdot \frac{1}{\mathbf{P}(H_1 \geq x)}, \quad x \to \infty.
\]

Substituting (2.4) into this equation yields

\[
K(x) \sim c_4 x^{\alpha-1}, \quad x \to \infty.
\]

As a consequence, there exist constants \(c_6 \geq c_5 > 0 \) such that

\[
c_5 (1 + x)^{\alpha-1} \leq K(x) \leq c_6 (1 + x)^{\alpha-1}, \quad x \geq 0.
\]

Lemma 2.1. (Bingham [19]). We have for \(x \geq 0 \),

\[
\mathbf{P}(S_n \geq -x) \sim \frac{R(x)}{n^{\frac{\alpha}{2}} \Gamma(1 - \frac{\alpha}{2})} n \to \infty;
\]

\[
\mathbf{P}(-S_n \geq -x) \sim \frac{K(x)}{n^{\frac{1-\alpha}{2}} \Gamma(\frac{1}{\alpha})} n \to \infty,
\]

where \(S_n := \min_{i \leq n} S_i \) and \(-S_n := -\max_{i \leq n} S_i \).
Lemma 2.2. There exists \(c_7 > 0 \) such that for \(a \geq 0, b \geq -a \) and \(n \geq 1 \),

\[
(2.9) \quad P\{b \leq S_n \leq b + 1, S_n \geq -a\} \leq c_7 \cdot \frac{(1 + a)(1 + a + b)^{a-1}}{n^{1 + \frac{1}{a}}}.
\]

Proof. The proof is similar to Aidekon and Shi [4]. We only prove the case of \(n = 3k, k \geq 1 \). A similar argument works for the cases of \(n = 3k + 1 \) and \(n = 3k + 2 \).

According to Stone’s local limit theorem, there exist \(c_8 > 0 \) and \(c_9 > 0 \) such that \(\forall h \geq c_8 \) and \(n \geq 1 \),

\[
(2.10) \quad \sup_{r \in \mathbb{R}} P(r \leq \pm S_n \leq r + h) \leq c_9 \cdot \frac{h}{n^{\alpha}}.
\]

By the Markov property at time \(k \), we have

\[
(2.11) \quad P\{b \leq S_{3k} \leq b + c_8, S_{3k} \geq -a\} \leq P(S_k \geq -a) \sup_{x \geq -a} P(b - x \leq S_{2k} \leq b - x + c_8, S_{2k} \geq -a - x).
\]

Let \(\tilde{S}_j := S_{2k-j} - S_{2k} \). Then

\[
P(b - x \leq S_{2k} \leq b - x + c_8, S_{2k} \geq -a - x) \leq P(-b + x - c_8 \leq \tilde{S}_{2k} \leq -b + x, \ min_{1 \leq i \leq 2k} \tilde{S}_i \geq -a - b - c_8).
\]

Applying the Markov property, for \(x \geq -a \),

\[
(2.12) \quad \sum_{l \geq 0} P(z) \left(S_l \leq x, S_l \geq 0 \right) \leq E(z) \left(\sum_{l \geq 0} 1_{\{S_l \leq x, S_l \geq 0\}} \right) \leq E(\sum_{l \geq 0} 1_{\{S_l \leq x, S_l \geq -x\}}),
\]

Then (2.2) and (2.5), together with (2.7), (2.8) and (2.10), yield the Lemma. \(\square \)

Lemma 2.3. There exists a constant \(c_{10} > 0 \) such that for any \(b \geq -a \) and \(n \geq 1 \),

\[
P(S_n \leq b, S_n \geq -a) \leq c_{10} \cdot \frac{(1 + a)(1 + a + b)^{a}}{n^{1 + \frac{1}{a}}}.
\]

Proof. It is immediate from Lemma 2.2. \(\square \)

The following result is also an extension of Aidekon [1, Lemma B.2].

Lemma 2.4. There exists a constant \(c_{11} > 0 \) such that for any \(z \geq 0 \) and \(x > 0 \),

\[
\sum_{l \geq 0} P(S_l | S_l \leq x, S_l \geq 0) \leq c_{11} (1 + x)_{(0-1)}(1 + \min(x, z)).
\]

Proof. We first consider \(x < z \). Define \(\tau_x = \inf\{n, S_n \leq x\} \). Then we have

\[
\sum_{l \geq 0} P(S_l | S_l \leq x, S_l \geq 0) = E_x \left(\sum_{l \geq \tau_x} 1_{\{S_l \leq x, S_l \geq 0\}} \right) \leq E(\sum_{l \geq 0} 1_{\{S_l \leq x, S_l \geq -x\}}),
\]

where we used the Markov property at time τ_x. We obtain, by Lemma 2.3,

$$E\left(\sum_{l \geq 0} 1_{\{S_l \leq x, S_l \geq -x\}}\right) \leq 1 + x^\alpha + \sum_{l > x^\alpha} P(S_l \leq x, S_l \geq -x) \leq 1 + x^\alpha + c_{10} 2^\alpha \cdot \sum_{l > x^\alpha} \frac{(1 + x)^{\alpha + 1}}{l^{1 + \frac{1}{\alpha}}} \leq c_{12} \cdot (1 + x)^\alpha. \tag{2.13}$$

Next, we consider $x \geq z$. Then

$$\sum_{l \geq 0} P_z(S_l \leq x, S_l \geq 0) \leq \sum_{l \leq x^\alpha} P_z(S_l \geq 0) + \sum_{l > x^\alpha} P_z(S_l \leq x, S_l \geq 0). \tag{2.7}$$

(2.7) implies $P_z(S_l \geq 0) \leq c_{13} \cdot \frac{(1+z)(1+x)^\alpha}{l^{1+\frac{1}{\alpha}}}$ for any $l \geq 0$. Again, using Lemma 2.3 gives

$$P_z(S_l \leq x, S_l \geq 0) \leq c_{10} \cdot \frac{(1+z)(1+x)^\alpha}{l^{1+\frac{1}{\alpha}}}.$$

Thus

$$\sum_{l \geq 0} P_z(S_l \leq x, S_l \geq 0) \leq c_{13} \cdot \sum_{l \leq x^\alpha} \frac{(1+z)}{l^{\frac{1}{\alpha}}} + c_8 \sum_{l > x^\alpha} \frac{(1+z)(1+x)^\alpha}{l^{1+\frac{1}{\alpha}}} \leq c_{14}(1+z)(1+x)^{\alpha-1}, \tag{2.14}$$

which, together with (2.13), completes the proof. \hfill \square

Lemma 2.5. Let $\{d_n\}$ be a sequence of positive numbers such that $d_n = o(n^{1/\alpha})$. Then for any bounded continuous function f, we have

$$E\left(f\left(\frac{S_n + x}{n^{1/\alpha}}\right) 1\{S_n \geq -x\}\right) = \frac{R(x)}{\Gamma(1 - \frac{1}{\alpha}) n^{1/\alpha}} \left(\int_0^{\infty} f(t)p_\alpha(t)dt + o_n(1) \right), \tag{2.15}$$

uniformly in $u \in [0, d_n]$, where p_α is the density function of a nonnegative random variable M_α. And M_α satisfies

$$\lim_{n \to \infty} P\left(\frac{S_n}{n^{1/\alpha}} \in [u_1, u_2] \mid S_n > 0\right) = P\left(M_\alpha \in [u_1, u_2]\right). \tag{2.16}$$

Moreover,

$$E(M_\alpha) = \frac{\Gamma(1 - \frac{1}{\alpha})}{\theta}. \tag{2.17}$$

Proof. The proof of (2.15) is an extension of the Lemma 2.2 of Aidekon and Jaffuel [2], where the random walk has finite variance. So we omit it here. (2.16) can be found in Vatutin and Wachtel [33, Theorem 1]. In the following we shall prove (2.17). Denote by p_α and g_α the density functions of M_α and S_1, respectively. By (79) in [33],

$$p_\alpha(z) = \int_0^1 \frac{t^{-1/\alpha}dt}{(1-t)^{1/\alpha}} \int_0^{t^{1/\alpha}} g_\alpha \left(\frac{z - t^{1/\alpha}u}{(1-t)^{1/\alpha}} \right) p_\alpha(u)du.$$

Hence,

$$E(M_\alpha) = \int_0^{\infty} zp_\alpha(z)dz$$
\[
\begin{align*}
&= \int_0^\infty \int_0^1 \frac{t^{-1/\alpha} dt}{(1-t)^{1/\alpha}} \int_0^{\infty} g_\alpha \left(\frac{z-t^{1/\alpha}u}{(1-t)^{1/\alpha}} \right) p_\alpha(u) du dz \\
&= \int_0^1 \frac{t^{-1/\alpha} dt}{(1-t)^{1/\alpha}} \int_0^{\infty} p_\alpha(u) du \int_0^{\infty} g_\alpha(z) \left(\frac{z-t^{1/\alpha}z + t^{1/\alpha}u}{(1-t)^{1/\alpha}} \right) dz \\
&= \int_0^1 t^{-1/\alpha} dt \int_0^{\infty} p_\alpha(u) du \int_0^{\infty} g_\alpha(z) dz + \int_0^{\infty} u p_\alpha(u) du \int_0^{\infty} g_\alpha(z) dz \\
&= B(1 - \frac{1}{\alpha}, 1 + \frac{1}{\alpha}) \int_0^{\infty} g_\alpha(z) dz + E(M_\alpha) \int_0^{\infty} g_\alpha(z) dz,
\end{align*}
\]

where B is the Beta function. By the properties of stable law, $1 - \frac{1}{\alpha} = \int_0^\infty g_\alpha(z) dz$; see (19) in [33]. Then (2.18) implies

\[
E(M_\alpha) = \Gamma \left(1 - \frac{1}{\alpha} \right) \Gamma \left(\frac{1}{\alpha} \right) \int_0^{\infty} g_\alpha(z) dz.
\]

By Bingham [17], we have

\[
E(e^{-tS_1}; S_1 > 0) = \frac{1}{\alpha} \sum_{n=0}^{\infty} \frac{(-t \theta)^n}{\Gamma(1 + n\alpha^{-1})}.
\]

Taking derivatives of t and letting $t = 0$, we arrive at

\[
\int_0^{\infty} g_\alpha(z) dz = E(S_1 1_{\{S_1 \geq 0\}}) = \frac{1}{\Gamma(\frac{1}{\alpha}) \theta}.
\]

Combining with (2.19), we complete the proof. \qed

The following lemma is a preparation for Lemma 2.7. Its proof is similar to that for the case $\alpha = 2$ (see Aidekon and Shi [3]), so we omit it.

Lemma 2.6. There exists $c_{15} > 0$ such that for $a \geq 0$,

\[
\sup_{n \geq 1} E \left(|S_n| 1_{\{S_n \geq -a\}} \right) \leq c_{15} (1 + a).
\]

Lemma 2.7. Let $0 < \lambda < 1$. There exists a constant $c_{16} > 0$ such that for $a, b \geq 0$, $0 \leq u \leq v$ and $n \geq 1$,

\[
P \left(S_{\lambda n} \geq -a, \min_{i \in [\lambda n, n] \cap \mathbb{Z}} S_i \geq b - a, S_n \in [b - a + u, b - a + v] \right)
\leq c_{16} \cdot \frac{(1 + v)^{\alpha - 1} (1 + v - u)(1 + a)}{n^{1 + \frac{1}{\alpha}}},
\]

Proof. The idea of the proof is borrowed from Aidekon and Shi [3]. Without loss of generality, we treat λn as an integer. Let $P_{(2.23)}$ be the probability expression of the left-hand side of (2.23). By the Markov property at time λn, we have

\[
P_{(2.23)} = E \left(1_{\{S_{\lambda n} \geq -a, S_{\lambda n} \geq -a\}} f(S_{\lambda n}) \right),
\]
where \(f(r) = \mathbb{P}\left(\tilde{S}_{n-\lambda_n} \geq b - a - r, S_{n-\lambda_n} \in [b - a - r + u, b - a - r + v] \right) \) for \(r \geq b - a \). Then it follows from Lemma 2.2 that

\[
f(r) \leq c_7 \cdot \frac{(1 + r - b + a)(1 + v)^{a-1}(v - u + 1)}{(1 - \lambda)^{1 + \frac{1}{\alpha}} n^{1 + \frac{1}{\alpha}}}, \quad r \geq b - a.
\]

Therefore,

\[
\mathbb{P}(2.23) \leq c_7 \cdot \frac{(1 + v)^{a-1}(v - u + 1)}{(1 - \lambda)^{1 + \frac{1}{\alpha}} n^{1 + \frac{1}{\alpha}}} \mathbb{E}\left((S_{\lambda_n} + a - b + 1) \mathbb{1}_{\{\tilde{S}_{\lambda_n} \geq -a, S_{\lambda_n} \geq b - a\}} \right).
\]

The expectation above on the right-hand side is bounded by \(\mathbb{E}\left(\left| S_{\lambda_n} \right| \mathbb{1}_{\{\tilde{S}_{\lambda_n} \geq -a\}} \right) + a + 1 \). This together with Lemma 2.6 leads to (2.23).

\(\square \)

The next result is an analog of the classical Stone local limit theorem. One can find the proof in Vatutin and Wachtel [33, Theorem 3 and Theorem 5].

Lemma 2.8. There exists a constant \(c_{17} > 0 \) such that for any \(0 < a \leq b < \infty \), we have

\[
\liminf_{n \to \infty} n^{\frac{1}{\alpha}} \inf_{u \in [an^{1/2}, bn^{1/2}]} \mathbb{P}(u \leq S_n < u + c_{17} | S_n \geq 0) > 0.
\]

Lemma 2.9. There exists \(c_{18} > 0 \) such that for any sequence \((a_n) \) of nonnegative numbers with \(\limsup_{n \to \infty} \frac{a_n}{n^{1/\alpha}} < \infty \),

\[
\liminf_{n \to \infty} n^{1 + \frac{1}{\alpha}} \mathbb{P}(S_n \geq 0, \min_{n<j \leq 2n} S_j \geq a_n, a_n \leq S_{2n} \leq a_n + c_{18}) > 0.
\]

The proof can be found in Aidekon and Shi [4] Lemma 4.3 for \(\alpha = 2 \). The same proof is valid for \(1 < \alpha < 2 \), since we have an analog of Stone local limit theorem (i.e. Lemma 2.8).

Define \(\tilde{S}_i = -S_i, i \geq 0 \). Next we will give some analogues of Lemmas 2.2, 2.4, 2.6 and 2.7 for the new random walk \(\{\tilde{S}_i\} \). We have,

Lemma 2.10. There exists \(c_{19}, c_{20} > 0 \) such that for \(a \geq 0, b > -a \) and \(n \geq 1 \),

\[
\begin{align*}
(i) & \quad \mathbb{P}\{b \leq \tilde{S}_n \leq b + 1, \tilde{S}_n \geq -a\} \leq c_{19} \cdot \frac{(1 + a)^{a-1}(1 + a + b)}{n^{1 + \frac{1}{\alpha}}}, \\
(ii) & \quad \sum_{i \geq 0} \mathbb{P}\{\tilde{S}_i \geq -a, \tilde{S}_i \leq b\} \leq c_{20} (1 + a + b)(1 + a)^{a-1}.
\end{align*}
\]

The proof of this lemma is very close to Lemma 2.2 and Lemma 2.4, so we omit it here.

Lemma 2.11. There exists \(c_{21} > 0 \) such that for \(a \geq 0 \),

\[
\sup_{n \geq 1} \mathbb{E}\left(|\tilde{S}_n|^{\alpha-1} \mathbb{1}_{\{\tilde{S}_n \geq -a\}} \right) \leq c_{21} (a + 1)^{a-1}.
\]

Proof. In the following we denote the renewal function of \((\tilde{S}_n) \) by \(R_{\tilde{S}}(x) \). It is easy to see that \(R_{\tilde{S}}(x) = K(x) \). By [20, Lemma 3.1], we have

\[
\sup_{n \geq 1} \mathbb{E}_a \left(R_{\tilde{S}}(\tilde{S}_n) \mathbb{1}_{\{\tilde{S}_n \geq 0\}} \right) = R_{\tilde{S}}(a) = K(a) \leq c_6 (1 + a)^{a-1}.
\]
By (2.5) and (2.6), \(R_\mathcal{S}(\tilde{S}_n)1_{\{\tilde{S}_n \geq 0\}} = R_\mathcal{S}(\{\tilde{S}_n\})1_{\{\tilde{S}_n \geq 0\}} \geq c_5|\tilde{S}_n|^{\alpha - 1}1_{\{\tilde{S}_n \geq 0\}} \). Combining above discussions we get

\[
\begin{align*}
\sup_{n \geq 1} E \left(|\tilde{S}_n|^{\alpha - 1}1_{\{\tilde{S}_n \geq -a, \tilde{S}_n \leq 0\}} \right) \\
= \sup_{n \geq 1} E_a \left(|\tilde{S}_n - a|^{\alpha - 1}1_{\{\tilde{S}_n \geq 0, \tilde{S}_n > a\}} \right) \\
\leq a^{\alpha - 1} + \sup_{n \geq 1} E_a \left(|\tilde{S}_n|^{\alpha - 1}1_{\{\tilde{S}_n \geq 0\}} \right) \\
\leq (1 + \frac{c_6}{c_5})(1 + a)^{-1}.
\end{align*}
\]

Clearly,

\[
\sup_{n \geq 1} E \left(|\tilde{S}_n|^{\alpha - 1}1_{\{\tilde{S}_n \geq -a, \tilde{S}_n \leq 0\}} \right) \leq \sup_{n \geq 1} E \left((-\tilde{S}_n)^{\alpha - 1}1_{\{-a \leq \tilde{S}_n \leq 0\}} \right) \leq a^{\alpha - 1}.
\]

The proof is completed. \(\square \)

Lemma 2.12. Let \(0 < \lambda < 1, \rho < 0 \) and \(-\rho = o(n^{\frac{1}{\beta}}) \). There exists a constant \(c_{22} > 0 \) such that for \(a \geq 0, 0 \leq u \leq v \) and \(n \geq 1 \),

\[
P\{S_{\lambda n, y} \geq -a, \min_{i \in [\lambda n, n] \cap 2} (\tilde{S}_i) \geq \rho - a, \tilde{S}_n \in [\rho - a + u, \rho - a + v]\} \leq c_{22} \cdot \frac{(1 + v)(v - u + 1)(1 + a)^{\alpha - 1}}{n^{1 + \frac{\beta}{\alpha}}}.
\]

Proof. The proof is essentially similar to Lemma 2.7 except that applying Lemma 2.11 in the last step. \(\square \)

3. **Truncated martingale and spine decomposition**

In order to study the convergence of \(D_n \) and \(W_n \), it turns out more convenient to work with a truncated version of the branching random walk. Let \((V(x)) \) be a branching random walk satisfying (1.1). For any vertex \(x \), we denote the unique shortest path relating \(x \) to the root \(\emptyset \) by \(\langle \emptyset, x \rangle \). Define

\[
V(x) := \min_{y \in \langle \emptyset, x \rangle} V(y).
\]

For \(\beta \geq 0 \), denote

\[
R_{\beta}(u) := R(u + \beta), \ u \geq -\beta.
\]

Now we use the renewal function \(R_{\beta}(\cdot) \) to introduce the truncated processes

\[
W_n^\beta := \sum_{|x|=n} e^{-V(x)}1_{\{V(x) \geq -\beta\}},
\]

\[
D_n^\beta := \sum_{|x|=n} R_{\beta}(V(x))e^{-V(x)}1_{\{V(x) \geq -\beta\}}.
\]

Since \(W_n \to 0, \ P - a.s., \) we have \(\min_{|x|=n} V(x) \to \infty \) almost surely on the set of non-extinction. By (2.1), \(\lim_{u \to \infty} \frac{R(u)}{u} = \theta \). It is evident that if \(\beta \) is sufficiently large, then on the set of non-extinction, \(W_n^\beta \) behaves like \(W_n \) and \(D_n^\beta \) behaves like \(\theta D_n \).
Under assumption (1.1), for any $\beta \geq 0$, the process $(D_n^\beta, n \geq 0)$ is a nonnegative martingale with respect to natural filtration (\mathcal{F}_n) (see Aidekon [1]). For all n, it follows from Kolmogorov’s extension theorem that there exists a unique probability measure \hat{P}_a^β on \mathcal{F}_∞ ($\mathcal{F}_\infty := \bigvee_n \mathcal{F}_n$) such that

\begin{equation}
\frac{d\hat{P}_a^\beta}{dP_a} \bigg|_{\mathcal{F}_n} = \frac{D_n^\beta}{R_\beta(a)e^{-a}}, \quad n \geq 1.
\end{equation}

Notice that \hat{P}_a^β(non-extinction) = 1, we can say under \hat{P}_a^β the process will never extinct almost surely.

We introduce a point process $\hat{\Theta}$ whose distribution is the law of $(V(x), |x| = 1)$ under $\hat{P}_a^\beta(= \hat{P}_0^\beta)$. Consider the following process. At time 0, there is one particle distributed as ω_0^β located at $V(\omega_0^\beta) = a$. At each step n, particles at generation n die, and produce independently new particles according to the law of Θ, except one particle denoted by ω_n^β which generates particles according to Θ (with respect to the birth position $V(\omega_n^\beta)$). The particle ω_{n+1}^β is chosen among the children y of ω_n^β with probability proportional to $R_\beta(V(y))e^{-V(y)}1_{|V(y)| \geq -\beta}$. This defines a branching random walk with a marked sequence (ω_n^β), which we call the spine. We denote the above system by B_a^β.

Theorem 3.1. (Biggins and Kyprianou [14]). Assume (1.1) and $\beta \geq 0$.

(i) The branching random walk $(V(x))$ under \hat{P}_a^β, is distributed as B_a^β.

(ii) For any n and any vertex x with $|x| = n$, we have

\begin{equation}
\hat{P}_a^\beta(\omega_n^\beta = u|\mathcal{F}_n) = \frac{R_\beta(V(u))e^{-V(u)}1_{|V(u)| \geq -\beta}}{D_n^\beta}.
\end{equation}

(iii) The spine process $(V(\omega_n^\beta), n \geq 0)$ under \hat{P}_a^β is distributed as the random walk $(S_n)_{n \geq 0}$ conditioned to stay above $-\beta$ under P_a. More precisely, for any $n \geq 1$ and any measurable function $g : \mathbb{R}^n \to [0, \infty)$,

\begin{equation}
\hat{E}_a^\beta(g(V(\omega_i^\beta)), 0 \leq i \leq n)
= \frac{1}{R_\beta(a)}E_a(g(S_i, 0 \leq i \leq n)R_\beta(S_n), 1_{|S_n| \geq -\beta}).
\end{equation}

4. Proof of Theorem 1.1

In this section, we will divide our proof into two parts. In part 1, we will prove (1.8); In part 2, we will prove that the limit is strictly positive, $P^*-a.s.$

Part 1. Let $\Omega_\beta := \{V(x) > -\beta, \forall n \geq 0, |x| = n\} \cap \{\text{nonextinction}\}$. Since $\min_{|x|=n} V(x) \to \infty$, $P^*-a.s.$ holds under (1.1), we have $P^*(\Omega_\beta) \to 1$ as $\beta \to \infty$. Fixing $\beta \geq 0$, we only need consider the event in Ω_β. By (2.1), For any $\varepsilon > 0$, there exists N such that for any $n > N, |x| = n$,

\[
(\frac{1}{\theta} - \varepsilon)R_\beta(V(x)) < V(x) + \beta < (\frac{1}{\theta} + \varepsilon)R_\beta(V(x)).
\]

Then

\[
\sum_{|x|=n} (\frac{1}{\theta} - \varepsilon)R_\beta(V(x))e^{-V(x)} < \sum_{|x|=n} V(x)e^{-V(x)} + \beta \sum_{|x|=n} e^{-V(x)} < \sum_{|x|=n} (\frac{1}{\theta} + \varepsilon)R_\beta(V(x))e^{-V(x)}.
\]
i.e.,

\[(1 - \varepsilon) D_n^\beta > D_n + \beta W_n < (1 + \varepsilon) D_n^\beta \tag{4.1}\]

holds in the set Ω_β. We denote the limit of D_n^β by D_∞^β. Taking $n \to \infty$ on both sides of (4.1) and then letting $\varepsilon \to 0$, we obtain $\lim_{n \to \infty} D_n = \frac{1}{\beta} D_\infty^\beta$ on the set Ω_β. Now letting $\beta \to \infty$, we complete the proof of this part.

Part 2. We borrow an idea from Aidekon [1, Proposition A.3].

\[
D_n = \sum_{|x| = n} V(x) e^{-V(x)}
\]

\[
= \sum_{|y| = 1} \sum_{x \geq y} V(x) e^{-V(x)}
\]

\[
= \sum_{|y| = 1} e^{-V(y)} \sum_{x \geq y} (V(x) - V(y)) e^{-(V(x) - V(y))}
\]

\[
+ \sum_{|y| = 1} V(y) e^{-V(y)} \sum_{x \geq y} e^{-(V(x) - V(y))}
\]

\[
= \sum_{|y| = 1} e^{-V(y)} D_{n-1,y} + \sum_{|y| = 1} V(y) e^{-V(y)} W_{n-1,y}
\]

where $D_{n-1,y}, W_{n-1,y}$ are the corresponding functions on the subtree rooted at y. Apparently $D_{n-1,y} \overset{d}{=} D_{n-1}, W_{n-1,y} \overset{d}{=} W_{n-1}$. Letting $n \to \infty$, we get

\[
D_\infty = \sum_{|y| = 1} e^{-V(y)} D_{\infty,y}, \quad P^* - \text{a.s. (also } P - \text{a.s.)}
\]

where $D_{\infty,y} \overset{d}{=} D_\infty$. Let $p := P(D_\infty = 0)$. Since $(D_{\infty,y}, |y| = 1)$ are independent of each other and $V(y)$, the equation $p = E(p^{\sum_{|y| = 1}})$ holds. As a consequence of the branching property, we immediately have $p = 1$ or $p = P(\text{extinction}) = q$. We only need to prove $P(D_\infty > 0) > 0$.

Clearly,

\[
D_n^\beta = \sum_{|x| = n} R_\beta(V(x)) e^{-V(x)} 1_{\{V(x) \geq -\beta\}}
\]

\[
\leq c_2 \sum_{|x| = n} (1 + \beta + V(x)_+) e^{-V(x)}
\]

\[
\leq c_3 \left(W_n + \sum_{|x| = n} V(x)_+ e^{-V(x)} \right).
\]

Let $n \to \infty$ gives $D_\infty^\beta \leq c_3 D_\infty$ $P^* - \text{a.s.}$ (also $P - \text{a.s.}$ by $D_\infty^\beta = D_\infty = 0$ on the set \{extinction\}). Hence we only need to prove $P(D_\infty^\beta > 0) > 0$. Noticing that $E D_0^\beta = R(\beta) > 0$, it is sufficient to prove that $(D_n^\beta, n \geq 0)$ is uniformly integrable under P.

For any ω_i^β on the spine, we define

\[\Omega(\omega_i^\beta) := \{ |x| = i : x > \omega_i^\beta, x \neq \omega_i^\beta \}.\]
In a word, $\Omega(\omega)\beta$ stands for the set of all “brothers” of ω. Let
\[
\hat{G}_\omega^\beta := \sigma\{\omega^\beta, V(\omega^\beta), \Omega(\omega^\beta), (V(u))_u \in \Omega(\omega^\beta), j \geq 1\}
\]
be the σ-algebra of the spine and its brothers. Using the martingale property of D^β_n for the subtrees rooted at brothers of the spine, we have
\[
\mathbb{E}^\beta(D^\beta_n | \hat{G}_\omega^\beta) = R^\beta_N(V(\omega^\beta)) e^{-V(\omega)} + \sum_{k=1}^n \sum_{x \in \Omega(\omega^\beta)} R^\beta_N(V(x)) e^{-V(x)} 1_{\{V(x) \geq \beta\}}.
\]
By Lemma 4.2 in Section 4, $V(\omega^\beta) \rightarrow \infty$, $\mathbb{P}^\beta - a.s.$ Therefore $R^\beta_N(V(\omega^\beta)) e^{-V(\omega)}$ goes to zero as $n \rightarrow \infty$. We already know that $R(x) \leq c_2(1 + x) \leq c_2(1 + x_\sigma)$ for any $x \in \mathbb{R}$. Then, by Fatou’s lemma,
\[
\hat{E}^\beta(D^\beta_n | \hat{G}_\omega^\beta) \leq \liminf_{n \rightarrow \infty} \hat{E}^\beta(D^\beta_n | \hat{G}_\omega^\beta) \\
\leq c_2 \sum_{k=1}^n \sum_{x \in \Omega(\omega^\beta)} (1 + \beta + V(x)) e^{-V(x)} \\
\leq c_2(A_1 + A_2),
\]
with
\[
A_1 := \sum_{k=1}^n (1 + \beta + V(\omega^\beta_{k-1})) e^{-V(\omega^\beta_{k-1})} \sum_{x \in \Omega(\omega^\beta_{k-1})} e^{-V(x) - V(\omega^\beta_{k-1})},
\]
\[
A_2 := \sum_{k=1}^n e^{-V(\omega^\beta_{k-1})} \sum_{x \in \Omega(\omega^\beta_{k-1})} (V(x) - V(\omega^\beta_{k-1})) e^{-V(x) - V(\omega^\beta_{k-1})}.
\]
We shall show A_1 and A_2 are finite. Let us consider A_1 first. Recall the definition of $X := \sum_{|x|=1} e^{-V(x)}$, $X := \sum_{|x|=1} V(x) e^{-V(x)}$. Define $X' := \sum_{|x|=1} R^\beta_N(V(x)) e^{-V(x)} 1_{\{V(x) \geq \beta\}}$. Clearly, for any $a \geq -\beta$,
\[
X' \leq c_2 \sum_{|x|=1} e^{-V(x)} ((1 + a + \beta) + (V(x) - a_\sigma)).
\]
Therefore, we have for any $z \geq 0$ and $a \geq -\beta$,
\[
\hat{P}_a^\beta(\sum_{|x|=1} e^{-V(x) - a} > z) \\
= \frac{1}{R^\beta(a) e^{-a}} E_a \left(X' 1_{\{\sum_{|x|=1} e^{-V(x) - a} > z\}} \right) \\
\leq c_2 E_a \left(\sum_{|x|=1} e^{-V(x) - a} \left(1 + \frac{(V(x) - a) _+}{1 + a + \beta} \right) 1_{\{\sum_{|x|=1} e^{-V(x) - a} > z\}} \right) \\
= c_2 E(X 1_{\{X > z\}}) + \frac{c_24}{1 + a + \beta} E(\bar{X} 1_{\{X > z\}}) \\
=: c_2 h_1(z) + \frac{c_24}{1 + a + \beta} h_2(z).
\]
We deduce by the Markov property at time $k - 1$ that
\[
\hat{P}^\beta \left(\sum_{x \in \Omega(\omega^\beta_k)} e^{-(V(x) - V(\omega^\beta_{k-1}))} \geq e^{V(\omega^\beta_{k-1})/2} \right)
\leq c_{24} \hat{E}^\beta \left(h_1(e^{V(\omega^\beta_{k-1})/2}) + \frac{1}{1 + V(\omega^\beta_{k-1}) + \beta} h_2(e^{V(\omega^\beta_{k-1})/2}) \right).
\]
Hence,
\[
\sum_{k \geq 1} \hat{P}^\beta \left(\sum_{x \in \Omega(\omega^\beta_k)} e^{-(V(x) - V(\omega^\beta_{k-1}))} \geq e^{V(\omega^\beta_{k-1})/2} \right)
\leq c_{24} \sum_{l \geq 0} \hat{E}^\beta \left(h_1(e^{V(\omega^\beta_{l})/2}) \right)
+ c_{24} \sum_{l \geq 0} \hat{E}^\beta \left(\frac{1}{1 + V(\omega^\beta_{l}) + \beta} h_2(e^{V(\omega^\beta_{l})/2}) \right).
\]
We now estimate $\sum_{l \geq 0} \hat{E}^\beta(h_1(e^{V(\omega^\beta_{l})/2}))$. By (3.3), we have
\[
\hat{E}^\beta(h_1(e^{V(\omega^\beta_{l})/2})) = \frac{1}{R(\beta)} E(R_{\beta}(S_l) h_1(e^{S_l/2}) \mathbf{1}_{\{S_l \geq -\beta\}})
= \frac{1}{R(\beta)} E(R_{\beta}(S_l) X \mathbf{1}_{\{S_l < 2 \ln X \cap \{S_l \geq -\beta\}}),
\]
where we can choose the random walk $(S_n, n \geq 0)$ independent of X. By Lemma 2.4,
\[
\sum_{l \geq 0} \hat{E}^\beta(h_1(e^{V(\omega^\beta_{l})/2}))
\leq \frac{1}{R(\beta)} E(X R_{\beta}(2 \ln X) \sum_{l \geq 0} \mathbf{1}_{\{S_l < 2 \ln X, S_l \geq -\beta\}})
\leq c_{25} \cdot E(X(1 + \ln X)^a),
\]
which is finite by our assumption (1.7). Similarly,
\[
\hat{E}^\beta \left(\frac{1}{1 + V(\omega^\beta_{l}) + \beta} h_2(e^{V(\omega^\beta_{l})/2}) \right) \leq c_{26} E(\tilde{X} \mathbf{1}_{\{S_l \leq 2 \ln X, S_l \geq -\beta\}}).
\]
Lemma 2.4 and Lemma 4.1 yield that
\[
\sum_{l \geq 0} \hat{E}^\beta \left(\frac{1}{1 + V(\omega^\beta_{l}) + \beta} h_2(e^{V(\omega^\beta_{l})/2}) \right) \leq c_{27} E(\tilde{X}(1 + \ln X)^{a-1}) < \infty.
\]
Hence we have
\[
\sum_{k \geq 1} \hat{P}^\beta \left(\sum_{x \in \Omega(\omega^\beta_k)} e^{-(V(x) - V(\omega^\beta_{k-1}))} \geq e^{V(\omega^\beta_{k-1})/2} \right) < \infty.
\]
By the Borel-Cantelli lemma, there exists K_0 such that for $k \geq K_0$,
\[
(1 + \beta + V(\omega^\beta_{k-1})) e^{-V(\omega^\beta_{k-1})} \sum_{x \in \Omega(\omega^\beta_k)} e^{-(V(x) - V(\omega^\beta_{k-1}))}
\leq (1 + \beta + V(\omega^\beta_{k-1})) e^{-V(\omega^\beta_{k-1})/2}.
\]
Moreover, as large enough. Combining with (4.2), we get \(A_1 < \infty \). Similarly we can prove \(A_2 < \infty \). Hence, \(\hat{E}^\beta(D_\infty|\hat{g}_\infty^\beta) < \infty \), that implies

\[
\sup_{n \geq 0} D_n^\beta < \infty, \quad \hat{P}^\beta - a.s.
\]

(4.4)

Since for any \(n \geq 0 \), \(u \geq 0 \)

\[
E(D_n^\beta; D_n^\beta \geq u) = R(\beta)\hat{P}^\beta(D_n^\beta \geq u) \leq R(\beta)\hat{P}^\beta(\sup_{n \geq 0} D_n^\beta \geq u),
\]

then

\[
\sup_{n \geq 0} E(D_n^\beta; D_n^\beta \geq u) \leq R(\beta)\hat{P}^\beta(\sup_{n \geq 0} D_n^\beta \geq u)
\]

which goes to 0 as \(u \to \infty \) by (4.4). We prove that the sequence of random variable \((D_n^\beta, n \geq 0)\) is uniformly integrable under \(P \). We are done. \(\square \)

The following lemma is an extension of the case \(\alpha = 2 \) proved in Aidekon [1].

Lemma 4.1. Let \(X \) and \(\bar{X} \) be the nonnegative random variables defined as (1.4) such that condition (1.7) holds. Then we have

\[
E(X(\ln_+ \bar{X})^\alpha) < \infty, \quad E((\bar{X}(\ln_+ X)^{\alpha - 1}) < \infty.
\]

Moreover, as \(z \to \infty \),

\[
E(X(\ln_+(X + \bar{X}))^\alpha \min(\ln_+(X + \bar{X}), z)) = o(z),
\]

(4.6)

\[
E(\bar{X}(\ln_+(X + \bar{X}))^{\alpha - 1} \min(\ln_+(X + \bar{X}), z)) = o(z).
\]

(4.7)

Proof. We first prove (4.5). It is easy to check that for any \(x, \bar{x} \geq 0 \),

\[
x(\ln_+ \bar{x})^\alpha \leq 4x(\ln_+ x)^\alpha + \frac{\alpha}{\alpha - 1} \bar{x}(\ln_+ \bar{x})^{\alpha - 1}.
\]

It follows that

\[
E(X(\ln_+ \bar{X})^\alpha) \leq 4E(X(\ln_+ X)^\alpha) + \frac{\alpha}{\alpha - 1} E(\bar{X}(\ln_+ \bar{X})^{\alpha - 1}),
\]

which is finite under condition (1.7). Also, we observe that

\[
\bar{X}(\ln_+ X)^{\alpha - 1} \leq \max(\bar{X}(\ln_+ \bar{X})^{\alpha - 1}, X(\ln_+ X)^{\alpha - 1})
\]

which implies that \(E(\bar{X}(\ln_+ X)^{\alpha - 1}) < \infty \). We turn to prove (4.6). For any \(\varepsilon > 0 \) and all large \(z \), we have

\[
E(X(\ln_+(X + \bar{X}))^\alpha \min(\ln_+(X + \bar{X}), z))
\]

\[
= E(X(\ln_+(X + \bar{X}))^\alpha \min(\ln_+(X + \bar{X}), z), \ln_+(X + \bar{X}) \geq \varepsilon z)
\]

\[
+ E(X(\ln_+(X + \bar{X}))^\alpha \min(\ln_+(X + \bar{X}), z), \ln_+(X + \bar{X}) < \varepsilon z).
\]

\[
\leq \varepsilon z(1 + E(X(\ln_+(X + \bar{X}))^\alpha)),
\]

where the last line follows from \(E(X(\ln_+(X + \bar{X}))^\alpha) < \infty \). Hence,

\[
E(X(\ln_+(X + \bar{X}))^\alpha \min(\ln_+(X + \bar{X}), z)) = o(z).
\]

Similarly, we can prove (4.7). \(\square \)
Lemma 4.2. For any $\epsilon \in (0, 1 - \frac{1}{\alpha})$, we have

$$\frac{V(\omega_k^\beta)}{k^\epsilon} \to \infty, \quad \hat{P}^{\beta} - a.s. \quad k \to \infty.$$

Proof. We only need to prove the case $\beta = 0$. Here we introduce Tanaka’s construction for the random walk conditioned to stay positive (see Biggins [11] and Tanaka [32]). Recall that $\{S_n\}$ is the associated random walk with the branching random walk $(V(x))$, and τ is the first time the random walk $\{S_n\}$ hits $(0, \infty)$, that is, the first strict ascending ladder time (also denoted by T_1). Hence, we obtain a random array $(S_j, 0 \leq j \leq \tau)$, and we denote it by $\xi = (\xi(j), 0 \leq j \leq \tau)$.

Let $\{\xi_k(j), 0 \leq j \leq \tau_k, k \geq 1\}$ be a sequence of independent copies of ξ, where $\{\tau_k, k \geq 1\}$ is a sequence of independent copies of τ. For any $k \geq 1$, let $w_k(j) := \xi_k(\tau_k) - \xi_k(\tau_k - j)$ for $0 \leq j \leq \tau_k$. Recall that the successive strict ascending ladder times and heights for $\{S_n\}$ are $\{(T_k, H_k): k = 0, 1, 2, \ldots\}$. So that $\{(T_n - T_{n-1}, H_n - H_{n-1}), n \geq 1\}$ are i.i.d. variables.

Define $\zeta_0 = 0$ and

$$\zeta_n = H_k + w_{k+1}(n - T_k), \quad T_k < n \leq T_{k+1}.$$

Then $\{\zeta_n, n \geq 0\}$ is a construction for the random walks (S_n) conditioned to stay positive.

From Vatutin and Wachtel [33], we have

$$\frac{T_k}{a_k} \overset{d}{\to} Y_1 \quad \text{and} \quad \frac{H_k}{b_k} \overset{d}{\to} Y_2, \quad k \to \infty$$

where Y_1, Y_2 are two random variables, and $\{(a_k)\} \{b_k\}$ are specified respectively by $P(T_1 > a_k) \sim \frac{1}{k}$ and $P(H_1 > b_k) \sim \frac{1}{k}$ as $k \to \infty$. By Bingham [18, Theorem 3],

$$P(T_1 > a_k) \sim \frac{1}{n^{1 - \frac{1}{\alpha}} l(n) \Gamma(\frac{1}{\alpha})} \quad \text{as} \quad n \to \infty,$$

for some function l varying slowly at infinity. Then we immediately get $a_k^{1 - \frac{1}{\alpha}} l(a_k) \Gamma(\frac{1}{\alpha}) \sim k$, and similarly $b_k \sim k^\frac{\alpha}{1 - \alpha}$ by (2.4). For the property of slowing varying function l, for $\epsilon < 1 - \frac{1}{\alpha}$, we have

$$\lim_{k \to \infty} a_k^{\epsilon} = \lim_{k \to \infty} a_k^{1 - \frac{1}{\alpha}} l(a_k) \Gamma(\frac{1}{\alpha}) = 0.$$

Then we get $T_{\epsilon, k} \overset{d}{\to} 0$. The convergence is also in probability. Hence, there exists a subsequence $\{n_k\}$ such that

$$\frac{T_{\epsilon, n_k}}{n_k} \to 0 \quad P-a.s.$$

Then for $T_{n_k-1} < n \leq T_{n_k}$, by

$$\zeta_n = H_{n_k-1} + w_{n_k}(n - T_{n_k-1}),$$

we obtain

$$\frac{\zeta_n}{n^{\epsilon}} \geq \frac{H_{n_k-1}}{T_{n_k}^{\epsilon}} \geq \frac{H_{n_k-1}}{n_k} \cdot \frac{n_k}{T_{n_k}^{\epsilon}}.$$

By a generalization of the law of large numbers, $\frac{H_{n_k}}{k^{\epsilon}} \overset{a.s}{\to} \infty$. Therefore

$$\frac{\zeta_n}{n^{\epsilon}} \to \infty, \quad n \to \infty, \quad P-a.s.$$
From Theorem 3.1 (iii), the spine process \((V(\omega^0_n), n \geq 0)\) under \(\tilde{\mathbf{P}}\) is distributed as the random walk \((S_n)_{n \geq 0}\) conditioned to stay positive under \(\mathbf{P}\). The proof is completed.

5. CONVERGENCE IN PROBABILITY OF \(\frac{W_\beta^n}{D_\beta^n}\) UNDER \(\mathbf{P}^\beta\)

In this section we do preparatory work for the proof of Theorem 1.1. The idea is from Aidekon and Shi [3]. The main result of this section is Proposition 5.1. To prove it, we need auxiliary Lemmas 5.2–5.5, which we put at the end of this section.

Proposition 5.1. Assume (1.1), (1.5), (1.6), (1.7) and \(\beta \geq 0\). As \(n \to \infty\), we have

\[
\mathbf{E}^\beta\left(\frac{W_\beta^n}{D_\beta^n}\right) \sim \frac{1}{\Gamma(1 - \frac{1}{\alpha})n^{\frac{1}{\alpha}}}.
\]

(5.1)

\[
\mathbf{E}^\beta\left((\frac{W_\beta^n}{D_\beta^n})^2\right) \sim \frac{1}{(\Gamma(1 - \frac{1}{\alpha}))^2 n^{\frac{2}{\alpha}}}.
\]

(5.2)

As a consequence, under \(\tilde{\mathbf{P}}^\beta\),

\[
\lim_{n \to \infty} n^{\frac{1}{\alpha}} \frac{W_\beta^n}{D_\beta^n} = \frac{1}{\Gamma(1 - \frac{1}{\alpha})} \text{ in probability.}
\]

Proof of (5.1) in Proposition 5.1.

Assume (1.1). For \(\beta \geq 0\), by Aidekon and Shi [3], we have

\[
\frac{W_\beta^n}{D_\beta^n} = \mathbf{E}^\beta\left(\frac{1}{R_\beta(V(\omega^\beta_n))} \mid \mathbf{F}_n\right).
\]

(5.3)

Then by (3.3),

\[
\mathbf{E}^\beta\left(\frac{W_\beta^n}{D_\beta^n}\right) = \mathbf{E}^\beta\left(\frac{1}{R_\beta(V(\omega^\beta_n))}\right) = \frac{\mathbf{P}(S_n \geq -\beta)}{R(\beta)}.
\]

From (2.7), we know that \(\mathbf{P}(S_n \geq -\beta) \sim \frac{R(\beta)}{n^{\frac{1}{\alpha}} \Gamma(1 - \frac{1}{\alpha})}\), which completes the proof.

Proof of (5.2) in Proposition 5.1.

Let \(E_n\) be an event such that \(\tilde{\mathbf{P}}^\beta(E_n) \to 1\) as \(n \to \infty\). We define that

\[
\xi_{n,E_n} := \mathbf{E}^\beta\left(\frac{1_{E_n}}{R_\beta(V(\omega^\beta_n))} \mid \mathbf{F}_n\right).
\]

By (5.3), we have

\[
\frac{W_\beta^n}{D_\beta^n} = \mathbf{E}^\beta\left(\frac{1}{R_\beta(V(\omega^\beta_n))} \mid \mathbf{F}_n\right) = \xi_{n,E_n} + \mathbf{E}^\beta\left(\frac{1_{E_n}}{R_\beta(V(\omega^\beta_n))} \mid \mathbf{F}_n\right),
\]

and

\[
\mathbf{E}^\beta\left((\frac{W_\beta^n}{D_\beta^n})^2\right) = \mathbf{E}^\beta\left(\frac{W_\beta^n}{D_\beta^n} \cdot \xi_{n,E_n}\right) + \mathbf{E}^\beta\left(\frac{W_\beta^n}{D_\beta^n} \cdot \frac{1_{E_n}}{R_\beta(V(\omega^\beta_n))}\right).
\]

(5.4)
By the Hölder inequality, we have
\[
\hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \cdot \xi_{n,E_n} \right) \leq \left[\hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \right)^2 \right]^{\frac{1}{2}} \cdot \left[\hat{E}^{\beta} \left(\xi_{n,E_n}^2 \right) \right]^{\frac{1}{2}} \leq o(n^{-\frac{2}{\alpha}}).
\]
(5.5)

The last line above is from the following Lemma 5.2 and Lemma 5.3.

By (5.4), (5.5) and the following Lemma 5.5, we have
\[
\hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \right)^2 \leq \left(\frac{1}{(\Gamma(1 - \frac{1}{\alpha}))^2 n^{\frac{2}{\alpha}}} \right) + o(n^{-\frac{2}{\alpha}}).
\]

On the other hand, from the Jensen’s inequality,
\[
\hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \right)^2 \geq \left(\hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \right) \right)^2 \sim \left(\frac{1}{(\Gamma(1 - \frac{1}{\alpha}))^2 n^{\frac{2}{\alpha}}} \right).
\]
The above two inequalities lead to (5.2).

\[\square\]

Lemma 5.2. Assume (1.1), (1.5), (1.6), (1.7) and \(\beta \geq 0 \). We have
\[
\hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \right)^2 \leq c_{28} n^{-\frac{2}{\alpha}}.
\]

Proof. By (5.3) and Jensen’s inequality,
\[
\hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \right)^2 \leq \frac{1}{R(\beta)} E \left[\frac{1}{\left(R(\beta)(\sigma_n^{\beta}) \right)^2} \right] = \frac{1}{R(\beta)} E \left[\frac{1_{\{\hat{S}_n \geq -\beta\}}}{(1 + \beta + S_n)} \right].
\]

Since \(R(u) \geq c_1 (1 + u) \) for any \(u \geq 0 \),
\[
R(\beta)c_1 \hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \right)^2 \leq \sum_{i=0}^{\frac{n}{2}} E \left[\frac{1_{\{\hat{S}_n \geq -\beta\} \cup \{S_i \geq -\beta\}}}{(1 + \beta + S_n)} \right] + E \left[\frac{1_{\{S_n \geq -\beta\}}}{(1 + \beta + S_n)} \right]
\]
By Lemma 2.2,
\[
R(\beta)c_1 \hat{E}^{\beta} \left(\frac{W_n^{\beta}}{D_n^{\beta}} \right)^2 \leq \sum_{i=0}^{\frac{n}{2}} c_7 \cdot \frac{1}{(1 + \beta)^{i+1}} \cdot \frac{(1 + \beta)(i + 1)^{\alpha - 1}}{n^{1 + \frac{1}{\alpha}}} + \frac{P(S_n \geq -\beta)}{(\frac{n}{2})^{1 + \frac{1}{\alpha}}}
\]
\[
\leq c_{29} n^{-\frac{2}{\alpha}}.
\]
\[\square\]

Lemma 5.3. Assume (1.1), (1.5), (1.6), (1.7) and \(\beta \geq 0 \). For any sequence of events \((E_n) \) such that \(\hat{P}^\beta (E_n) \to 1 \), we have
\[
\hat{E}^{\beta} \left(\xi_{n,E_n}^2 \right) \leq o(n^{-\frac{2}{\alpha}}).
\]
Proof. By Jensen’s inequality,
\[
\mathbb{E}^\beta\left(\xi_{n,E_n}^2\right) \leq \mathbb{E}^\beta\left(\frac{1_{E_n}}{R_\beta(V(\omega_n^\beta))^2}\right).
\]
For any \(\varepsilon > 0 \),
\[
\mathbb{E}^\beta\left(\xi_{n,E_n}^2\right) \leq \mathbb{E}^\beta\left(\frac{1_{E_n}}{R_\beta(V(\omega_n^\beta))^2} \cdot 1_{\{V(\omega_n^\beta) \leq \varepsilon n^{\frac{1}{\alpha}}\}}\right) + \mathbb{E}^\beta\left(\frac{1_{\{V(\omega_n^\beta) > \varepsilon n^{\frac{1}{\alpha}}\}}}{R_\beta(V(\omega_n^\beta))^2}\right)
\]
\[
= \mathbb{E}^\beta\left(\frac{1_{E_n}}{R_\beta(V(\omega_n^\beta))^2} \cdot 1_{\{V(\omega_n^\beta) \geq \varepsilon n^{\frac{1}{\alpha}}\}}\right) + \frac{1}{R(\beta)} \mathbb{E}\left(\frac{1_{\{S_n < \varepsilon n^{\frac{1}{\alpha}}\}}}{R(\beta(S_n))} \cdot 1_{\{S_n \geq -\beta\}}\right).
\]
Recall that \(R(u) \geq c_1(1 + u) \) for any \(u \geq 0 \), so
\[
\mathbb{E}^\beta\left(\xi_{n,E_n}^2\right) \leq c_{30} \cdot \frac{\hat{P}^\beta(E_n)}{(1 + \varepsilon n^{\frac{1}{\alpha}} + \beta)^2} + c_{31} \cdot \mathbb{E}\left(\frac{1_{\{S_n < \varepsilon n^{\frac{1}{\alpha}}, S_n \geq -\beta\}}}{S_n + \beta + 1}\right)
\]
\[
= o(n^{-\frac{2}{\alpha}}) + c_{31} \cdot \mathbb{E}\left(\frac{1_{\{S_n < \varepsilon n^{\frac{1}{\alpha}}, S_n \geq -\beta\}}}{S_n + \beta + 1}\right)
\]
where the last line is by the assumption \(\hat{P}^\beta(E_n) \to 1 \). We observe that
\[
\mathbb{E}\left(\frac{1_{\{S_n < \varepsilon n^{\frac{1}{\alpha}}, S_n \geq -\beta\}}}{S_n + \beta + 1}\right) \leq \sum_{i=0}^{\beta(1 + \gamma - 1)} \mathbb{E}\left(\frac{1_{\{-\beta + i \leq S_n < -\beta + i + 1, S_n \geq -\beta\}}}{S_n + \beta + 1}\right)
\]
\[
\leq \sum_{i=0}^{\beta(1 + \gamma - 1)} \frac{1}{i + 1} \mathbb{P}\left(-\beta + i \leq S_n < -\beta + i + 1, S_n \geq -\beta\right)
\]
\[
\leq \sum_{i=0}^{\beta(1 + \gamma - 1)} \frac{1}{i + 1} \cdot \frac{(1 + \beta)(1 + i)^{\alpha - 1}}{n^{1 + \frac{1}{\alpha}}},
\]
where the last line follows from Lemma 2.2. Then we get
\[
\mathbb{E}\left(\frac{1_{\{S_n < \varepsilon n^{\frac{1}{\alpha}}, S_n \geq -\beta\}}}{(S_n + \beta + 1)^{\alpha - 1}}\right) \leq c_{32} \cdot \varepsilon^{\alpha - 1} n^{-\frac{2}{\alpha}}.
\]
Therefore,
\[
\mathbb{E}^\beta\left(\xi_{n,E_n}^2\right) \leq o(n^{-\frac{2}{\alpha}}) + c_{33} \cdot \varepsilon^{\alpha - 1} n^{-\frac{2}{\alpha}}.
\]
Letting \(\varepsilon \to 0 \), we obtain the desired result. \(\square \)

Recall that \(\Omega(\omega_i^\beta) \) stands for the set of “brothers” of \(\omega_i^\beta \). We can write
\[
W_n^\beta = e^{-V(\omega_n^\beta)}1_{\{\Sigma(\omega_n^\beta) \geq -\beta\}} + \sum_{i=0}^{n-1} \sum_{y \in \Omega(\omega_i^\beta+1)} \sum_{|x|=n, x \geq y} e^{-V(x)}1_{\{\Sigma(x) \geq -\beta\}}.
\]
Let $k_n < n$ such that $k_n \to \infty$ as $n \to \infty$. We denote

$$W^\beta_n[0,k_n) := \sum_{i=0}^{k_n-1} \sum_{y \in \Omega(\omega_{i+1}^\beta)} \sum_{|x|=n, x \geq y} e^{-V(x)} 1\{V(x) \geq -\beta\},$$

$$W^\beta_n[k_n,n] := e^{-V(\omega_{n+1}^\beta)} 1\{V(\omega_{n+1}^\beta) \geq -\beta\} + \sum_{i=k_n}^{n-1} \sum_{y \in \Omega(\omega_{i+1}^\beta)} \sum_{|x|=n, x \geq y} e^{-V(x)} 1\{V(x) \geq -\beta\},$$

so that $W^\beta_n = W^\beta_n[0,k_n) + W^\beta_n[k_n,n]$. We define $D^\beta_n[0,k_n)$ and $D^\beta_n[k_n,n]$ similarly. For any $r \in (0, 1 - \frac{1}{\alpha})$ and $\kappa > \frac{2}{\alpha}$, let

$$E_{n,1} := \{k_n^r \leq V(\omega_{k_n}^\beta) \leq k_n\} \bigcap_{i=k_n+1}^n \{V(\omega_i^\beta) \geq k_n^{r/2}\},$$

$$E_{n,2} := \bigcap_{i=k_n}^{n-1} \left\{ \sum_{y \in \Omega(\omega_{i+1}^\beta)} \left[1 + (V(y) - V(\omega_i^\beta))_+\right] e^{-(V(y) - V(\omega_i^\beta))} \leq e^{V(\omega_i^\beta)/2} \right\},$$

$$E_{n,3} := \left\{ D^\beta_n[k_n,n] \leq \frac{1}{n^\kappa} \right\}.$$

We choose

$$(5.6) \quad E_n := E_{n,1} \cap E_{n,2} \cap E_{n,3}.$$

Lemma 5.4. Assume (1.1), (1.5), (1.6), (1.7) and $\beta \geq 0$. Suppose $k_n \to \infty$ satisfying $k_n^{r/2}/\log n \to \infty$ and $\frac{k_n}{n^{1/2}} \to 0$, $n \to \infty$. Then

$$\lim_{n \to \infty} \hat{P}^\beta(E_n) = 1, \quad \lim_{n \to \infty} \inf_{u \in [k_n^r, k_n]} \hat{P}(E_n|V(\omega_{k_n}^\beta) = u) = 1.$$

Proof. We first prove $\lim_{n \to \infty} \hat{P}^\beta(E_{n,l}) = 1$ for $l = 1, 2,$ and $\lim_{n \to \infty} \hat{P}^\beta(E_{n,1} \cap E_{n,2} \cap E_{n,3}^c) = 0$. For $E_{n,1}$: This follows from Lemma 4.2.

For $E_{n,2}$: With Lemmas 2.4 and 4.1 in hand, one could easily extend Aidekon and Shi’s argument to our setting; see [3, P.18-19].

For $E_{n,3}$: Let $\tilde{G}_\infty := \sigma\{V(\omega_i^\beta), V(x), x \in \Omega(\omega_{k+1}^\beta), k \geq 0\}$ be the σ-algebra generated by the positions of the spine and its brothers. Then

$$\hat{P}^\beta(D^\beta_n[k_n,n]|\tilde{G}_\infty) = R_\beta(V(\omega_{k_n}^\beta)) e^{-V(\omega_{k_n}^\beta)} + \sum_{i=k_n}^{n-1} \sum_{x \in \Omega(\omega_{i+1}^\beta)} R_\beta(V(x)) e^{-V(x)}$$

holds. For any x on the tree, we have $R_\beta(V(x)) \leq c_2(1 + \beta + V(\omega_i^\beta))(1 + (V(x) - V(\omega_i^\beta))_+)$. Therefore,

$$(5.7) \quad 1_{E_{n,1} \cap E_{n,2}} \hat{P}^\beta[D^\beta_n[k_n,n]|\tilde{G}_\infty] = O(n e^{-\frac{k_n^{r/2}}{\alpha}}), \quad n \to \infty.$$

Since $\frac{k_n^{r/2}}{\log n} \to \infty$, and by the Markov inequality we deduce that $\lim_{n \to \infty} \hat{P}^\beta(E_{n,1} \cap E_{n,2} \cap E_{n,3}^c) = 0$.

It remains to check that $\hat{P}^\beta(E_n|V(\omega_{k_n}^\beta) = u) \to 1$ uniformly in $u \in [k_n^r, k_n]$. Similarly to the proof of Aidekon and Shi [3], we know that $\hat{P}^\beta(E_{n,2}|V(\omega_{k_n}^\beta) = u) \to 0$ uniformly in $u \in [k_n^r, k_n]$.

According to (5.7), \(\hat{P}^{\beta}(E_{n,1}^{\beta}, \omega_{kn}^{\beta}) = u \to 0 \) uniformly in \(u \in [k_n, k_n] \). Therefore, we only need to check that \(\hat{P}^{\beta}(E_{n,1}^{\beta}, \omega_{kn}^{\beta}) = u \to 1 \) uniformly in \(u \in [k_n, k_n] \). From (3.3), we have

\[
\hat{P}^{\beta}(E_{n,1}^{\beta}, \omega_{kn}^{\beta}) = u = \frac{1}{R_{\beta}(u)} E(R_{\beta}(S_{n-k_n} + u) 1_{\{\xi_{n-k_n} + u \geq k_n^{r/2}\}}).
\]

Recalling that \(\lim_{t \to \infty} R_{\beta}(t)/t = \theta \). Let \(\eta \in (0, \theta) \), and \(f_{\eta}(t) = (\theta - \eta) \min \{t, \frac{1}{\eta}\} \). Then \(R_{\beta}(t) \geq b f_{\eta}(t) \) for all sufficiently large \(t \) and uniformly in \(b > 0 \). Here we take \(b := (n-k_n)^{1/\alpha} \). Hence for \(u \in [k_n, k_n] \), we uniformly have

\[
\hat{P}^{\beta}(E_{n,1}^{\beta}, \omega_{kn}^{\beta}) = u \geq \frac{(n-k_n)^{1/\alpha}}{R_{\beta}(u)} E(f_{\eta}(S_{n-k_n} + u) 1_{\{n-k_n \geq k_n^{r/2} - u\}}) \geq \frac{(n-k_n)^{1/\alpha}}{R_{\beta}(u)} E(f_{\eta}(S_{n-k_n} + u - k_n^{r/2}) 1_{\{n-k_n \geq k_n^{r/2} - u\}}).
\]

By the assumption \(k_n \to 0 \), we have \(n - k_n \to \infty \). Hence, by Lemma 2.5, as \(n \to \infty \),

\[
E(f_{\eta}(S_{n-k_n} + u - k_n^{r/2}) 1_{\{n-k_n \geq k_n^{r/2} - u\}}) \sim \frac{R(u - k_n^{r/2}) \Gamma(1 - 1/\alpha)}{(n-k_n)^{1/\alpha}} \int_0^{\infty} f_{\eta}(t)p_{\alpha}(t)dt,
\]

holds uniformly in \(u \in [k_n, k_n] \). Consequently,

\[
\lim_{n \to \infty} \inf_{u \in [k_n, k_n]} \hat{P}^{\beta}(E_{n,1}^{\beta}, \omega_{kn}^{\beta}) = u \geq \frac{1}{\Gamma(1 - 1/\alpha)} \int_0^{\infty} f_{\eta}(t)p_{\alpha}(t)dt.
\]

Now note that

\[
\int_0^{\infty} f_{\eta}(t)p_{\alpha}(t)dt \geq (\theta - \eta) \int_0^{1/\eta} t p_{\alpha}(t)dt.
\]

As \(\eta \to 0 \), the right side goes to \(\theta \mathbb{E}M_\alpha \). Hence by Lemma 2.5,

\[
\lim_{n \to \infty} \inf_{u \in [k_n, k_n]} \hat{P}^{\beta}(E_{n,1}^{\beta}, \omega_{kn}^{\beta}) = u \geq \frac{\theta \mathbb{E}M_\alpha}{\Gamma(1 - 1/\alpha)} = 1.
\]

We complete the proof.

\(\square \)

Lemma 5.5. Assume (1.1), (1.5), (1.6), (1.7) and \(\beta \geq 0 \). \(E_n \) is defined as (5.6). Then

\[
\hat{E}^{\beta}(W_n^{\beta_{[k_n,n]}} \cdot \frac{1_{E_n}}{R_{\beta}(V(\omega_n^{\beta}))}) \leq \frac{1}{\Gamma(1 - 1/\alpha)^2 n^{\frac{2}{\alpha}}} + o(n^{-\frac{2}{\alpha}}).
\]

Proof. Let \(k_n \) be a sequence that satisfies \(k_n^{1/\alpha} \to \infty \) and \(k_n^{1/\alpha} \to 0 \) as \(n \to \infty \). On the set \(E_n \), we have \(W_n^{\beta_{[k_n,n]}} \leq D_n^{\beta_{[k_n,n]}} \leq \frac{1}{n^{\alpha}} \). Observing that \(R_{\beta}(V(\omega_n^{\beta})) \geq 1 \), so

\[
(5.8) \quad \hat{E}^{\beta}(W_n^{\beta_{[k_n,n]}} \cdot \frac{1_{E_n}}{R_{\beta}(V(\omega_n^{\beta}))}) \leq \hat{E}^{\beta}(\frac{1}{n^{\alpha}}) = o(n^{-\frac{2}{\alpha}})
\]

where the last equation from the assumption \(\kappa > \frac{2}{\alpha} \).
It remains to treat \(\hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta}} \cdot \frac{1_{E_n}}{R_\beta(V(\omega_n^\beta))} \right) \). Since \(D_n^{\beta} \geq D_n^{\beta,[0,k_n)} \),

\[
\hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta}} \cdot \frac{1_{E_n}}{R_\beta(V(\omega_n^\beta))} \right)
\leq \hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot \frac{1_{E_n}}{R_\beta(V(\omega_n^\beta))} \right)
\leq \hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot 1_{\{V(\omega_n^\beta) \in [k_n^\beta,k_n]\}} \right) \cdot \sup_{u \in [k_n^\beta,k_n]} \hat{E}^\beta \left(\frac{1}{R_\beta(V(\omega_n^\beta-k_n))} \right).
\]

By (3.3), \(\hat{E}^\beta \left(\frac{1}{R_\beta(V(\omega_n^\beta-k_n))} \right) = \frac{1}{R_\beta(u)} E(1_{\{\Sigma_n-k_n \geq -\beta-u\}}) \) and we have

\[
\sup_{u \in [k_n^\beta,k_n]} \hat{E}^\beta \left(\frac{1}{R_\beta(V(\omega_n^\beta-k_n))} \right) = \sup_{u \in [k_n^\beta,k_n]} \frac{1}{R_\beta(u)} E(1_{\{\Sigma_n-k_n \geq -\beta-u\}})
\sim \frac{1}{\Gamma(1-\frac{1}{\alpha}) (n-k_n)^{\frac{1}{\alpha}}}
\sim \frac{1}{\Gamma(1-\frac{1}{\alpha}) n^{\frac{1}{\alpha}}}, \quad n \to \infty.
\]

Hence,

\[
\hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot \frac{1_{E_n}}{R_\beta(V(\omega_n^\beta))} \right)
\leq \frac{1 + o(1)}{\Gamma(1-\frac{1}{\alpha}) n^{\frac{1}{\alpha}}} \hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot 1_{\{V(\omega_n^\beta) \in [k_n^\beta,k_n]\}} \right).
\]

(5.9)

On the other hand,

\[
\hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot 1_{E_n} \right) \geq \hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot 1_{\{V(\omega_n^\beta) \in [k_n^\beta,k_n]\}} \right).
\]

By Lemma 5.4, \(\lim_{n \to \infty} \inf_{u \in [k_n^\beta,k_n]} \hat{P}^\beta(E_n | V(\omega_n^\beta) = u) = 1 \). Therefore as \(n \to \infty \),

\[
\hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot 1_{\{V(\omega_n^\beta) \in [k_n^\beta,k_n]\}} \right)
\leq (1 + o(1)) \hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot 1_{E_n} \right)
\leq (1 + o(1)) \left[\hat{E}^\beta \left(\frac{W_n^{\beta,[0,k_n)}}{D_n^{\beta,[0,k_n)}} \cdot 1_{E_n} \frac{1}{D_n^{\beta} \leq \frac{1}{n}} \right) + \hat{P}^\beta(D_n^{\beta} \leq \frac{1}{n}) \right].
\]

Let \(\eta_1 \in (0,1) \). By the Markov inequality, we see that \(\hat{P}^\beta(D_n^{\beta} \leq \frac{1}{n}) \leq \frac{1}{n} \hat{E}^\beta \left(\frac{1}{D_n^{\beta}} \right) = \frac{1}{n \beta(0)} \). On the other hand, we already know that \(D_n^{\beta,[k_n,n]} \cdot 1_{E_n} = o(\frac{1}{n}) \). Therefore, for all sufficient large \(n \),
Letting $D_n^{\beta, [k_n, n]} \leq \eta_1 D_n^\beta$ on $E_n \cap \{ D_n^\beta > \frac{1}{n} \}$. Hence, for large n,

$$
\mathbb{E} \left(\frac{W_n^\beta, [0, k_n]}{D_n^\beta} \cdot \mathbf{1}_{E_n} \right)
\leq \frac{1}{1 - \eta_1} \mathbb{E} \left(\frac{W_n^\beta, [0, k_n]}{D_n^\beta} \cdot \mathbf{1}_{E_n} \mathbf{1}_{\{ D_n^\beta > \frac{1}{n} \}} \right) + \frac{1}{n R(0)}.
$$

Recalling (5.1), $\mathbb{E} \left(\frac{W_n^\beta}{D_n^\beta} \right) \sim \frac{1}{\Gamma(1 - \frac{1}{\alpha}) n^{\frac{1}{\alpha}}}$. Therefore,

$$
\limsup_{n \to \infty} n^{\frac{1}{\alpha}} \mathbb{E} \left(\frac{W_n^\beta, [0, k_n]}{D_n^\beta} \cdot \mathbf{1}_{\{ V(\omega_n^\beta) \in [k_n, k_{n+1}] \}} \right) \leq \frac{1}{\Gamma(1 - \frac{1}{\alpha})} \cdot \frac{1}{1 - \eta_1}.
$$

Letting $\eta_1 \to 0$, together with (5.8) and (5.9), we obtain the desired result.

\square

6. Proof of Theorem 1.2

From Proposition (5.1), for any $0 < \varepsilon < 1$, we have that

$$
\mathbb{P} \left(\left| n^{\frac{1}{\alpha}} \frac{W_n^\beta}{D_n^\beta} - \frac{1}{\Gamma(1 - \frac{1}{\alpha})} \right| > \frac{\varepsilon}{\Gamma(1 - 1/\alpha)} \right) \to 0, \ n \to \infty,
$$

i.e.,

$$
\mathbb{E} \left(D_n^\beta \mathbf{1}_{\left\{ \left| \frac{n^{1/\alpha} W_n^\beta}{D_n^\beta} - \frac{1}{\Gamma(1 - \frac{1}{\alpha})} \right| > \frac{\varepsilon}{\Gamma(1 - 1/\alpha)} \right\}} \right) \to 0, \ n \to \infty.
$$

Recall that $\Omega_\beta := \{ V(x) > -\beta, \forall n \geq 0, |x| = n \} \cap \{ \text{nonextinction} \}$ which increases to an event with probability 1 as $\beta \to \infty$ under \mathbb{P}^\ast. Let $\eta > 0$. There exists a k_0 such that $\mathbb{P}^\ast(\Omega_n) \geq 1 - \eta$. By (2.1), for any $\varepsilon > 0$, there exists N such that for any $u > N$,

$$
\theta(1 - \varepsilon) u < R(u) < \theta(1 + \varepsilon) u.
$$

Fix $\beta = k_0 + N$. On Ω_{k_0}, we have $V(x) + \beta > N$. Then

$$
\theta(1 - \varepsilon)(V(x) + \beta) < R(\beta)(V(x)) < \theta(1 + \varepsilon)(V(x) + \beta).
$$

Therefore on Ω_{k_0},

$$
\theta(1 - \varepsilon)(D_n + \beta W_n) < D_n^\beta < \theta(1 + \varepsilon)(D_n + \beta W_n).
$$

Noticing that $D_n \to D_\infty > 0$, \mathbb{P}^\ast - a.s. and $W_n \to 0$, \mathbb{P}^\ast - a.s. Therefore $\lim \inf_{n \to \infty} D_n^\beta > 0$ \mathbb{P}^\ast - a.s. on Ω_{k_0}. Let

$$
A := \left\{ \left| \frac{n^{1/\alpha} W_n^\beta}{D_n^\beta} - \frac{1}{\Gamma(1 - \frac{1}{\alpha})} \right| > \frac{\varepsilon}{\Gamma(1 - 1/\alpha)} \right\}.
$$

From (6.1), we have $\lim_{n \to \infty} \mathbb{P}^\ast(A \cap \Omega_{k_0}) = 0$. Define

$$
A_n := \left\{ \frac{n^{1/\alpha} W_n}{D_n + \beta W_n} < (1 + \varepsilon)^2 \frac{\theta}{\Gamma(1 - \frac{1}{\alpha})} \right\} \cup \left\{ \frac{n^{1/\alpha} W_n}{D_n + \beta W_n} > (1 - \varepsilon)^2 \frac{\theta}{\Gamma(1 - \frac{1}{\alpha})} \right\}.
$$
Clearly, $A_n \cap \Omega_{k_0} \subset A \cap \Omega_{k_0}$. Thus $P^*(A_n \cap \Omega_{k_0}) \to 0$ as $n \to \infty$. Since $P^*(\Omega_{k_0}) \geq 1 - \eta$, we arrive at

$$\limsup_{n \to \infty} P^*(A_n) \leq \eta,$$

which implies $n^{\frac{1}{3}}W_n - \frac{a}{1 (1 - \frac{1}{\pi})}(D_n + \beta W_n) \to 0$ under P^*. Combining this with $D_n \to D_\infty > 0$ and $W_n \to 0$, $P^* - a.s.$, we complete the proof. \qed

7. Proof of Theorem 1.3

The proof of Theorem 1.3 also uses the change of probabilities and spinal decomposition. Actually here we need the well-known change-of-probabilities setting in Lyons [28]. With the nonnegative martingale W_n, we can define a new probability measure Q such that for any $n \geq 1$,

$$Q|_{F_n} := W_n \cdot P|_{F_n},$$

(7.1)

where Q is defined on $F_\infty := \vee_{n \geq 0} F_n$. Let us give a description of the branching random walk under Q. We start from one single particle $\omega_0 := \emptyset$, located at $V(\omega_0) = 0$. At time $n + 1$, each particle ν in the nth generation dies and gives birth to a point process independently distributed as $(V(x), |x| = 1)$ under $P_{V(\nu)}$ except one particle ω_n, which dies and produces a point process distributed as $(V(x), |x| = 1)$ under $Q_{V(\omega_n)}$. While ω_{n+1} is chosen to be μ among the children of ω_n, proportionally to $e^{-V(\mu)}$. Next we state the following fact about the spinal decomposition.

Fact 7.1 (Lyons [28]). Assume (1.1). For any $|x| = n$, we have,

$$Q(\omega_n = x| F_n) = \frac{e^{-V(x)}}{W_n}.$$

The spine process $(V(\omega_n))_{n \geq 0}$ under Q has the distribution of $(S_n)_{n \geq 0}$ (introduced in Section 2) under P.

The spinal decomposition is useful in the following lemma, which is the essential ingredient of the proof of Theorem 1.3.

Lemma 7.1. Let $c_{18} > 0$ be the constant in Lemma 2.9. There exists a constant $c_{34} > 0$ such that for all large n,

$$P(\exists x : n \leq |x| \leq \alpha n, \frac{1}{\alpha} \log n \leq V(x) \leq \frac{1}{\alpha} \log n + c_{16}) \geq c_{34}.$$

Proof. The proof is an extension of the case $\alpha = 2$ in Aidekon and Shi [3, Lemma 6.3]. The idea is borrowed from [1]. We fix n and let

$$a_i = a_i(n) = \begin{cases} 0, & 0 \leq i \leq \frac{\alpha}{4} n; \\ \frac{1}{\alpha} \log n, & \frac{\alpha}{4} n < i \leq \alpha n, \end{cases}$$

and for $n < k \leq \alpha n$,

$$b_i^k = b_i^k(n) = \begin{cases} i^2, & 0 \leq i \leq \frac{\alpha}{4} n; \\ (k-i)^2, & \frac{\alpha}{4} n < i \leq k, \end{cases}$$

where $i = i(n)$ and $k = k(n)$ are defined in Section 2.
where $\gamma = \frac{1}{\alpha(\alpha+1)}$. We define
\[
Z^{(n)} := \sum_{k=n+1}^{\alpha n} Z^{(n)}_k,
\]
\[
Z^{(n)}_k := \#(E_k \cap F_k),
\]
and
\[
E_k := \{ y : |y| = k, V(y_i) \geq a_i, 0 \leq i \leq k, V(y) \leq \frac{1}{\alpha} \log n + c_{18} \},
\]
\[
F_k := \{ y : |y| = k, \sum_{v \in \Omega(y_k+1)} (1 + (V(v) - a_i)_{+})e^{-(V(v) - a_i)} \leq c'e^{-b_k}, 0 \leq i \leq k-1 \},
\]
where c' is a positive constant which will be determined later. By the definition of $Z^{(n)}$, it is sufficient to prove that there exists $c_{34} > 0$ such that
\[
\mathbb{P}(Z^{(n)} > 0) \geq c_{34}.
\]
We start with the first and second moments of $Z^{(n)}$. By Fact 7.1, for $n < k \leq \alpha n$,
\[
\mathbb{E}(Z^{(n)}_k) = \mathbb{E}_Q\left(\frac{Z^{(n)}_k}{W_k} \right) = \mathbb{E}_Q\left(e^{V(\omega_k)} 1_{\{\omega_k \in E_k \cap F_k\}} \right).
\]
Hence,
\[
\mathbb{E}(Z^{(n)}_k) \geq n^{\frac{1}{\alpha}} \mathbb{Q}(\omega_k \in E_k \cap F_k).
\]
From Lemma 2.7 and Lemma 2.9, we can find c_{35}, c_{36} such that
\[
\mathbb{Q}(\omega_k \in E_k) = \mathbb{P}(S_i \geq a_i, 0 \leq i \leq k, S_k \leq \frac{1}{\alpha} \log n + c_{18}) \in \left[\frac{c_{35}}{n^{\frac{1}{\alpha} + 1}}, \frac{c_{36}}{n^{\frac{1}{\alpha} + 1}} \right].
\]
And by Lemma 7.3, for $\varepsilon > 0$, it is possible to choose c' such that for sufficiently large n,
\[
\max_{k : n \leq k \leq \alpha n} \mathbb{Q}(\omega_k \in E_k, \omega_k \notin F_k) \leq \frac{\varepsilon}{n^{\frac{1}{\alpha} + 1}}.
\]
Here we choose $\varepsilon = c_{35}/2$. It follows that for $n < k \leq \alpha n$,
\[
\mathbb{Q}(\omega_k \in E_k, \omega_k \in F_k) \geq \frac{c_{35}}{2 n^{\frac{1}{\alpha} + 1}}.
\]
Hence,
\[
\mathbb{E}(Z^{(n)}) \geq \sum_{k=n+1}^{\alpha n} n^{\frac{1}{\alpha}} \frac{c_{35}}{2 n^{\frac{1}{\alpha} + 1}} \geq c_{37}.
\]
We next estimate the second moment of $Z^{(n)}$. By the definition,
\[
\mathbb{E}\left((Z^{(n)})^2 \right) = \sum_{k=n+1}^{\alpha n} \sum_{l=n+1}^{\alpha n} \mathbb{E}(Z^{(n)}_k Z^{(n)}_l) \leq 2 \sum_{k=n+1}^{\alpha n} \sum_{l=n+1}^{k} \mathbb{E}(Z^{(n)}_k Z^{(n)}_l).
\]
Similarly to (7.3), for $n < l \leq k \leq \alpha n$, we get
\[
\mathbb{E}(Z^{(n)}_k Z^{(n)}_l) \leq e^{c_{18} n^{\frac{1}{\alpha}}} \mathbb{E}_Q(Z^{(n)}_l 1_{\{\omega_k \in E_k \cap F_k\}}).
\]
Consequently,

\[E((Z^{(n)})^2) \leq 2e^{c_{18} n \frac{1}{\alpha}} \sum_{k=n+1}^{\infty} \sum_{l=n+1}^{k} E_Q(Z_{l}^{(n)} 1_{\{\omega_k \in E_k \cap F_k\}}). \]

To estimate \(E_Q(Z_{l}^{(n)} 1_{\{\omega_k \in E_k \cap F_k\}}) \), we define \(Y_{l}^{(n)} := \sum_{|x|=l} 1_{\{x \in E_k\}} \) which is larger than \(Z_{l}^{(n)} \).

For \(n \leq l \leq \alpha n \),

\[Y_{l}^{(n)} = 1_{\{\omega_l \in E_1\}} + \sum_{i=1}^{l} \sum_{y \in \Omega(\omega_i)} Y_{l}^{(n)}(y), \]

where \(Y_{l}^{(n)}(y) := \sharp\{x : |x| = l, x \geq y, x \in E_l\} \). Conditioning on \(G_\infty := \sigma\{\omega_j, V(\omega_j), \Omega(\omega_j), (V(u))_{u \in \Omega(\omega_j), j \geq 1}\} \),

\[E_Q(Y_{l}^{(n)}(y)|G_\infty) = \varphi_{i,l}(V(y)), \]

where \(\varphi_{i,l}(r) = E\left(\sum_{|x|=l-i} 1_{\{r+V(x_j) \geq s_{j+i}, 0 \leq j \leq l-i, r+V(x) \leq \frac{1}{\alpha} \log n + c_{18}\}} \right) \). Therefore,

\[E((Z^{(n)})^2) \leq 2e^{c_{18} n \frac{1}{\alpha}} \left(\sum_{k=n+1}^{\infty} Q(\omega_k \in E_k \cap F_k) + \sum_{k=n+1}^{\infty} \sum_{l=n+1}^{k} Q(\omega_k \in E_k \cap F_k, \omega_l \in E_l) \right. \]
\[+ \left. \sum_{k=n+1}^{\infty} \sum_{l=n+1}^{k} \sum_{i=1}^{l} E_Q\left(1_{\{\omega_k \in E_k \cap F_k\}} \sum_{y \in \Omega(\omega_i)} \varphi_{i,l}(V(y)) \right) \right) \]
\[=: 2e^{c_{18} n \frac{1}{\alpha}} (I_1 + I_2 + I_3). \]

We claim that there exists \(c_{38} > 0 \) such that

\[I_i \leq \frac{c_{38}}{n^{\frac{1}{\alpha}}}, \quad i = 1, 2, 3. \]

So we have \(E((Z^{(n)})^2) \leq c_{39} \), which leads to (7.2) by the fact

\[P(Z^{(n)} > 0) \geq \frac{(E(Z^{(n)}))^2}{E((Z^{(n)})^2)}. \]

Now let us return to (7.5). The case \(i = 1 \) immediately follows from (7.4). We now discuss the case \(i = 2 \). By Fact 7.1 and the Markov property,

\[Q(\omega_k \in E_k, \omega_l \in E_l) = P(S_i \geq a_i, 0 \leq i \leq k, S_k \leq \frac{1}{\alpha} \log n + c_{18}, S_k \leq \frac{1}{\alpha} \log n + c_{18}) \]
\[= E(1_{\{S_i \geq a_i, 0 \leq i \leq l, S_i \leq \frac{1}{\alpha} \log n + c_{18}\}} f(S_i)), \]

where \(f(y) := P(S_i + y \geq \frac{1}{\alpha} \log n, 0 \leq i \leq k-l, S_{k-l} + y \leq \frac{1}{\alpha} \log n + c_{18}) \). By Lemma 2.3, we obtain

\[f(y) \leq \frac{c_{40} (1 + y - \frac{1}{\alpha} \log n)}{(k-l)^{1+\frac{1}{\alpha}}}. \]
Substituting above into (7.6) yields that
\[
Q(\omega_k \in E_k, \omega_l \in E_l) \leq \frac{c_{41}}{(k-l)^{1+\frac{2}{\alpha}}} P(S_i \geq a_i, 0 \leq i \leq l, S_l \leq \frac{1}{\alpha} \log n + C)
\leq \frac{c_{42}}{(k-l)^{1+\frac{2}{\alpha}}} \cdot \frac{1}{l^{1+\frac{2}{\alpha}}},
\]
where in the last step we use Lemma 2.7. Now we obtain
\[
I_2 \leq \sum_{k=n+1}^{\alpha n} \sum_{l=n+1}^{k-1} \frac{c_{42}}{(k-l)^{1+\frac{2}{\alpha}}} \cdot \frac{1}{l^{1+\frac{2}{\alpha}}} \leq \frac{c_{43}}{n^{\frac{1}{2}}}. \tag{42}
\]

It remains to check (7.5) for \(i = 3\). Recalling the definition of \(\varphi_{i,l}(r)\), by the many-to-one formula, we have
\[
\varphi_{i,l}(r) = \mathbf{E}\left(e^{S_i-1}1_{\{r+S_j \geq a_{j+i}, 0 \leq j \leq l-i, r+S_{l-i} \leq \frac{1}{\alpha} \log n+c_{18}\}}\right) \leq e^{c_{18}-r} \frac{1}{n^{\frac{1}{2}}} P(r + S_j \geq a_{j+i}, 0 \leq j \leq l-i, r + S_{l-i} \leq \frac{1}{\alpha} \log n+c_{18}).
\]
On the one hand, when \(i \leq \frac{\alpha n}{4}\), we only need consider \(r \geq 0\). By Lemma 2.7, we have
\[
\varphi_{i,l}(r) \leq n^{\frac{1}{2}} e^{c_{44}r} \frac{1+r}{n^{1+\frac{2}{\alpha}}} \leq \frac{c_{45}}{n} e^{-r}(r+1).
\]
If we write \(E_Q[k,i,l] = E_Q\left(1_{\{\omega_k \in E_k \cap F_k\}} \sum_{y \in \Omega(\omega_i)} \varphi_{i,l}(V(y))\right)\), then
\[
E_Q[k,i,l] \leq \frac{c_{45}}{n} E_Q\left(1_{\{\omega_k \in E_k \cap F_k\}} \sum_{y \in \Omega(\omega_i)} e^{-V(y)}(V(y)+1)\right).
\]
Recalling the definition of \(F_k\), we obtain
\[
E_Q[k,i,l] \leq \frac{c_{46}}{n} e^{-(i-1)^{\frac{3}{2}}} Q(\omega_k \in E_k) \leq c_{46} e^{-\frac{1}{4}(i-1)^{\frac{3}{2}}}. \tag{46}
\]
Therefore,
\[
\sum_{k=n+1}^{\alpha n} \sum_{l=n+1}^{k} \sum_{1 \leq i \leq \frac{an}{4}} E_Q[k,i,l] \leq \sum_{k=n+1}^{\alpha n} \sum_{l=n+1}^{k} \sum_{1 \leq i \leq \frac{an}{4}} c_{46} e^{-(i-1)^{\frac{3}{2}}} n^{2+\frac{1}{2}} \leq \frac{c_{47}}{n^{1+\frac{2}{\alpha}}}. \tag{47}
\]
On the other hand, when \(\frac{\alpha n}{4} < i \leq l\), we only need consider \(r \geq \frac{1}{\alpha} \log n\). Then by Lemma 2.3, we have
\[
\varphi_{i,l}(r) \leq c_{48} n^{\frac{1}{2}} \frac{1}{n^{\frac{1}{2}}} \frac{1}{(l-i+1)^{1+\frac{1}{\alpha}}}. \tag{48}
\]
Similarly, we obtain
\[
E_Q[k,i,l] \leq c_{49} e^{-(k-i+1)^{\frac{3}{2}}}. \tag{49}
\]
As a consequence,
\[
\sum_{k=n+1}^{\alpha n} \sum_{l=n+1}^{k} \sum_{\frac{an}{4} < i \leq l} E_Q[k,i,l] \leq \sum_{k=n+1}^{\alpha n} \sum_{l=n+1}^{k} \sum_{\frac{an}{4} < i \leq \frac{an}{4}} \frac{c_{49}}{n^{1+\frac{1}{\alpha}}(l-i+1)^{1+\frac{1}{\alpha}}} \leq \frac{c_{50}}{n^{\frac{1}{2}}}. \tag{50}
\]
This completes the proof of (7.5), and then the lemma is now proved. \(\square\)
Let

\[p_i = 2b_i^k + a = \begin{cases}
2i^i, & 0 \leq i \leq \frac{\alpha}{4} n; \\
2(n - i)^i + a, & \frac{\alpha}{4} n < i \leq \alpha n,
\end{cases} \]

where \(\gamma = \frac{1}{\alpha(\alpha + 1)} \) as before.

Lemma 7.2. For \(\varepsilon > 0 \), there exists \(d > 0 \) such that for any \(u \geq 0, a \geq 0 \) and any integer \(n \geq 1 \),

\[
(7.7) \quad P(\exists 0 \leq i \leq n : S_i \leq p_i - d, \min_{j \leq n} S_j \geq 0, \min_{\frac{\alpha}{4} < j \leq n} S_j \geq a, S_n \leq a + u) \leq \varepsilon \cdot \frac{(1 + u)\alpha}{n^{1 + \frac{1}{\alpha}}}.
\]

Proof. Denoting the left side of the inequality by \(P(E) \), then we have

\[P(E) \leq \sum_{i=0}^{n} P(E_i), \]

where \(E_i := \{ S_i \leq p_i - d, \min_{j \leq n} S_j \geq 0, \min_{\frac{\alpha}{4} < j \leq n} S_j \geq a, S_n \leq a + u \} \).

We first deal with the case \(i \leq \frac{\alpha n}{4} \). Now \(p_i = 2i^i \). By the Markov property,

\[P(E_i) \leq P(1_{\{ S_i \leq 2i^i, S_i \geq 0 \}} f_1(S_i)), \]

where \(f_1(y) = P_y(S_{n-i} \geq 0, \min_{\frac{\alpha n}{4} < j \leq n} S_j \geq a, S_{n-i} \leq a + u) \leq c_{51} \frac{(1 + u)^\alpha}{n^{1 + \frac{1}{\alpha}}} \) (by Lemma 2.7). Therefore,

\[P(E_i) \leq c_{51} \cdot \frac{(1 + u)^\alpha}{n^{1 + \frac{1}{\alpha}}} E((1 + S_i) 1_{\{ S_i \leq 2i^i, S_i \geq 0 \}}) \]

\[\leq c_{51} c_{10} \cdot \frac{(1 + u)^\alpha}{n^{1 + \frac{1}{\alpha}}} \cdot \frac{(1 + 2i^i)^{\alpha + 1}}{i^{1 + \frac{1}{\alpha}}}, \]

which is from Lemma 2.3. Observing that \(\frac{\alpha}{2} (\alpha + 1) - 1 - \frac{1}{\alpha} < -1 \), we can choose a constant \(K_1 \) such that for \(k \geq K_1 \),

\[\sum_{i=k}^{\alpha n} P(E_i) \leq \frac{(1 + u)^\alpha}{n^{1 + \frac{1}{\alpha}}} \cdot \varepsilon. \]

Second, we treat the case \(\frac{\alpha n}{4} < i < n \). By the Markov property at time \(i \), we have

\[P(E_i) = E(1_{\{ S_i \leq 2(n-i)^i + a, \min_{j \leq i} S_i \geq 0, \min_{\frac{\alpha n}{4} < j \leq n} S_j \geq a \}} f_2(S_i)), \]

where \(f_2(y) = P_y(S_{n-i} \geq a, S_{n-i} \leq a + u) \leq c_{10} \frac{(1 + y - a)(1 + u)^\alpha}{(n-i)^{1 + \frac{1}{\alpha}}} \) (by Lemma 2.3). Then from Lemma 2.7, we have

\[P(E_i) \leq c_{52} \cdot \frac{(1 + u)^\alpha}{(n-i)^{1 + \frac{1}{\alpha}}} E((1 + S_i - a) 1_{\{ S_i \leq 2(n-i)^i + a, \min_{j \leq i} S_i \geq 0, \min_{\frac{\alpha n}{4} < j \leq n} S_j \geq a \}}) \]

\[\leq c_{52} \cdot \frac{(1 + u)^\alpha}{(n-i)^{1 + \frac{1}{\alpha}}} \cdot \frac{(1 + (n-i)^i)^{\alpha + 1}}{n^{1 + \frac{1}{\alpha}}} \]

\[\leq c_{52} \cdot \frac{(1 + u)^\alpha}{n^{1 + \frac{1}{\alpha}}} \cdot \frac{(1 + (n-i)^i)^{\alpha + 1}}{(n-i)^{1 + \frac{1}{\alpha}}}. \]
Therefore, we can find K_2 such that when $k \geq K_2$,
\[
\sum_{i=0}^{n-k} P(E_i) \leq \frac{(1 + u)^n}{n^{1 + \frac{1}{\alpha}}} \varepsilon.
\]
Notice that our choice of $K := \max(K_1, K_2)$ does not depend on the constant d. Thus, we are allowed to choose $d \geq 2 K^2 + a$ such that $P(E_i) = 0$ if $i \in [0, K] \cup [n - K, n]$. \hfill \Box

Lemma 7.3. For $\varepsilon > 0$, it is possible to choose c' such that for all large n,
\[
\max_{k \in \mathbb{N}, n < k \leq \alpha n} Q(\omega_k \in E_k, \omega_k \notin F_k) \leq \frac{\varepsilon}{n^{1 + \frac{1}{\alpha}}}.
\]
E_k, F_k and c' are defined as before.

Proof. By the definition of F_k, we can write
\[
Q(\omega_k \in E_k, \omega_k \notin F_k) = Q(\omega_k \in E_k, \exists 0 \leq i \leq k - 1, \sum_{\nu \in \Omega(\omega_{i+1})} (1 + (V(\nu) - a_i)_+) e^{-(V(\nu) - a_i)} > c' \varepsilon) \leq Q(\omega_k \in E_k, \exists 0 \leq i \leq k - 1, V(\omega_i) \leq 2b_i^k + a_i - d) + \sum_{i=0}^{k-1} Q(\omega_k \in E_k, \sum_{\nu \in \Omega(\omega_{i+1})} (1 + (V(\nu) - a_i)_+) e^{-(V(\nu) - a_i)} > c' \varepsilon).
\]
By Lemma 7.2, for any $k \in (n, \alpha n]$,
\[
Q(\omega_k \in E_k, \exists 0 \leq i \leq k - 1, V(\omega_i) \leq 2b_i^k + a_i - d) \leq \frac{\varepsilon}{n^{1 + \frac{1}{\alpha}}}
\]
We see that $1 + a_+ \leq 1 + b_+ + (a - b)_+ \leq (1 + b_+)(1 + (a - b)_+)$. Thus,
\[
\sum_{\nu \in \Omega(\omega_{i+1})} (1 + (V(\nu) - a_i)_+) e^{-(V(\nu) - a_i)} \leq (1 + (V(\omega_i) - a_i)_+) e^{-(V(\omega_i) - a_i)} \sum_{\nu \in \Omega(\omega_{i+1})} (1 + (V(\nu) - V(\omega_i))_+) e^{-(V(\nu) - V(\omega_i))}.
\]
For convenience, we let $\xi(\omega_{i+1}) := \sum_{\nu \in \Omega(\omega_{i+1})} (1 + (V(\nu) - V(\omega_i))_+) e^{-(V(\nu) - V(\omega_i))}$. Then we only need to prove that, for c' large enough,
\[
\sum_{i=0}^{k-1} Q(\xi(\omega_{i+1}) > c' \cdot \frac{e^{(V(\omega_i) - a_i)/2}}{1 + (V(\omega_i) - a_i)_+}, \omega_k \in E_k) \leq \frac{\varepsilon}{n^{1 + \frac{1}{\alpha}}}, \forall k \in (n, \alpha n].
\]
Actually, it is enough to show that
\[
\sum_{i=0}^{k-1} Q(\xi(\omega_{i+1}) > c' \cdot \frac{e^{(V(\omega_i) - a_i)/3}}{1 + (V(\omega_i) - a_i)_+}, \omega_k \in E_k) \leq \frac{\varepsilon}{n^{1 + \frac{1}{\alpha}}}, \forall k \in (n, \alpha n].
\]
First, we deal with the case $i + 1 \leq \frac{\alpha n}{4}$. We notice that
\[
Q(\xi(\omega_{i+1}) > c' \cdot \frac{e^{(V(\omega_i) - a_i)/3}}{1 + (V(\omega_i) - a_i)_+}, \omega_k \in E_k) \leq Q(\xi(\omega_{i+1}) > c' e^{V(\omega_i)/3}, \omega_k \in E_k).
\]
By the Markov property at time $i + 1$, we get the right side of above is same as
\[
Q(\{f(V(\omega_{i+1})) > c' e^{V(\omega_i)/3}, \omega \in [0, j], \forall j \leq i + 1\}).
\]
where \(f(r) = P_r(V(\omega_j) \geq a_{j+i+1}, 0 \leq j < k-i, V(\omega_k+i-1) \leq \frac{1}{n} \log n + c_{18}) \). By Lemma 2.7, \(f(r) \leq c_{53} \frac{(1+r)}{n^{1+\frac{1}{2}}} \) when \(r \geq 0 \). This yields that

\[
(7.8) \quad Q(\xi(\omega_{i+1}) > c' e^{V(\omega_i)/3}, \omega_k \in E_k) \leq \frac{c_{53}}{n^{1+\frac{1}{2}}} E_Q((1 + V(\omega_{i+1}))_+ 1_{\{\xi(\omega_{i+1}) > e^{V(\omega_j)/3}, V(\omega_j) \geq 0, j \leq i+1\}}).
\]

On the one hand, we have

\[
1 + V(\omega_{i+1})_+ \leq 1 + V(\omega_i)_+ + (V(\omega_{i+1}) - V(\omega_i))_+.
\]

By the Markov property at time \(i \), we obtain that

\[
E_Q((1+V(\omega_{i+1})_+ 1_{\{\xi(\omega_{i+1}) > e^{V(\omega_i)/3}, V(\omega_j) \geq 0, j \leq i+1\}})) = E_Q(1_{\{V(\omega_j) \geq 0, j \leq i\}} \kappa(V(\omega_i))),
\]

where for \(x \geq 0 \), \(\kappa(x) := 1_{\{x > e^{x/3}\}}(1 + x + \delta_+) \). \((\xi, \delta) \) is the identical and independent copy of \((\xi(\omega_1), V(\omega_1)) \) under \(Q \), and independent of the other random variables. In view of (7.8), it follows that

\[
(7.9) \quad \sum_{i=0}^{n-1} Q(\xi(\omega_{i+1}) > c' e^{V(\omega_i)/3}, \omega_k \in E_k) \leq c_{53} \frac{1}{n^{1+\frac{1}{2}}} \sum_{i=0}^{\infty} E_Q((1 + V(\omega_i)_+ + \delta_+) 1_{\{\min_{j \leq i} V(\omega_j) \leq \min(\xi - \xi')\}}).
\]

Notice that the term inside the expectation is 0 if \(c' > \xi \). Therefore, by Lemma 2.4, we get that

\[
(7.10) \quad \sum_{i=0}^{n-1} Q(\xi(\omega_{i+1}) > c' e^{V(\omega_i)/3}, \omega_k \in E_k) \leq c_{54} \frac{1}{n^{1+\frac{1}{2}}} E_Q((1 + \ln \xi_+ + \delta_+) (1 + \ln \xi_+)^{\alpha-1} 1_{\{c' \leq \xi\}}).
\]

Observe that \(\xi \leq X + \tilde{X} \), going back to the measure \(P \), we get

\[
(7.11) \quad \sum_{i=0}^{n-1} Q(\xi(\omega_{i+1}) > c' e^{V(\omega_i)/3}, \omega_k \in E_k) \leq c_{54} \frac{1}{n^{1+\frac{1}{2}}} \left(E_1 1_{\{c' \leq X + \tilde{X}\}} (1 + \ln_+(X + \tilde{X})^\alpha) \right) + E\left((\tilde{X} 1_{\{c' \leq X + \tilde{X}\}} (1 + \ln_+(X + \tilde{X})^{\alpha-1})\right) \leq \frac{\epsilon}{n^{1+\frac{1}{2}}}
\]

for \(c' \) large enough since \(E(X(1 + \ln_+(X + \tilde{X})^\alpha) + E(\tilde{X}(1 + \ln_+(X + \tilde{X})^{\alpha-1}) < \infty \). It remains to treat the case \(i + 1 > \frac{\alpha n}{4} \). We want to show that for \(c' \) large enough,

\[
(7.12) \quad \sum_{i=0}^{\frac{\alpha n}{4}} Q(\xi(\omega_{i+1}) > c' e^{V(\omega_i)-a_i})^{\alpha/3}, \omega_k \in E_k) \leq \frac{\epsilon}{n^{1+\frac{1}{2}}}.
\]

We deduce that

\[
Q(\xi(\omega_{i+1}) > c' e^{V(\omega_i)-a_i})^{\alpha/3}, \omega_k \in E_k) = Q(\xi(V(\omega_{i+1}) - V(\omega_i)) > c' e^{V(\omega_i)-a_i})^{\alpha/3}, \omega_k \in E_k),
\]
where, given \((V(\omega_i), i \leq k) \), the random variable \(\tilde{\xi}(V(\omega_{i+1}) - V(\omega_i)) \) is distributed as
\[
\frac{1}{\alpha} \log n, S_k \leq \frac{1}{\alpha} \log n + c_{18}.
\]
The last equation is same as
\[
(7.13) \quad P(\xi(S_{i+1} - S_i) > c' \cdot e^{(S_{i}-a_i)/3}, S_k \geq 0, \min_{\frac{a_0}{\alpha} < j \leq k} S_j \geq \frac{1}{\alpha} \log n, S_k \leq \frac{1}{\alpha} \log n + c_{18}).
\]
The random variable \(\tilde{\xi}(S_{i+1} - S_i) \) has the distribution of \(\int_{\mathbb{R}} (1+x) e^{-x} \mu(dx) \) under \(P_{S_{i+1}-S_i}(d\mu) \).
We return time, that is, we replace \(S_i \) by \(\hat{S}_k - \hat{S}_{k-i} \). \(\{\hat{S}_i\} \) is a random walk identically distributed with \(\{S_i\} \). Then (7.13) changes into
\[
(7.14) \quad P(\tilde{\xi}(\hat{S}_{k-i} - \hat{S}_{k-i-1}) > c' e^{(\hat{S}_{k} - \hat{S}_{k-i-1})/3}, \hat{S}_k \geq -\hat{S}_k, \\
\min_{0 \leq j < k - \frac{a_0}{\alpha}} (-\hat{S}_j) \geq \frac{1}{\alpha} \log n \leq \hat{S}_k \leq \frac{1}{\alpha} \log n + c_{18}.
\]
Using the Markov property at time \(k - i \), the above probability equals to
\[
P(f(-\hat{S}_{k-i}); \tilde{\xi}(\hat{S}_{k-i} - \hat{S}_{k-i-1}) > c' e^{(\hat{S}_{k} - \hat{S}_{k-i-1})/3}, \hat{S}_{k-i} \geq -c_{18}),
\]
where for \(-r \geq -c_{18},
\[
f(-r) = P_{f(\hat{S}_{k-i})}(-\frac{1}{\alpha} \log n \leq \hat{S}_i \leq \frac{1}{\alpha} \log n + c_{18}, \hat{S}_k \geq -\frac{1}{\alpha} \log n - c_{18}, \min_{0 \leq j < 1 - \frac{a_0}{\alpha}} (-\hat{S}_j) \geq -c_{18})
\leq c_{55} (1 + c_{18} - r)^{\alpha - 1} \frac{n^{1+\frac{1}{\alpha}}}{n^{1+\frac{1}{\alpha}}}
\]
The last line is from Lemma 2.12 in which we treat \(\{-\hat{S}_n\} \) as a new random walk with the step distributed as \(-S_1 \). After a time reversal, we obtain
\[
P(7.14) \leq \frac{c_{55}}{n^{1+\frac{1}{\alpha}}} E \left((1 - \hat{S}_{k-i} + c_{18})^{\alpha - 1} 1_{\{\tilde{\xi}(\hat{S}_{k-i} - \hat{S}_{k-i-1}) > c' e^{(\hat{S}_{k} - \hat{S}_{k-i-1})/3}, \hat{S}_{k-i} \geq -c_{18}\} \right)
\leq \frac{c_{55}}{n^{1+\frac{1}{\alpha}}} \mathbb{E}_Q \left((1 - V(\omega_{k-i}) + c_{18})^{\alpha - 1} 1_{\{\tilde{\xi}(\omega_{k-i}) > c' e^{-V(\omega_{k-i})/3}, -V(\omega_{j}) \geq c_{18}, j \leq k-i\} \right).
\]
Similarly to dealing with (7.8), we obtain by the Markov property at time \(k-i-1 \) (the expectation above we denoted by \(\mathbb{E}_Q(7.15) \)),
\[
\mathbb{E}_Q(7.15) \leq \mathbb{E}_Q(1_{\{-V(\omega_{j}) \geq c_{18}, j \leq k-i-1\}} \lambda(V(\omega_{k-i-1}))),
\]
where for \(x \geq -c_{18}, \lambda(x) := 1_{\{\xi > e^{-(x+\delta)/3}\}} (1 + (c_{18} - (x + \delta))_+)^{\alpha - 1}. \) Hence,
\[
(7.16) \quad \sum_{i \geq \frac{a_0}{\alpha}} \mathbb{E}_Q(7.15)
\leq \sum_{i \geq \frac{a_0}{\alpha}} \mathbb{E}_Q \left((1 + (c_{18} - (V(\omega_{k-i-1}) + \delta))_+)^{\alpha - 1} 1_{\{-V(\omega_{j}) \geq c_{18}, j \leq k-i-1, V(\omega_{k-i-1}) > 3(\ln e^{-\ln \xi}/\delta)\}} \right).
By Lemma 2.10 (ii),

\begin{align}
(7.17) & \sum_{i=n}^{k-1} E_{tQ}(7.15) \\
& \leq c_{56} E_Q \left((1 + \ln_+(X + \hat{X}))^{\alpha - 1} \right) \left(\alpha \log n \right) \leq \epsilon
\end{align}

for \(\epsilon' \) large enough since \(E(X + \hat{X}) \) + \(E(\hat{X}) \) < \infty.

We now can use Lemma 7.1 to prove the following theorem which is much closer to Theorem 1.3.

Theorem 7.4.

\[
\lim_{n \to \infty} \left(\min_{|x|=n} V(x) - \frac{1}{\alpha} \log n \right) = -\infty, \quad P^a-a.s.
\]

Proof. This proof is similar to the case \(\alpha = 2 \) in Aidekon and Shi [3]. For completeness, we still present it here. By our assumption, we have \(P(\min_{|x|=1} V(x) < 0) > 0 \). Thus for any \(J > 0 \), there exists an integer \(L = L(J) \geq 1 \) such that

\[
c_{57} := P(\min_{|x|=L} V(x) \leq -J) > 0.
\]

Let \(n_k := (L + \alpha)^k, k \geq 1 \), which means \(n_{k+1} \geq \alpha n_k + L \). And let

\[
T_k := \inf \{ i \geq n_k : \min_{|x|=i} V(x) \leq \frac{1}{\alpha} \log n_k + c_{18} \},
\]

\[
G_k := \{T_k \leq \alpha n_k\} \cap \{ \min_{|y|=L} [V(x(k)y) - V(x(k))] \leq -J\},
\]

where \(x(k) \) is the individual satisfying \(|x(k)| = T_k, V(x(k)) \leq \frac{1}{\alpha} \log n_k + c_{18} \) (when \(T_k \leq \alpha n_k \)) and \(x(k)y \) denotes the connection of \(x(k) \) with \(y \). More precisely, \(x(k)y \) denotes a vertex \(z \) on the tree such that \(z \) is the ancestor of it and \(|z| = |x(k)| + |y| \). For any pair of positive integers \(j \leq l \),

\[
(7.18) P \left(\bigcup_{k=j}^{l} G_k \right) = P \left(\bigcup_{k=j}^{l-1} G_k \right) + P \left(\bigcap_{k=j}^{l-1} G_k \cap G_l \right).
\]

By the Markov property at time \(T_l \),

\[
P(G_l | \mathcal{F}_{T_l}) = 1_{\{T_l \leq \alpha n_l\}} P(\min_{|y|=L} V(y) \leq -J) = c_{57} 1_{\{T_l \leq \alpha n_l\}}.
\]
Since $\bigcap_{k=j}^{l-1} G^c_k$ is \mathcal{F}_T-measurable,
\[P\left(\bigcap_{k=j}^{l-1} G^c_k \cap G_l \right) = c_{57} \mathbb{E}\left(1_{\bigcap_{k=j}^{l-1} G^c_k} \cdot 1_{\{T_l \leq \alpha n_l\}} \right) \]
\[\geq c_{57} P(T_l \leq \alpha n_l) - c_{57} P\left(\bigcup_{k=j}^{l-1} G_k \right). \]

Lemma 7.1 tells us for all large l (say $l \geq j_0$), $P\{T_l \leq \alpha n_l\} \geq c_{34}$. Combining this with (7.18), we obtain
\[P\left(\bigcup_{k=j}^{l} G_k \right) \geq (1 - c_{57}) P\left(\bigcup_{k=j}^{l-1} G_k \right) + c_{34} c_{57}, \quad j_0 \leq j. \]

Iterating the inequality above yields that
\[P\left(\bigcup_{k=j}^{l} G_k \right) \geq c_{34} c_{57}^{l-j} \sum_{i=0}^{l-j-1} (1 - c_{57})^i. \]

Letting $l \to \infty$, we get $P\left(\bigcup_{k=j}^{\infty} G_k \right) \geq c_{34} (j \geq j_0)$. As a consequence,
\[P\left(\lim_{k \to \infty} G_k \right) \geq c_{34}. \]

On the event $\lim G_k$, there are infinitely many vertices x such that $V(x) \leq \frac{1}{\alpha} \log |x| + c_{18} - J$. Hence,
\[P\left(\lim_{n \to \infty} \left(\min_{|x|=n} V(x) - \frac{1}{\alpha} \log n \right) \leq c_{18} - J \right) \geq c_{34}. \]

By the arbitrary of $J > 0$, we obtain
\[P\left(\lim_{n \to \infty} \left(\min_{|x|=n} V(x) - \frac{1}{\alpha} \log n \right) \leq -\infty \right) \geq c_{34}. \]

Recalling that the system survives almost surely under P^*, and by the branching property, it follows that
\[P^*\left(\lim_{n \to \infty} \left(\min_{|x|=n} V(x) - \frac{1}{\alpha} \log n \right) \leq -\infty \right) = 1, \]

which completes the proof.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Observing that $W_n = \sum_{|x|=n} e^{-V(x)} \geq \exp\{ - \min_{|x|=n} V(x) \}$, then
\[n^{1/\alpha} W_n \geq \exp \left\{ \frac{1}{\alpha} \log n - \min_{|x|=n} V(x) \right\}. \]

It follows from Theorem 7.4 that
\[\limsup_{n \to \infty} n^{1/\alpha} W_n = \infty \quad P^*-a.s. \]

Acknowledgement. We are grateful to Dr. Xinxin Chen for enlightenment on Lemma 2.11.
References

Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences, Beijing Normal University, Beijing 100875, P.R. China

Emails: helui@bnu.edu.cn
liujingning14@163.com
meizhang@bnu.edu.cn