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Abstract We investigate the branching structure coded by the excursion above
zero of a spectrally positive Lévy process. The main idea is to identify the level
of the Lévy excursion as the time and count the number of jumps upcrossing the
level. By regarding the size of a jump as the birth site of a particle, we construct
a branching particle system in which the particles undergo nonlocal branchings
and deterministic spatial motions to the left on the positive half line. A particle
is removed from the system as soon as it reaches the origin. Then a measure-
valued Borel right Markov process can be defined as the counting measures of
the particle system. Its total mass evolves according to a Crump-Mode-Jagers
branching process and its support represents the residual life times of those
existing particles. A similar result for spectrally negative Lévy process is estab-
lished by a time reversal approach. Properties of the measure-valued processes
can be studied via the excursions for the corresponding Lévy processes.
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1 Introduction

Branching processes embedded in processes with independent increments
have been studied by many authors. The study yields detailed information
and understandings in the two classes of processes. In particular, Dwass [7]
constructed branching processes from simple random walks. To study random
walks in random environment Kesten et al [11] constructed a Galton-Watson
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process with geometric offspring law from a simple random walk. Multitype
branching processes have also been introduced in the study of random walks in
random environment; see [9, 10, 12] and the references therein. Since continuous
state branching processes and Brownian motions arise as the scaling limits
of Galton-Watson processes and simple random walks, respectively, we may
naturally expect some branching structures embedded in a Brownian motion.
The well-known Knight-Ray theorem brings an answer to this question; see also
[16, 21].

Le Gall and Le Jan [18, 19] recovered a deep connection between general
continuous state branching processes and spectrally positive Lévy processes.
Furthermore, Duquesne and Le Gall [4, 5] showed that the branching points of
a Lévy tree constructed in [18] are of two types: binary nodes (i.e. vertex of
degree three), which are given by the Brownian part of the Lévy process, and
infinite nodes (i.e. vertex of infinite degrees), which are given by the jumps of
the Lévy process. The size of the jump is also called the size of the corresponding
infinite node (or the mass of the forest attached to the node).

In the interesting recent work [14], Lambert used spectrally positive Lévy
processes for the first time to code random splitting trees. In the population
dynamics represented by the splitting tree, the number of individuals evolves
according to a binary Crump-Mode-Jagers process. It was proved in [14] that
the contour process of the splitting tree truncated up to a certain level is a
spectrally positive Lévy process reflected below this level and killed upon hitting
zero. From this result Lambert derived a number of properties of the splitting
tree and the Crump-Mode-Jagers process.

The purpose of this paper is to give a formulation of the branching structures
of spectrally one-sided Lévy processes in terms of measure-valued processes,
which we call single-birth branching particle systems. Those structures are un-
doubtedly conveyed by the random splitting trees, so we could have derived the
results from those of Lambert [14]. However, we think a simple construction of
the branching particle systems directly from the Lévy process is of interest. In
addition, we show that the branching systems are Borel right Markov process-
es in a suitable state space and characterize their transition semigroups using
some simple quasi-linear integral equations. Those properties make the branch-
ing systems easier to handle than the Crump-Mode-Jagers processes. A more
precise description of the branching structures is given in the next paragraph.

Let us consider a typical trajectory of the spectrally positive Lévy process
with negative drift {St : t ≥ 0} started from a > 0 and killed upon hitting zero;
see Figure 1. Let {yi : i = 1, 2, 3} denote the sizes of jumps. Then the sample
path of a branching particle system can be obtained in the following way: At
time zero, an ancestor starts off from a > 0 and moves toward the left at the
unit speed. At times z1 and z3, it gives birth to two children at positions y1 and
y3, respectively. At time z2, the first child of the ancestor gives birth to a child
at position y2. Once an individual hits zero, it is removed from the system. So
the ancestor dies at time a and its two children die at times z1+y1 and z3+y3,
respectively.
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From the structures described above, we use a time reversal to derive a
similar result for spectrally negative Lévy processes with positive drift. We will
see that the branching systems we encounter here are actually very special cases
of the models studied in [3, 20]. Unfortunately, by now we can only treat Lévy
processes with bounded variations as in [14]. An interesting open question is
to give a description of the branching structures of general spectrally one-sided
Lévy processes in terms of measure-valued branching processes. We hope to
see the precise formulation of such structures in the future.

The rest of this paper is arranged as follows. In Section 2, we introduce some
branching particle systems on the positive half line involving nonlocal branching
structures. In Section 3, we extend the model to the case with infinite branching
rates. In Section 4 the result on the branching structures in spectrally positive
Lévy processes with negative drift is established. In Section 5, we derive the
branching structures for spectrally negative Lévy processes with positive drift
by a time reversal approach. Some properties of our branching systems are
studied in Section 6. In Section 7, we discusses briefly the connection of the
branching systems with the Crump-Mode-Jagers models.

Notations. Write R+ = [0,∞). Given a metric space E, we denote by
B(E) the Banach space of bounded Borel functions on E endowed with the
supremum/uniform norm “∥·∥”. Let C(E) be the subspace ofB(E) consisting of
bounded continuous functions on E. We use the superscript “+” to denote the
subset of positive elements of the function spaces, e.g., B+(R+) and C

+(0,∞).
Let M(E) denote the space of finite Borel measures on E endowed with the
topology of weak convergence. Let N(E) be the set of integer-valued measures
in M(E). For a measure µ and a function f on E write ⟨µ, f⟩ =

∫
fdµ if the

integral exists. Other notations will be explained when they first appear.

2 Branching systems on the positive half line

We begin with the description of a branching system of particles on R+.
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Suppose that α > 0 is a constant, η = η(dx) is a probability measure on
(0,∞) and g = g(z) is a probability generating function with g′(1) < ∞. Let
{ξt : t ≥ 0} be the R+-valued Markov process defined by ξt := (ξ0 − t) ∨ 0.
Let F (0, ·) be the unit mass at δ0 ∈ N(R+). For x > 0, let F (x, ·) be the
distribution on N(R+) of the random measure

δx +

Z∑
i=1

δYi ,

where Z is an integer-valued random variable with distribution determined by
g = g(z) and {Y1, Y2, · · · } are i.i.d random variables on (0,∞) with distribution
η(dx). Here we assumed that Z and {Y1, Y2, · · · } are independent.

Suppose that we have a set of particles on R+ moving independently ac-
cording to the law of {ξt : t ≥ 0}. A particle is frozen as soon as it reaches
zero. Before that at each α-exponentially distributed random time, the particle
gives birth to a random number of offspring according to the law specified by
the generating function g = g(z), and those offspring are scattered over R+

independently according to the distribution η(dx). It is assumed as usual that
the reproduction of different particles are independent of each other. Let X̄t(B)
denote the number of particles in the set B ∈ B(R+) at time t ≥ 0. By Dawson
et al [3, p.103] one can see that {X̄t : t ≥ 0} is a Markov process on N(R+)
with transition semigroup (Q̄t)t≥0 defined by∫

N(0,∞)
e−⟨ν,f⟩Q̄t(µ, dν) = exp{−⟨µ, Ūtf⟩}, f ∈ B+(R+), (2.1)

where (t, x) 7→ Ūtf(x) is the unique positive solution of

e−Ūtf(x) = e−f((x−t)∨0) − α

∫ t

0
e−Ūt−sf((x−s)∨0)ds+ α

∫ t

0
e−Ūt−sf(0)1{x≤s}ds

+α

∫ t

0
e−Ūt−sf(x−s)1{x>s}g(⟨η, e−Ūt−sf ⟩)ds;

see also Dawson et al [3, pp.95-96] and Li [20, p.98]. By Proposition 2.9 of [20],
the above equation can be rewritten as

e−Ūtf(x) = e−f((x−t)∨0) − α

∫ t

0
e−Ūt−sf(x−s)1{x>s}

[
1− g(⟨η, e−Ūt−sf ⟩)

]
ds. (2.2)

By Proposition A.49 of [20], for f ∈ B(R+) there is a unique locally bounded
solution (t, x) 7→ π̄tf(x) to the equation

π̄tf(x) = f((x− t) ∨ 0) + αg′(1)

∫ t

0
1{x>s}⟨η, π̄t−sf⟩ds. (2.3)

Moreover, the linear operators (π̄t)t≥0 on B(R+) form a semigroup and

∥π̄tf∥ ≤ ∥f∥eαg′(1)t, t ≥ 0. (2.4)
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Proposition 2.1. For t ≥ 0 and f ∈ B+(R+) we have Ūtf ≤ π̄tf and for t ≥ 0
and f ∈ B+(R+) we have∫

N(R+)
⟨ν, f⟩Q̄t(µ, dν) = ⟨µ, π̄tf⟩. (2.5)

Proof. For t ≥ 0 and f ∈ B+(R+) one can use (2.2) and (2.3) to see

π̄tf(x) =
∂

∂θ
Ūt(θf)(x)

∣∣∣
θ=0

.

Then (2.5) follows by differentiating both sides of (2.1). By (2.1), (2.5) and
Jensen’s inequality it is clear that Ūtf(x) ≤ π̄tf(x) for x ≥ 0. By linearity we
also have (2.3) and (2.5) for f ∈ B(R+). �

Proposition 2.2. For any f ∈ B+(R+) the mapping t 7→ Ūtf(· + t) from
[0,∞) to B+(R+) is increasing and locally Lipschitz in the supremum norm.
Moreover, for any t ≥ r ≥ 0 we have

0 ≤ e−Ūrf(x+r) − e−Ūtf(x+t) ≤ α(t− r). (2.6)

Proof. For any t, x ≥ 0 one can use (2.2) to see

e−Ūtf(x+t) = e−f(x∨0) − α

∫ t

0
e−Ūsf(x+s)1{x+s>0}

[
1− g(⟨η, e−Ūsf ⟩)

]
ds.

Then we have (2.6). Since t 7→ Ūtf is locally bounded by Proposition 2.1, we
see t 7→ Ūtf(·+ t) is increasing and locally Lipschitz in the supremum norm. �

Proposition 2.3. For any f ∈ B+(R+) the function (t, x) 7→ Ūtf(x) is the
unique locally bounded positive solution of

Ūtf(x) = f((x− t) ∨ 0) + α

∫ t

0
1{x>s}

[
1− g(⟨η, e−Ūt−sf ⟩)

]
ds. (2.7)

Proof. For notational convenience, in this proof we set f(x) = f(0) and
Ūtf(x) = Ūtf(0) for all x ≤ 0 and t ≥ 0. Let 0 = t0 < t1 < · · · < tn = t
be a partition of [0, t]. For x ∈ R+, we can write

Ūtf(x) = f(x− t) +

n∑
i=1

[
Ūt−ti−1f(x− ti−1)− Ūt−tif(x− ti)

]
. (2.8)

Note that Proposition 2.2 implies Ūt−ti−1f(x − ti−1) − Ūt−tif(x − ti) ≥ 0. By
(2.2), (2.6) and Taylor’s formula, as ti − ti−1 → 0,[

Ūt−ti−1f(x− ti−1)− Ūt−tif(x− ti)
]
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= eŪt−ti−1f(x−ti−1)
[
e−Ūt−tif(x−ti) − e−Ūt−ti−1f(x−ti−1)

]
+ o(ti − ti−1)

=

∫ ti−ti−1

0

[
1 + εi(s, x)

]
1{x−ti−1>s}

[
1− g(⟨η, e−Ūt−ti−1−sf ⟩)

]
ds

+o(ti − ti−1),

where

εi(s, x) = eŪt−ti−1f(x−ti−1)
[
e−Ūt−ti−1−sf(x−ti−1−s) − e−Ūt−ti−1f(x−ti−1)

]
.

By Propositions 2.1 and 2.2 one can see that

0 ≤ εi(s, x) ≤ α(ti − ti−1) exp
{
∥f∥eαg′(1)t

}
, 0 ≤ s ≤ ti − ti−1.

It then follows that[
Ūt−ti−1f(x− ti−1)− Ūt−tif(x− ti)

]
=

∫ ti−ti−1

0
1{x−ti−1>s}

[
1− g(⟨η, e−Ūt−ti−1−sf ⟩)

]
ds+ o(ti − ti−1)

=

∫ ti

ti−1

1{x>s}
[
1− g(⟨η, e−Ūt−sf ⟩)

]
ds+ o(ti − ti−1).

Substituting this into (2.8) and letting max1≤i≤n(ti−ti−1) → 0 we obtain (2.7).
The uniqueness of the solution of the equation follows from Proposition 2.18 in
[20]. �

Theorem 2.4. There is a Borel right transition semigroup (Qt)t≥0 on N(0,∞)
defined by∫

N(0,∞)
e−⟨ν,f⟩Qt(µ, dν) = e−⟨µ,Utf⟩, f ∈ B+(0,∞), (2.9)

where (t, x) 7→ Utf(x) is the unique locally bounded positive solution of

Utf(x) = f(x− t)1{x>t}

+α

∫ t

0
1{x>t−s}[1− g(⟨η, e−Usf ⟩)]ds, t ≥ 0, x > 0. (2.10)

Proof. It is not hard to see that (2.10) is a special cases of (2.21) in [20, p.39].
By (2.2) we have Ūtf(0) = f(0) for all t ≥ 0. Consequently, if {X̄t : t ≥ 0}
is a Markov process with transition semigroup (Q̄t)t≥0 defined by (2.1) and
(2.7), then {X̄t|(0,∞) : t ≥ 0} is a Markov process in N(0,∞) with transition
semigroup (Qt)t≥0 defined by (2.9) and (2.10). By Theorem 5.12 of [20], we
can extend (Qt)t≥0 to a Borel right semigroup on the space of finite measures
on (0,∞). Then (Qt)t≥0 itself is a Borel right semigroup. �

By Proposition 2.1 we have the following:
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Proposition 2.5. For every f ∈ B(0,∞) there is a unique locally bounded
solution (t, x) 7→ πtf(x) of

πtf(x) = f((x− t) ∨ 0) + αg′(1)

∫ t

0
1{x>s}⟨η, πt−sf⟩ds. (2.11)

Moreover, the linear operators (πt)t≥0 on B(0,∞) form a semigroup and∫
N(0,∞)

⟨ν, f⟩Qt(µ, dν) = ⟨µ, πtf⟩, t ≥ 0, f ∈ B(0,∞). (2.12)

Proposition 2.6. We have Utf(x) ≤ πtf(x) ≤ ∥f∥eαg′(1)t for t ≥ 0, x > 0 and
f ∈ B(0,∞).

A Markov process in N(0,∞) with transition semigroup (Qt)t≥0 defined
by (2.9) and (2.10) will be referred to as a branching system of particles with
parameters (g, α, η), where g is the generating function, α is the branching rate
and η is the offspring position law.

3 The system with infinite branching rate

In this section, we consider a system of particles, which can be thought of as
a branching system with infinite branching rate. Let ρ(x) = x for x ∈ (0,∞).
Let Bρ(0,∞) be the set of Borel functions on (0,∞) bounded by ρ · const.
Let Cρ(0,∞) be the subset of Bρ(0,∞) consisting of continuous functions. Let
Mρ(0,∞) be the set of Borel measures µ on (0,∞) satisfying ⟨µ, ρ⟩ < ∞.
Let Nρ(0,∞) be the set of integer-valued measures in Mρ(0,∞). We endow
Mρ(0,∞) and Nρ(0,∞) with the topology defined by the convention that

µn → µ if and only if ⟨µn, f⟩ → ⟨µ, f⟩ for all f ∈ Cρ(0,∞). (3.1)

We say a function (t, x) 7→ ut(x) on [0,∞)× (0,∞) is locally ρ-bounded if

sup
0≤s≤t

sup
x∈(0,∞)

|ρ(x)−1us(x)| <∞, t ≥ 0.

Let c > 0 be a constant and let Π(dz) be a σ-finite measure on (0,∞)
such that ⟨Π, ρ⟩ < c. Given f ∈ B+

ρ (0,∞), we consider the following evolution
equation:

Utf(x) = f(x− t)1{x>t} + c−1

∫ t

0
1{x>s}⟨Π, 1− e−Ut−sf ⟩ds. (3.2)

Lemma 3.1. For each f ∈ B+
ρ (0,∞) there is at most one locally ρ-bounded

positive solution of (3.2).
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Proof. Suppose that (t, x) 7→ Utf(x) and (t, x) 7→ Vtf(x) are two locally ρ-
bounded solutions of (3.2). Let

lT (x) = sup
0≤t≤T

|ρ(x)−1(Utf(x)− Vtf(x))|.

Then for any 0 ≤ t ≤ T we have

|Utf(x)− Vtf(x)| ≤ c−1

∫ t

0
1{x>s}⟨Π, |e−Ut−sf − e−Vt−sf |⟩ds

≤ c−1

∫ t

0
1{x>s}⟨Π, |Ut−sf − Vt−sf |⟩ds

≤ c−1

∫ t

0
1{x>s}ds∥lT ∥⟨Π, ρ⟩ ≤ c−1ρ(x)∥lT ∥⟨Π, ρ⟩,

which implies ∥lT ∥ ≤ c−1∥lT ∥⟨Π, ρ⟩. Then we have ∥lT ∥ = 0 as ⟨Π, ρ⟩ < c. �

Proposition 3.2. For each f ∈ B+
ρ (0,∞), there is a unique locally ρ-bounded

positive solution (t, x) 7→ Utf(x) of (3.2) and the solution is increasing in
(Π, f) ∈Mρ(0,∞)×B+

ρ (0,∞). Furthermore, the operators (Ut)t≥0 onB
+
ρ (0,∞)

form a semigroup and

∥ρ−1Utf∥ ≤ (c− ⟨Π, ρ⟩)−1∥ρ−1f∥, t ≥ 0. (3.3)

Proof. Step 1) We first assume that Π ∈ M(0,∞) and f ∈ B+(0,∞). By
Theorem 2.4 there is a unique locally bounded positive solution (t, x) 7→ Utf(x)
of (3.2). This solution can also be constructed by a simple iteration procedure.
In fact, if we let u0(t, x) = 0 and define un(t, x) = un(t, x, f) inductively by

un(t, x) := f(x− t)1{x>t}

+c−1

∫ t

0
1{x>s}ds

∫ ∞

0
[1− e−un−1(t−s,z)]Π(dz), (3.4)

then un(t, x) → Utf(x) increasingly as n → ∞; see Proposition 2.18 of [20].
Using this construction one can see that the solution of (3.2) is increasing in
(Π, f) ∈M(0,∞)×B+(0,∞).

Step 2) Next, we assume that Π ∈ M(0,∞) and f ∈ B+
ρ (0,∞). Let fk =

f ∧ k for k ≥ 1. Let (t, x) 7→ Utfk(x) be the unique locally bounded positive
solution of (3.2) with f replaced by fk. According to the argument above the
sequence {Utfk} is increasing in k ≥ 1. By (3.2) and Proposition 2.6 we have

Utfk(x) ≤ ∥ρ−1fk∥ρ(x) + c−1

∫ t

0
1{x>s}ds

∫
R+

Ut−sfk(z)Π(dz)

≤
[
∥ρ−1fk∥+ c−1∥fk∥⟨Π, 1⟩ exp{c−1⟨Π, 1⟩t}

]
ρ(x).



Branching Particle Systems 9

Thus (t, x) 7→ Utfk(x) is locally ρ-bounded. On the other hand, if we set

lk(t, x) := sup
0≤s≤t

Usfk(x),

then

lk(t, x) ≤ ∥ρ−1fk∥ρ(x) + c−1ρ(x) sup
0≤s≤t

∫
(0,∞)

Usfk(z)Π(dz)

≤
[
∥ρ−1f∥+ c−1∥ρ−1lk(t)∥⟨Π, ρ⟩

]
ρ(x).

It follows that

ρ(x)−1lk(t, x) ≤ ∥ρ−1f∥+ c−1∥ρ−1lk(t)∥⟨Π, ρ⟩,

which implies

∥ρ−1lk(t)∥ ≤ ∥ρ−1f∥
1− c−1⟨Π, ρ⟩

=
c∥ρ−1f∥
c− ⟨Π, ρ⟩

. (3.5)

In particular, we have

∥ρ−1Utfk∥ ≤ c∥ρ−1f∥(c− ⟨Π, ρ⟩)−1, t ≥ 0.

Then the limit Utf(x) := limk→∞ Utfk(x) exists. It is easy to see that (t, x) 7→
Utf(x) is a locally ρ-bounded positive solution of (3.2) satisfying (3.3).

Step 3) In the general case, let Πk(dz) = 1{z≥1/k}Π(dz) for k ≥ 1. For

f ∈ B+(0,∞) let (t, x) 7→ U
(k)
t f(x) be the unique locally ρ-bounded positive

solution of (3.2) with Π replaced by Πk. By the second step, we can define U
(k)
t f

by the equation for any f ∈ B+
ρ (0,∞). The sequence {U (k)

t f} is increasing by
the first and the second steps. As in the second step one can see the limit

Utf(x) := limk→∞ U
(k)
t f(x) exists and is a locally ρ-bounded positive solution

of (3.2) satisfying (3.3). The uniqueness of the solution follows from Lemma 3.1,
which yields the semigroup property of (Ut)t≥0. �

Proposition 3.3. For each f ∈ Bρ(0,∞), there is a unique locally ρ-bounded
solution (t, x) 7→ πtf(x) of

πtf(x) = f(x− t)1{x>t} + c−1

∫ t

0
1{x>t−s}⟨Π, πsf⟩ds. (3.6)

Furthermore, the solution is increasing in (Π, f) ∈ Mρ(0,∞) × Bρ(0,∞) and
(πt)t≥0 is a semigroup of linear operators on Bρ(0,∞) such that

∥ρ−1πtf∥ ≤ (c− ⟨Π, ρ⟩)−1∥ρ−1f∥, t ≥ 0. (3.7)
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Proof. For f ∈ B+
ρ (0,∞) one can obtain (3.6) by differentiating both sides of

(3.2), and (3.7) follows by (3.3). By the linearity, the equation has a solution
for any f ∈ Bρ(0,∞) and (3.7) remains true. By Proposition 3.2 one can see
the solution is increasing in (Π, f) ∈ Mρ(0,∞) × Bρ(0,∞). The uniqueness of
the solution follows by a modification of the proof of Lemma 3.1. �

Theorem 3.4. There is a Borel right semigroup (Qt)t≥0 on Nρ(0,∞) defined
by ∫

Nρ(0,∞)
e−⟨ν,f⟩Qt(µ, dν) = e−⟨µ,Utf⟩, f ∈ B+

ρ (0,∞), (3.8)

where (t, x) 7→ Utf(x) is the unique locally ρ-bounded positive solution of (3.2).
Furthermore, we have∫

Nρ(0,∞)
⟨ν, f⟩Qt(µ, dν) = ⟨µ, πtf⟩, f ∈ Bρ(0,∞), (3.9)

where (t, x) 7→ πtf(x) is the unique locally ρ-bounded solution of

πtf(x) = f(x− t)1{x>t} + c−1

∫ t

0
1{x>t−s}⟨Π, πsf⟩ds. (3.10)

Proof. Let (U
(k)
t )t≥0 be defined as in the last step of the proof of Proposition 3.2.

By Theorem 2.1, we can define a Borel right semigroup (Q
(k)
t )t≥0 on N(0,∞)

by ∫
N(0,∞)

e−⟨ν,f⟩Q
(k)
t (µ, dν) = e−⟨µ,U(k)

t f⟩, f ∈ B+(0,∞). (3.11)

In view of (2.12) and (3.7), if µ ∈ Nρ(0,∞) is a finite measure, we can regard

Q
(k)
t (µ, ·) as a probability measure on Nρ(0,∞). Clearly, Nρ(0,∞) is a closed

subset of Mρ(0,∞) and the latter is an isomorphism of M(0,∞) under the
mapping ν(dx) 7→ xν(dx). By Theorem 1.20 of [20] and the last step of the
proof of Proposition 3.2 one can see (3.8) really defines a probability measure
Qt(µ, ·) on Nρ(0,∞) for any finite measure µ ∈ Nρ(0,∞). By approximating
µ ∈ Nρ(0,∞) with an increasing sequence of finite measures, we infer the
formula defines a probability kernel on Nρ(0,∞). Here (3.2) can be regarded as
a special form of (6.11) in [20]. By Theorem 6.3 in [20], we can extend (Qt)t≥0

to a Borel right semigroup on Mρ(0,∞). Then we infer that (Qt)t≥0 itself is
a Borel right semigroup. The moment formula (3.9) can be obtained as in the
proof of Proposition 2.1. �

A Markov process in Nρ(0,∞) with transition semigroup (Qt)t≥0 defined by
(3.2) and (3.8) will be referred to as a single-birth branching system of particles
with offspring position law Π. Clearly, when Π is a finite measure on (0,∞),
this reduces to a special case of the model introduced in the last section.
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4 Subordinators with negative drift

In this section, we give a description of the branching structures in subor-
dinators with negative drift. Set

C1(R) = {f ∈ C(R) : f is differentiable and has bounded derivative.}

Let c > 0 be a constant and let Π be a σ-finite measure on (0,∞) satisfying
⟨Π, ρ⟩ < c. Suppose that {St : t ≥ 0} is a subordinator with negative drift
generated by the operator A given by

Af(x) =

∫ ∞

0
[f(x+ z)− f(x)]Π(dz)− cf ′(x), f ∈ C1(R). (4.1)

We assume S0 = a > 0. Our assumption implies that St → −∞ as t → ∞, so
the hitting time

τ−0 := inf{t > 0 : St ≤ 0}

is a.s. finite. For t ≥ 0 set

J(t) := {u ∈ [0, τ−0 ] : Su− ≤ t < Su} (4.2)

with the convention that S0− = 0. Then we define the measure-valued process

Xt =
∑
u∈J(t)

δSu−t, t ≥ 0. (4.3)

It is easy to see that X0 = δa.

Theorem 4.1. The process {Xt : t ≥ 0} is a single-birth branching system in
Nρ(0,∞) with transition semigroup (Qt)t≥0 defined by (3.2) and (3.8).

Proof. Step 1) We first assume Π(dz) is a finite measure on (0,∞). In this
case we clearly have P{#J(t) <∞ for all t ≥ 0} = 1. Let

C(t) = {u ∈ [0, τ−0 ] : Su = Su− = t} and ζ(t) = #C(t).

We can write C(t) = {τ1(t), · · · , τζ(t)(t)} by ranking the elements in increasing
order. Let τ0(t) = 0 and

σi(t) = inf{u ≥ τi−1(t) : Su > t}, i = 1, 2, · · · , ζ(t).

Then it is easy to see that J(t) = {σ1(t), · · · , σζ(t)(t)} and

Xt =

ζ(t)∑
i=1

δSσi(t)
−t, t ≥ 0. (4.4)
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In particular, we have ζ(t) = #J(t). WriteMt = min0≤r≤t Sr and Lt = St−Mt.
Set η0 = 0 and for k ≥ 1 define inductively

ζk = inf{t > ηk−1 : St ̸=Mt} and ηk = inf{t > ζk : St =Mt}.

It is clear that a − Sζ1− is an exponentially distributed random variable with
parameter λ/c, where λ = Π(0,∞). By the memoryless property one can see
Sηk−1

− Sζk− = Sζk−1− − Sζk− is also exponentially distributed with parameter
λ/c for each k ≥ 1. Let ek(t) = (Lζk+t−Lζk−)1{t<ηk−ζk} and let F (dw) denote

the distribution of {e1(t) : t ≥ 0} on D+[0,∞), the space of positive càdlàg
functions on [0,∞) equipped with the Skorokhod topology. Then

(Sηk−1
− Sζk−, {ek(t) : t ≥ 0}), k = 1, 2, · · · (4.5)

are i.i.d. random variables in (0,∞)×D+[0,∞) with

P(Sηk−1
− Sζk− ∈ dy, ek ∈ dw) =

λ

c
e−λy/cdyF (dw), y > 0, w ∈ D+[0,∞).(4.6)

It follows that

(Sζk−, {ek(t) : t ≥ 0}), k = 1, 2, · · · (4.7)

are positioned in (−∞, a)×D+[0,∞) as the atoms of a Poisson random measure
with intensity c−1λdyF (dw). Let n = max{k ≥ 0 : ηk ≤ τ−0 < ζk+1}. Then

Sζn−
(d)
=a ∧ Θ, where Θ is exponentially distributed with parameter λ/c. It is

easy to see from (4.4) that

Xt =

{
δa−t for 0 ≤ t < Sζn−,
δa−Sζn− + δSζn−Sζn− for t = Sζn−.

Therefore, the first offspring in the particle system is born at time Sζn−. By
(4.6) we have

P(Sζn − Sζn− ∈ dz) = P(en(0) ∈ dz) = Π(dz), z > 0.
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By the i.i.d. property of the random variables in (4.5) we infer that {Xt : t ≥ 0}
is a branching system with parameters (g, c−1λ, λ−1Π), where g(z) ≡ z. In other
words, the system have transition semigroup defined by (3.2) and (3.8).

Step 2) In the general case, let us consider an approximation of the subor-
dinator with drift. Let {N(ds, dz)} be a Poisson random measure on (0,∞)2

with intensity dsΠ(dz). Then a realization of {St : t ≥ 0} is constructed by

St := a+

∫ t

0

∫ ∞

0
zN(ds, dz)− ct.

For each k ≥ 1 we can define another subordinator with drift {S(k)
t : t ≥ 0} by

S
(k)
t := a+

∫ t

0

∫ ∞

1/k
zN(ds, dz)− ct.

Then S
(k)
t ≤ St and as k → ∞ we have

sup
0≤t≤T

(S
(k)
t − St) = S

(k)
T − ST → 0, T ≥ 0. (4.8)

Let Πk(dz) := 1{z≥1/k}Π(dz). Let {X
(k)
t : t ≥ 0} be the measure-valued process

defined by (4.3) with {St : t ≥ 0} replaced by {S(k)
t : t ≥ 0}. Then the first step

implies that {X(k)
t : t ≥ 0} is a branching system in N(0,∞) with transition

semigroup (Q
(k)
t )t≥0 given by (3.11), where (U

(k)
t )t≥0 is defined as in the last

step of the proof of Proposition 3.2. Then we can also think of {X(k)
t : t ≥ 0}

as a Markov process in Nρ(0,∞). For t > tn ≥ tn−1 ≥ · · · ≥ t1 ≥ 0 and
{f, fn, · · · , f1} ⊂ C+

ρ (0,∞), we have

E exp
{
−

n∑
i=1

⟨X(k)
ti
, fi⟩ − ⟨X(k)

t , f⟩
}

= E exp
{
−

n∑
i=1

⟨X(k)
ti
, fi⟩ − ⟨X(k)

tn , U
(k)
t−tnf⟩

}
= E exp

{
−

n∑
i=1

⟨X(k)
ti
, fi⟩ − ⟨X(k)

tn , Ut−tnf⟩
}
+ εk(f) (4.9)

with

|εk(f)| ≤ E
∣∣ exp{− ⟨X(k)

tn , Ut−tnf⟩
}
− exp

{
− ⟨X(k)

tn , U
(k)
t−tnf⟩

}∣∣.
Let (t, x) 7→ πtf(x) be the unique locally ρ-bounded solution of (3.6) and let

(t, x) 7→ π
(k)
t f(x) be the unique locally ρ-bounded solution of the equation with

γ replaced by γk. By Proposition 3.3 and Theorem 3.4,

εk(f) ≤ E
⟨
X

(k)
tn ,

∣∣Ut−tnf − U
(k)
t−tnf

∣∣⟩
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= π
(k)
tn

∣∣Ut−tnf − U
(k)
t−tnf

∣∣(a)
≤ πtn

∣∣Ut−tnf − U
(k)
t−tnf

∣∣(a).
By the proof of Proposition 3.2 we have Utf(x) = limk→∞ U

(k)
t f(x) increasingly.

Then εk(f) → 0 as k → ∞. From (4.9) we get

E exp
{
−

n∑
i=1

⟨Xti , fi⟩ − ⟨Xt, f⟩
}

= E exp
{
−

n∑
i=1

⟨Xti , fi⟩ − ⟨Xtn , Ut−tnf⟩
}
.

The above equality can be extended to {f, fn, · · · , f1} ⊂ B+
ρ (0,∞) by a mono-

tone class argument. Then {Xt : t ≥ 0} is a Markov process in Nρ(0,∞) with
transition semigroup (Qt)t≥0 given by (3.2) and (3.8). �

5 Subordinators with negative drift

In this section, we give a characterization of the branching structures in
negative subordinators with positive drift. We shall derive the result from the
one in the last section by a time reversal approach. Suppose that Π is a σ-finite
measure on (0,∞) with

∫∞
0 1∧zΠ(dz) <∞. Let {S∗

t : t ≥ 0} be a Lévy process
generated by A∗ such that

A∗f(x) =

∫ ∞

0
[f(x− z)− f(x)]Π(dz) + cf ′(x), f ∈ C1(R). (5.1)

Assume S∗
0 = 0 and 0 < c < ⟨Π, ρ⟩ ≤ ∞. Then S∗ has Laplace exponent

ψ(β) = cβ −
∫ ∞

0
(1− e−βz)Π(dz), β ≥ 0

Namely, EeβS
∗
t = etψ(β). For q ≥ 0 let Φ(q) = sup{t ≥ 0 : ψ(t) = q}. Define

τ−0 := inf{t > 0 : S∗
t ≤ 0}.

We have P(0 < τ−0 <∞) = 1; see Corollary 5 in Section VII.1 of [1]. Then for
t ≥ 0, set

J(t) := {u ∈ (0, τ−0 ] : S∗
u ≤ t < S∗

u−}
and define

X∗
t :=

∑
u∈J(t)

δS∗
u−−t. (5.2)

with X∗
0 = δS∗

τ−0 −
. Note that #J(t) <∞, a.s.
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Theorem 5.1. There is a Borel right semigroup (Qt)t≥0 on Nρ(0,∞) defined
by ∫

Nρ(0,∞)
e−⟨ν,f⟩Qt(µ, dν) = e−⟨µ,Utf⟩, f ∈ B+

ρ (0,∞), (5.3)

where (t, x) 7→ Utf(x) is the unique locally ρ-bounded positive solution of

Utf(x) = f(x− t)1{x>t} + c−1

∫ t

0
1{x>s}ds

∫ ∞

0
[1− e−Ut−sf(z)]Π+(dz), (5.4)

where Π+(dz) = e−Φ(0)zΠ(dz). Furthermore, we have∫
Nρ(0,∞)

⟨ν, f⟩Qt(µ, dν) = ⟨µ, πtf⟩, f ∈ Bρ(0,∞), (5.5)

where (t, x) 7→ πtf(x) is the unique locally ρ-bounded solution of (3.6).

Proof. Note that β0 := Φ(0) is the largest solution of ψ(β) = 0. It follows that

c−
∫ ∞

0
ze−zΦ(0)Π(dz) = ψ′(Φ(0)) > 0.

Then (c,Π+) satisfies the conditions of Theorem 3.4. �
For reader’s convenience, we first present a result on the distribution of time

reversed Lévy processes which should be well-known to experts. For a > 0, let

{S#
t : t ≥ 0} and {S−

t : t ≥ 0} be two subordinators with drift starting at a > 0

with Ee−βS
#
t = etψ(β+Φ(0))−aβ and Ee−βS

−
t = etψ(β)−aβ , respectively. Define

T#(0) = inf{t ≥ 0 : S#
t ≤ 0} and T−(0) = inf{t ≥ 0 : S−

t ≤ 0}. Note that
P{T#(0) <∞} = 1.

Lemma 5.2. Given S∗
τ−0 − = a, the time reversed process {S∗

(τ−0 −t)−, 0 ≤ t <

τ−0 } has the same distribution as {S#
t , 0 ≤ t < T#(0)}.

Proof. Define It = inf{0 ∧ S∗
s : 0 ≤ s ≤ t} and

Jt =
∑
s≤t

1{S∗
s<Is−}(S

∗
s − S∗

s−).

For a > 0, set ς(a) = sup{t ≥ 0 : S∗
t − Jt ≤ x}. By Lemma 21 and Theorem 17

in Chapter VII of [1], conditioned on S∗
τ−0 − = a,

{S∗
t : 0 ≤ t < τ−0 } (d)

= {S∗
t − Jt : 0 ≤ t < ς(a)}.

Then by Theorem 18 and Lemma 7 in Chapter VII of [1], under P{·|S∗
τ−0 − = a},

{S∗
(τ−0 −t)− : 0 ≤ t < τ−0 } has the same law as {S−

t : 0 ≤ t < T−(0)} under

P{·|T−(0) < ∞} which is the same as the law of {S#
t : 0 ≤ t < T#(0)}. We

have completed the proof. �
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Theorem 5.3. The measure-valued process {X∗
t : t ≥ 0} defined by (5.2) is

a single-birth branching system with transition semigroup (Qt)t≥0 determined
by (5.3) and

P{S(X∗
0 ) ∈ da} = c−1e−Φ(0)aΠ([a,∞))da for a > 0, (5.6)

where S(X∗
0 ) = S∗

τ−0 − denotes the support for X∗
0 .

Proof. (5.6) follows from Theorem 17 in Section VII of [1]. With the convention

S#
0− = 0 we let

J#(t) := {u ∈ [0, T#(0)] : S#
t− ≤ u < S#

t }.

For each t ≥ 0 define the random measure X#
t on (0,∞) by

X#
t =

∑
u∈J#(t)

δ
S#
u −t.

Then by Theorem 4.1, X# is a Markov process with transition semigroup
(Qt)t≥0 given by (5.3).

On the other hand, given S∗
τ−0 − = a, by Lemma 5.2, we have

{S∗
(τ−0 −t)− : 0 ≤ t < τ−0 } (d)

= {S#
t : 0 ≤ t < T#(0)}.

Thus given S∗
τ−0 − = a

{X∗
t : 0 ≤ t <∞} (d)

= {X#
t : 0 ≤ t <∞}.

We have completed the proof. �

6 Properties of the branching systems

In this section we discuss the properties of the measure-valued processes via
the exit problems for Lévy processes. For a Lévy process S and any x ≥ 0 let

τ+x = inf{t > 0 : St > x}, τ−x = inf{t > 0 : St ≤ x} (6.1)

with the convention inf ∅ = ∞. Set Px{·} = P{·|S0 = x}.

6.1 Properties of X
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In this subsection we discuss the properties of the measure-valued process
X in Theorem 4.1, which is determined by process S which satisfies that S0 = a
and St+ ct is a subordinator with Lévy measure Π and

∫∞
0 zΠ(dz) < c. Recall

ψ(λ) = cλ−
∫∞
0 (1−e−λz)Π(dz) and Φ(q) = sup{t ≥ 0 : ψ(t) = q} for q ≥ 0. Let

W denote the scale function of S, i.e., an increasing and continuous function
on [0,∞) taking values in [0,∞) with∫ ∞

0
e−λxW (x)dx =

1

ψ(λ)
,

and we make the convention that W (x) = 0 for x < 0. We will need the
following solution to the two-sided exit problems.

Lemma 6.1. For any t ≥ x, y ≥ 0 and z > 0,

Exe
−qτ−0 = e−xΦ(q), Px{τ−0 < τ+t } =

W (t− x)

W (t)

and

Px

{
Sτ+t − ∈ dy, Sτ+t

− t ∈ dz, τ+t < τ−0

}
=

(W (t− x)W (y)

W (t)
−W (y − x)

)
dyΠ(t− y + dz).

Proof. The first identity is from the beginning of page 212 of [13]. The second
identity follows by (8.8) of [13] with q = 0. The third identity is (8.29) of [13].
�

We first present a representation of Xt for any fixed t > 0.

Proposition 6.2. The randommeasureXt has the same distribution as
∑N−1

i=0 δYi ,
where N and (Yi) are independent random variables.

• For a > t,

P{N = n} =
1

cW (t)

(
1− 1

cW (t)

)n−1

, n ≥ 1, (6.2)

Y0 = a − t and Yi, i = 1, 2, ... are i.i.d. random variables with common
distribution

1

cW (t)

∫ t

0
W (y)Π(t− y + dz)dy, z > 0. (6.3)

• For a ≤ t, P{N = 0} =W (t− a)/W (t) and

P{N = n} =
1

cW (t)

(
1− W (t− a)

W (t)

)(
1− 1

cW (t)

)n−1

, n ≥ 1, (6.4)
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(Yi)i≥1 are i.i.d. random variables with common distribution (6.3) and Y0
is an independent random variable with distribution∫ t

0

(
W (t− a)W (y)

W (t)
−W (y − a)

)
Π(t− y + dz)dy, z > 0.

Proof. Observe that by the construction, the total mass Xt(0,∞) is exactly
the total number of excursions above level t, which is the same as the number
of continuous downcrossings of level t. In addition, each excursion of S started
with a jump upcrossing level t has to come back to level t due to overall negative
drift and lack of negative jumps. Then (6.2) and (6.4) follow easily from the
strong Markov property and Lemma 6.1.

For t < a, givenN = n ≥ 1, the excursion of S above 0 contains n excursions
at level t. The first excursion starts from a and all the excursions end at a.
Further, by the strong Markov property the second to the nth excursion starts
with i.i.d. initial value t + Y1, . . . , t + Yn−1, respectively. By the construction
the support of Xt is {a− t, Y1, . . . , Yn−1}. Note that Y1 is overshoot of the first
upward jump across level t. Then by Lemma 6.1

Pa{Y1 ∈ dz} = Pt{Sτ+t ∈ t+ dz, τ+t < τ−0 }

=
W (0)

W (t)

∫ t

0
W (y)Π(t− y + dz)dy.

The desired result follows. The corresponding result for t ≥ a follows similarly.
Our next result is on the weighted occupation time for X.

Proposition 6.3. For any f ∈ B+
ρ (0,∞) and h ∈ B+

ρ (0,∞), we have

Ee−
∫∞
0 h(t)⟨Xt,f⟩dt = Ee−⟨X0,ω0⟩, (6.5)

where ω is the unique nonnegative solution of the integral equation

ωt(x)− c−1

∫ ∞

t
1{x>s−t}ds

∫ ∞

0
Π(dz)[1− e−ωs(z)]

=

∫ ∞

t
h(s)f(x− s+ t)1{x>s−t}ds. (6.6)

Proof. By Theorem 5.3, similar to Section II.3 of Le Gall [17] we can show
by induction together with the Markov property that for any 0 ≤ t1 < . . . < tp
and any f1, . . . , fp ∈ B+

ρ (0,∞),

Ee−
∑p

i=1⟨Xti ,fi⟩ = e−⟨X0,ω0⟩

where (ωt(x), t ≥ 0, x ∈ (0,∞)) is the unique nonnegative solution of the inte-
gral equation

ωt(x)− c−1

∫ ∞

t
1{x>s−t}ds

∫ ∞

0
Π(dz)[1− e−ωs(z)]
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=

p∑
i=1

fi(x− ti + t)1{x>ti−t}.

Further, by taking a limit on the Riemann sums we can show that (6.3) holds.
Since the arguments for (6.6) is similar to (5.4), one could follow the proof of
Corollary 9 in Section II.3 of [17] to get (6.5). We omit the details here. �

It is easy to recover Laplace transform for the total occupation time
∫∞
0 ⟨Xt, 1⟩dt.

Observe that it is equal to the sum of a and sizes of all the jumps of S up to
time τ−0 , which is in turn equal to cτ−0 . We then have

Eae
−q

∫∞
0 ⟨Xt,1⟩dt = Eae

−qcτ−0 = e−aΦ(qc).

6.2 Properties of X∗

Properties of the measure-valued process X∗ in Theorem 5.3 can also be
investigated via the exit problems for process S∗ with generator (5.1), the neg-
ative of a subordinator with positive drift.

Throughout this subsection, for q ≥ 0, let W (q) be the scale function for the
spectrally negative Lévy process S∗; i.e.; W (q)(x) = 0 for x < 0 and on [0,∞),
it is an increasing and continuous function taking values in [0,∞) with∫ ∞

0
e−λxW (q)(x)dx =

1

ψ(λ)− q
,

for λ > Φ(q) := sup{λ ≥ 0 : ψ(λ) = q}, where ψ(λ) = cλ−
∫∞
0 (1− e−λz)Π(dz).

Write W for W (0). We also first present a result on the two-sided exit problems
of S∗; see Chapter 8 of [13] and [2].

Lemma 6.4. For any y > 0 > z,

Ee−qτ
−
0 = 1− q

Φ(q)
W (q)(0)

and
P{S∗

τ−0 − ∈ dy, S∗
τ−0

∈ dz} =W (0)e−Φ(0)yΠ(dz − y)dy.

Proof. The first identity is just (8.6) of [13]. The second identity the equation
right after (8.29) in [13]. �

For any y > t, let

g(y) := c−1e−Φ(0)(y−t)
∫ t

0
Π(y − dz)

W (z)

W (t)
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and

h(y) := c−1e−Φ(0)(y−t)
{∫ t

0
Π(y − dz)

(
1− W (z)

W (t)

)
+Π((y,∞))

}
.

One will see from the proof of Proposition 6.5 that
∫∞
t g(y)dy+

∫∞
t h(y)dy = 1.

Fix t > 0 until the end of the following Proposition 6.5. We first proceed
to recover distribution for the total mass for X∗

t . The proof of the following
representation result is similar to Proposition 6.2 and is omitted.

Proposition 6.5. X∗
t has the same distribution as

∑N−1
i=0 δYi , where N and

(Yi) are independent random variables.

•
P{N = 0} = 1− 1

cW (t)
(6.7)

and for any n ≥ 1

P{N = n} =
1

cW (t)

(∫ ∞

t
g(y)dy

)n−1 ∫ ∞

t
h(y)dy. (6.8)

• Y0 has the density function h(t+ y)/
∫∞
t h(r)dr, y > 0 and Yi, i = 1, 2, . . .,

share the common density function g(t+ y)/
∫∞
t g(r)dr, y > 0.

Proof. Since N = 0 if and only if the whole excursion of S∗ stays below level
t up to time τ−0 , the probability (6.7) just follows from Lemma 6.1. Observe
that the total mass X∗

t (0,∞) is exactly the number of up-crossings (the same
as the number of down-crossings) of level t by process S∗ until the time τ−0 .
Each up-and-down-crossing of level t corresponds to an excursion starting at
level t. All of such excursions end at level t except that the last one ends below
0 at time τ−0 , where the last excursion determines the residual life time of a
particle that can be either the ancestor or an offspring. Using solutions to the
two-sided exit problem in Lemmas 6.1 and 6.4 together with the strong Markov
property repeatedly at those up-crossing times of level t we have

P{X∗
t (0,∞) = n}

= P{τ+t < τ−0 }
(∫ t

0
Pt{S∗

τ−t
∈ dz}Pz{τ+t < τ−0 }

)n−1

×
(∫ t

0
Pt{S∗

τ−t
∈ dz}Pz{τ+t > τ−0 }+Pt{S∗

τ−0
≤ 0}

)
=
W (0)

W (t)

(∫ ∞

t
e−Φ(0)(y−t)W (0)dy

∫ t

0
Π(y − dz)

W (z)

W (t)

)n−1

×
(∫ ∞

t
e−Φ(0)(y−t)W (0)dy

×
{∫ t

0
Π(y − dz)

(
1− W (z)

W (t)

)
+Π((y,∞))

})
. (6.9)



Branching Particle Systems 21

Therefore, the probability (6.8) follows.
Given X∗

t (0,∞) = n, the support of X∗
t (0,∞) consists of those distances

between the pre-down-crossing (of level t) values of S∗ and t for the n excursions
from t. By the strong Markov property all these distances are independent.
By Lemma 6.4 the distances for the first n − 1 excursions following the same
distribution of∫ t

0
Pt{S∗

τ−t − ∈ t+ dy, S∗
τ−t

∈ dz}

×Pz{τ+t < τ−0 }
(∫ t

0
Pt{S∗

τ−t
∈ dz}Pz{τ+t < τ−0 }

)−1

= e−Φ(0)yW (0)dy

∫ t

0
Π(t+ y − dz)

W (z)

W (t)

(∫ ∞

t
g(r)dr

)−1

= g(t+ y)dy

(∫ ∞

t
g(r)dr

)−1

.

The distance for the last excursion follows the distribution of(∫ t

0
Pt{S∗

τ−t − ∈ t+ dy, S∗
τ−t

∈ dz}Pz{τ+t > τ−0 }

+Pt{S∗
τ−t − ∈ t+ dy, S∗

τ−t
≤ 0}

)
×
(∫ ∞

t

∫ t

0
Pt{S∗

τ−t − ∈ t+ dy, S∗
τ−t

∈ dz}Pz{τ+t > τ−0 }

+Pt{S∗
τ−t − ∈ t+ dy, S∗

τ−t
≤ 0}

)−1

= h(t+ y)dy

(∫ ∞

t
h(r)dr

)−1

.

�
Our next result is on the weighted occupation time for X∗. The proof is

similar to Proposition 6.3 and is omitted.

Proposition 6.6. For any f ∈ B+
ρ (0,∞) and h ∈ B+

ρ (0,∞), we have

Ee−
∫∞
0 h(t)⟨X∗

t ,f⟩dt = Ee−⟨X∗
0 ,ω0⟩, (6.10)

where ω is the unique nonnegative solution of the integral equation

ωt(x)− c−1

∫ ∞

t
1{x>s−t}ds

∫ ∞

0
Π+(dz)[1− e−ωs(z)]

=

∫ ∞

t
h(s)f(x− s+ t)1{x>s−t}ds.
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Observe that the total occupation time
∫∞
0 ⟨X∗

t , 1⟩dt is just the sum of the

sizes of all the jumps of process S∗ before time τ−0 together with S∗
τ−0 −. Further,

this sum is equal to cτ−0 since S∗
0 = 0. By Lemma 6.4 we then have

Ee−q
∫∞
0 ⟨X∗

t ,1⟩dt = Ee−qcτ
−
0 = 1− qc

Φ(qc)
W (qc)(0) = 1− q

Φ(qc)
. (6.11)

7 Connections with the CMJ model

Informally, the Crump-Mode-Jagers branching processes or the CMJ process
counts the size of a branching population system with random characteristics.
Informally, a particle, say x, of this process is characterized by there random
process

(λx, ζx(·), ωx)

which is an i.i.d. copy of (λ, ζ(·), ω) and the reproduction scheme is given in
the following sense: if x was born at time σx, then

1. λx is the life length of x;

2. ζx(·) = {0 < ζ1x < ζ2x < · · · < λx} is a point process defined on (0, λx).
{ζix + σx : i = 1, ·} is the collection of splitting times of x at which it
produces offspring.

3. ωix is the number of children produced by x at time σx + ζix.

Let Z(t) denote the total number of individuals in the system at time t with
Z(0) ancestors. In general, the process {Z(t) : t ≥ 0} is not Markovian unless
λx is exponentially distributed. Now assume that

1. The distribution of λ is determined by a probability measure η(dx) on
(0,∞);

2. ζ(·) is a Poisson point process with parameter α;

3. The distribution of ωi is determined by a generating function g(·).

According to the argument in Section 2 and [3], we may define a measure-valued
Markov process Y = {Y (t) : t ≥ 0} with transition probabilities given by∫

N(0,∞)
e−⟨ν,f⟩Qt(µ, dν) = e−⟨µ,Utf⟩, f ∈ B+(0,∞), (7.1)

where (t, x) 7→ Utf(x) is the unique locally bounded positive solution of

Utf(x) = f(x− t)1{x>t} + α

∫ t

0
1{x>t−s}

[
1− g(⟨η, e−Usf ⟩)

]
ds. (7.2)
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Then the CMJ process {Z(t) : t ≥ 0} is just the total mass process of Y ; i.e.
Z(t) = ⟨Y (t), 1⟩.

The connection between Lévy processes and CMJ processes was first inves-
tigated by Lambert in [14] which showed that the contour process of a splitting
tree defined from a suitable CMJ process is a spectrally positive Lévy process
with negative drift killed when it hits 0. The starting position of the Lévy
process is just the life time of the ancestor. Equivalently, given such a Lévy
process, one could construct a CMJ process; see also [15]. In those works,
the Lévy measure, say γ, is assumed to be a σ-finite measure on (0,∞] with∫
(0,∞] 1 ∧ zγ(dz) < ∞. Our main result, Theorem 3.2, also gives similar re-

lationships between one-sided Lévy processes of bounded variation and CMJ
processes.
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348–395.

15. A. Lambert, F. Simatos, B. Zwart (2013): Scaling limits via excursion theory: Interplay
between Crump-Mode-Jagers branching processes and Processor-Sharing queues, Ann.
Appl. Probab., 23, 2357–2381.

16. J.-F. Le Gall (1989): Marches aleatoires, mouvement brownien et processus de branche-
ment, Lect. Notes Math. 1372, 258–274.

17. J.-F. Le Gall (1999): Spatial branching processes, random snakes and partial differential
equations, Birkhäuser.
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