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Abstract

We construct a flow of continuous time and discrete state branching processes.
Some scaling limit theorems for the flow are proved, which lead to the path-
valued branching processes and nonlocal branching superprocesses over the
positive half line studied in Li (2012).
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1. Introduction

A genealogical tree is naturally associated with a Galton-Watson branching pro-
cess. A continuous-state branching process (CB-process) can be obtained as the small
particle limit of rescaled Galton-Watson processes; see, e.g., Lamperti (1967). The
genealogical structures of binary branching CB-processes were investigated by intro-
ducing continuum random trees in the pioneer work of Aldous (1991, 1993). Continuum
random trees corresponding to general branching mechanisms were constructed in
Le Gall and Le Jan (1998a, 1998b) and were studied further in Duquesne and Le Gall
(2002). By pruning a Galton-Watson tree, Aldous and Pitman (1998) and Abraham at
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al. (2012) constructed a tree-valued Markov process. Tree-valued processes associated
with general CB-processes were studied in Abraham and Delmas (2012) by pruning
arguments.

Motivated by the study of genealogy trees for critical branching processes condi-
tioned on non-extinction, Bakhtin (2011) studied a flow of binary branching continuous-
state branching processes with immigration (CBI-processes) driven by a time-space
Gaussian white noise. He also pointed out the connection of the model with a super-
process conditioned on non-extinction. In Li (2012), a class of path-valued branching
processes were constructed and studied using the techniques of stochastic equations
and superprocesses. The work is closely related to those of Bertoin and Le Gall (2006)
and Dawson and Li (2012). In a special case, the path-valued branching processes in
Li (2012) can be coded by the tree-valued processes of Abraham and Delmas (2012).
In He and Ma (2012), two flows of discrete time and state Galton-Watson branching
processes were introduced. There it was showed that suitable rescaled sequences of
those flows converge to special forms of the flows of Dawson and Li (2012) and Li
(2012), respectively. The limit theorems in He and Ma (2012) were given in the setting
of the corresponding superprocesses. From those limit theorems the convergence of
the finite-dimensional distributions of corresponding the path-valued processes was
derived. The results give a better understanding of the connection between discrete
and continuum tree-valued branching processes.

In this paper, we introduce a kind of flows of continuous time and discrete state
branching processes. We shall prove the scaling limit theorems for those flows of the
type of He and Ma (2012). In Section 2 a short review is given to the path-valued
branching processes and nonlocal branching superprocesses studied in Li (2012). In
Section 3 we construct a continuous time and discrete state branching processes as
the strong solution of a stochastic integral equation. In Section 4 the construction is
extended to branching flows by considering stochastic equation systems. In Section
5 we prove that suitable rescaled sequences of those flows converge to the nonlocal
branching superprocess. From the limit theorem we also derive the convergence of the
finite-dimensional distributions of corresponding the path-valued processes.

Let N = {0,1,2,---} and Ny= {1,2,---}. Let MJ0,1] be the set of finite Borel
measures on [0, 1] endowed with the topology of weak convergence. We identify M0, 1]
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with the set F'[0, 1] of positive right continuous increasing functions on [0, 1]. Let BJ0, 1]
be the Banach space of bounded Borel functions on [0, 1] endowed with the supremum
norm | - ||. Let C]0,1] denote its subspace of continuous functions. We use B0, 1]"
and C[0, 1]* to denote the subclasses of non-negative elements and C[0,1]** to denote
the subset of C[0,1]" of functions bounded away from zero. For u € M][0,1] and
[ € B[0,1] write (u, f) = [ fdu if the integral exists. Let D([0,00), M|0,1]) denote
the space of cadlag paths from [0, c0) to M0, 1] endowed with the Skorokhod topology.
Throughout the paper, we only consider continuous time processes, so we shall often

omit this phrase in the sequel.

2. Preliminaries

In this section, we recall some results established in Li (2012) on flows of CB-
processes and nonlocal branching superprocesses over the positive half line. By a

branching mechanism ¢ we mean a function ¢ on [0, 00) with the representation
1 2.2 > —zu
d(z) =bz+ 507 + (e7*" = 1+ zu)m(du), (1)
0

where ¢ > 0 and b are constants and (u A u?)m(du) is a finite measure on (0, c0).
Consider a family of branching mechanisms {¢, : ¢ € [0, 1]} that is admissible in the
sense that each ¢, is given by with parameters (b,m) = (by, m,) depending on
q € [0,1] and for each z > 0 the function ¢ — ¢,4(2) is decreasing and continuously
differentiable with the derivative 1g(z) = —(9/06)dg(z) of the form

wole) = hoz + [ (1= e ma(au), &)
0
where hg > 0 and ng(du) is a o-finite kernel from [0, 1] to (0, c0) satisfying
sup [hg —|—/ ung(du)] < 0.
0<0<1 0
Let m(dz, df) be the measure on (0,00) x [0, 1] defined by

m([c,d] x [0,q]) = mglc,d], q€10,1],d>c>0.

Let W (ds, du) be a white noise on (0, 00)? based on the Lebesgue measure, N (ds, dz, df, du)

be a compensated Poisson random measure on (0, 00)? x [0,1] x (0,00) with intensity
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dsm(dz,df)du. By the results in Li (2012), the following stochastic equation

i t Y (q)
Yita) = Yol) = by | Yee(ds o [ [ Wids,du)
0 0 0
t S st(q) -
—|—// / / zN(ds,dz,dl, du) (3)
o Jo Jo,qJo

has a unique solution flow {Y;(¢) : ¢ > 0,q € [0,1]}. For each ¢ € [0,1], the one-
dimensional process {Y;(g) : t > 0} is a CB-process with branching mechanism ¢,. The
flow is increasing in ¢ € [0,1]. It was verified in Li (2012) that {(Yz(q))i>0 : ¢ € [0,1]}
can be identified as a path-valued branching process. Moreover, the flow induces a
cadlag M0, 1]-valued superprocess {Y; : ¢ > 0} which is the unique solution of the
following martingale problem: For every G € C%(R) and f € C[0, 1],

G((Yi, ) = G((Yo, ) / G((Yor f))ds [ Yaldz) [ f(xV 0)hodd

[0,1] [0,1]

A G’<<n,f>><m,f>ds+§oz | e s

v [las [, et [ e+ 25w

— G(Ya ) = 2f @) G (Y f) >}mo<dz>

/ds 01]Y (dx) /Ol]de/ (Ys, )+ 2f(xz Vv 0))
- G( (Y,S,f))}ng(dz) + local mart. (4)

Let f — (-, f) be the operator on C*[0,1] defined by

U(x, f) = f(zV 0)hgdd + /[o ’ do /Ooo(l — e H @O o). (5)

[0,1]

Then the superprocess {Y; : t > 0} has local branching mechanism ¢y and nonlocal

branching mechanism . Its transition semigroup (Q)¢>o is given by

/ e*<V’f>Qt(u,dV):eXP{*<H7th>}7 f€C+[Oa 1]7 (6)
M[0,1]

where t — V; f is the unique locally bounded positive solution of

Vif(z) = f(x) —/0 [Go(Vsf(x)) = W(x,Vsf)lds,  t>0,2€]0,1]. (7)

The reader may refer Li (2012) for the derivations of the superprocess {Y; : t > 0}.
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Remark 1. Usually, one may only ask the Lévy measure m in ¢ in to integrate
1 Au? and an indicator function is added in the integral. In fact, the assumption that
(u Au?)m(du) is a finite measure on (0, 00) is equivalent to that ¢ is locally Lipschitz;
see Proposition 1.45 in Li (2011). This assumption is technically required to construct
the scaling limits of Galton-Watson processes; see Proposition 3.40 in Li (2011) and
Condition (5.A) below.

3. Stochastic equations for discrete state branching processes

In this section, we give a construction of the continuous time and discrete state
branching process as the solution of a stochastic integral equation driven by Poisson
random measure. Stochastic integral equations of this type were used in Li and Ma
(2008) to construct catalytic branching processes. We here give all the details for
completeness.

Let g = g(2) = > i, piz* be a probability generating function with ¢’'(1) < oo.
Let N(ds,dz,du) be a Poisson random measure on (0,00) x N x (0, 00) with intensity
odsm(dz)du, where o > 0 is a constant and 7(dz) := Y-, pid;(dz). Suppose that X,
is a non-negative integer-valued random variable satisfying E[Xo] < co. We assume

Xy is independent of N(ds,dz,du) and consider the stochastic integral equation

X, = X, +/Ot/N/OXS(z — 1)N(ds, dz, du). (1)

By a solution of we mean a non-negative cadlag progressive process {X; : t > 0}
satisfying the equation a.s. for each t > 0. We say pathwise uniqueness of solution
holds for if any two solutions of the equation with the same initial state are

indistinguishable.

Theorem 1. Suppose that {X}} and {X?} are two solutions of (1)) satisfying E[| X} +

X2|] < 0o. Then we have
E[|IX} - X/|] < E[IX§ — Xgllexp{ot(¢'(1) + 1)}. (2)
Consequently, the pathwise uniqueness of solution holds for .

Proof. The pathwise uniqueness for follows from Theorem 2.1 of Dawson and Li
(2012). We present a proof of the result here for completeness. Let & = X? — X} for
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t > 0. From we have

t X2
& = X2 - X, +/ /N/Xl (z = Dlgx1 <x2 yN(ds,dz, du)
0 1

t X!
_/0 /N/X (2= Dlx sx2 yN(ds,dz, du).

Let 7, = inf{t > 0: X} > m or X? > m}. Then we have

E[|€t/\7—7n

tATm X?,
Bl B[ [ [T D1 oy Nds dzydu)
0 NJx1
tATm X;,
+E/ // (z+Dlx1 sx2 yN(ds,dz, du)
0 NJX2_ T
EATm
E[|§0|]—|—E/ ds/55,1{55_20}(z+1)07r(dz)
0 N

+E/0 h CES/N(_fs)l{gs_@}(z + 1)on(dz)
Bl + | Blluns, oo (1) + s

IN

By Gronwall’s inequality we get

E(¢iar,, ] < B[|So]] exp{ot(g'(1) + 1)}
Then follows by Fatou’s lemma. 0

By Theorem 2.5 in Dawson and Li (2012), there is a unique strong solution to .
Here we give a simple direct proof of the existence of the solution. We first take an

n € Ny and consider the following stochastic equation

t Xs_An
X =Xo —|—/ / / (z —1)N(ds,dz, du). (3)
0o JnJo
Proposition 3.1. For each n > 1, there is a solution {X]* : t > 0} of (3.

Proof. Let {Sk:k=1,2,---} be the set of jump times of the Poisson process

t n
t / / / N(ds,dz,du).
0o JNJo

We have clearly Sj, — oo as kK — oo. For 0 <t < S, set X{* = Xo. Suppose that X}
has been defined for 0 < t < Sj, and let

X35, _An
Xt”:ng_Jr/ // ’ (z—1)N(ds,dz,du), Sp <t < Sgt1.
{Sx} JNJO
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From the construction of Xg we see Xg —Xg > —1. And since Xg = 0 implies
Xg, =0, Xg € N. By induction that defines a non-negative process {Xj' : ¢ > 0}
which is clearly a solution to . O

Proposition 3.2. Let {X]'} be a solution of (3). Then we have
E{ sup XS"} < E[Xo]exp{og'(1)t}, t>0. (4)
0<s<t

Proof. From we have

of gun 1] < w8 | [ 7" vtas sl
E /0 ds /N (X;zAn)zm(dz)]

Thus ¢ + E[supg<,<; X¢] is a locally bounded function. Moreover,

E[ sup Xﬂ < E[Xo] + / ds/ sup X zmr(dz)
0<s<t O<r<s

E[Xo]+ 04’ (1 )/ E[ sup Xf}ds.

0 0<r<s

By Gronwall’s lemma we get the result. O
By a modification of the proof of Theorem [1| we get the following Proposition.

Proposition 3.3. Suppose that {X["'} and {X]"*} are two solutions of (@ Then we
have

E[X;"? — X[ < BlIXg® — X" [[exp{ot(g (1) + 1)} (5)

Consequently, the pathwise uniqueness of solution holds for (@
Proposition 3.4. Let {X]" : t > 0} be the solution of (J) withn =1,2,---. Then the
sequence { X[ : t > 0} is tight in D(]0,00),N).

Proof. By Proposition it is easy to see that

t— Cp = supE[ sup X;L}
n>1 Lo<s<t

is locally bounded. Then for every fixed ¢t > 0, the sequence of random variables X}* is

tight. Moreover, in view of , if {7} is a sequence of stopping times bounded above
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by T' > 0, we have

E[|X,,, - Xo[] = E|

Tn

/T:m /N/OX:An(z — 1)N(ds, dz,du)|
E[/Ot ds/N(X("SmF An)(z + l)ow(dz)}

0(9’(1)+1)/0 E(X[ . |ds
< E[Xo]exp{og'(1)(t +T)}o(g' (1) + 1)t,

IN

IN

where the last inequality follows by Proposition Consequently, as t — 0,

sup B[| Xy, — X |] = 0.
n>1

Then {X}* : ¢ > 0} is tight in D([0, 00),N) by the criterion of Aldous (1978); see also
Ethier and Kurtz (1986, pp.137-138). O

Theorem 2. There is a solution {X; : t > 0} of (1))

Proof. For each n > 1, let {X]* : t > 0} be the solution of (3). Define 7, = inf{t > 0:
X[ > n}. From Proposition it follows that
E[X/,,]< E[ sup XS"} < E[Xo|exp{og'(1)t}, t>0.
0<s<t

Then we have
E[X],.. 1(r <) < E[X] explog (1)1},
By the right continuity of {X{'} we have X' > n, so
nP[{r, < t}] < E[Xo]exp{og'(1)t}, t>0.

That implies 7,, — oo almost surely as n — co. On the other hand, { X'} satisfies
Equation for 0 <t < 7,. By the pathwise uniqueness of the solution of we get,

for any 4,7 € N,
XZZth, <1 AT

Let {X;} be the process such that X; = X" for all 0 < ¢ < 7, and n > 1. It is easily
seen that {X;} is a solution of (). O
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Theorems [1{ and [2 imply that has unique strong solution and the solution {X :
t > 0} is a strong Markov process; see, e.g., Ikeda and Watanabe (1989, pp.163-166
and p.215). Let B(N) denote the set of bounded functions on N. By It&’s formula it is
easy to see that {X; : ¢t > 0} has generator A defined by

a:):UxZ[f(x—l—i—l)—f(x)]pi, z €N, fe B(N).
i=0

Then {X; : t > 0} is a Galton-Watson branching process with o-exponentially dis-
tributed life time and offspring distribution {p; : i > 0}.

In fact, let NV (ds,dz, du) and N®)(ds,dz,du) be two mutually independent Pois-
son random measures on (0,00) x N x (0,00) with the same intensity odsm(dz)du.

Consider the following two stochastic equations

x®
=xV+ / // (z — )N (ds, dz, du)

X<2)
x® =xP + / / / 1)N® (ds, dz, du).

Clearly, Xt(l) and Xt( ) are mutually independent. Set X; = Xt(l) + Xt(Q). Since the

and

random measure
N'(ds, dz) ::/ N (ds, dz, du) —|—/ N®(ds, dz, du)
{o<u<x My {o<u<x @}

has predictable compensator o X;_dsw(dz), by representation theorems for semimartin-
gales, on an extension of the original probability space, there is a Poisson random

measure on (0,00) x N x (0, 00) with intensity odsw(dz)du such that

X, = X0+/// (2 = 1)N(ds, dz, du);

see, e.g., Ikeda and Watanabe (1989, p.93). Then the solution of is a branching
process (continuous time and discrete state). This gives another derivation of the

branching property of {X; : ¢ > 0}.

4. The flow of discrete state branching processes

In this section, we give a formulation of the discrete state branching flow as the

solution flow of a set of stochastic integral equations. Let {gg : § > 0} be a family of
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probability generating functions, that is, for each 6 > 0,

o0

g0(z) = Y pO)2, Jo <1,

i=0
where p;(0) > 0and Y ;- ,pi(6) = 1. Moreover, we assume ¢ — gj(1) is continuous and
pi(02) > p;(61) holds for any 62 > 6; > 0 and i € N,. Define a family of probability

measures {mp : § > 0} on N by
ro(dz) = 3 pi(0)5:(d2)
=0

Then we have 7g,|n, > 7y, |y, for any 6, > 6; > 0. Let 7(dz,df) be the measure on

Ny X [0,00) defined by
7(A % [0,0]) =me(A4), ACN,,0>0.

Notice that the positive function 6 — b(6) := my({0}) is decreasing,.

Let ¢ — Xo(q) be a deterministic non-negative right continuous non-decreasing
function on [0,00) and that takes values in N. Let N(ds,dz,df,du) be a Poisson
random measure on (0,00) X N x [0,00) x (0,00) with intensity ods@(dz,df)du and
No(ds,df, du) a Poisson random measure on (0, 00)3 with intensity odsdfdu. Suppose
that N(ds,dz,df,du) and Ny(ds,df, du) are independent of each other. Consider the

stochastic integral equation

t Xsf(‘I)
Xito) = Yo+ [ [ [ [ - yN sz o)
o Jny Jo,g o
t pble) pXs—(q)
—// / No(ds,dd, du). (1)
0o Jo 0

Note that for each g > 0,

/ No(ds, dO, du)
{0<6<b(q)}

is a Poisson random measure with intensity ob(q)dsdu = o7o(N x [0, g])dsdu, where

7o(dz,df) is a measure on N x [0, 00) defined by
To(A x [0,q]) = mg({0})do(4), ACN, 6>0.

By representation theorems for semi-martingales, there is a Poisson random measure

Ni(ds,dz,df,du) on (0,00) x N x [0,00) x (0,00) with intensity ods7o(dz,df)du such
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that for every E € %(0,0),

t rb(q) t
// /No(ds,dH,du):/ // /Nl(ds,dz,dG,du);
o Jo E 0 JNJ[0,q]/E

see, e.g., Ikeda and Watanabe (1989, p.93). Define Na(ds,dz, du) by

Ny(ds,dz, du) :/ N(ds,dz,df,du) —|—/ Ni(ds,dz,df, du).
{0<0<q} {

0<0<q}

Then N; is a Poisson random measure on (0, 0o) xNx (0, 0o) with intensity odsmq(dz)du

and Equation can be rewrited as

X:(q) = Xo(q) +/()t/N/OXS(q)(z— 1)Na(ds, dz, du).

By Theorem [2| we see that for each ¢ > 0, Equation has a unique strong solution
{Xu(q) : > 0}.

Theorem 3. Suppose that ¢ > p > 0. Let {X;(q)} be the solution of and {X:(p)}
be the solution of the equation with q replaced by p. Then we have P{X(q) > X;(p) for all t >

0} =1.

Proof. Let ¢; = X¢(p) — X+(q) for t > 0. From we have

s— (p)
Co—l—// / / (z —1)N(ds,dz,df, du)
0 JN; J[0,p]
s— (q) b(q) s— (p)
// / / (z—1)N(ds,dz,df,du) — // / No(ds, d, du)
Ny p,Q] Xs—(q)
b(p) s—(p)
—// / No(ds, df,du). (2)
0 Jb(g) JO

Let 7, = inf{t > 0: X¢(¢) > m or X¢(p) > m}. It is easy to construct a sequence
of functions {f,} on R such that 0 < f/(z) < 1 for z > 0 and f,(2) = f)(2) =
for z < 0. Moreover, f,(z) = z* := 0V z increasingly as n — oco. By and Itd’s

formula,

tATm Xs—(p)
Jn(Ceinrn) = /0 /N+ /Op /Xg . [fn(csf +z— 1) _fn(Csf)]l{Csf>0}N(d8’dz7d9’du)

+/Wm /N+ /(p’q] /XS(Q) [fn(Cs— =2+ 1) = fu((s-)IN(ds, dz, df, du)
/MTm /b(q / o [fn(Com = 1) = fulCs—)]1qc. >0y No(ds, dO, du)

Xs—(p)
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AT pb(p)  Xs—(p)
+/0 /b(q) /0 [fn(gsf -1) - f"(csf)}NO(dS,de,du)

tATm
< 0/ (5_1{C37>0}ds/ (z — 1)mp(dz) + martingale.
0 Ny

Taking the expectation in both sides and letting n — oo gives

E[GH,, ] < o(g)(1) — 1+ b(p)) / E(CH, Jds.

Then E[(, ] =0 for all t > 0. Since 7,,, — 0o as m — oo, that proves the desired

comparison result. O

Proposition 4.1. There is a locally bounded positive function (t,u) — C(t,u) on
[0,00)2 so that, for anyt >0 and p < q < u < oo,
B{ sup [X.(a) = Xu()]} < Ol w){ Xoa) ~ Xo(p) +0,(1) ~ g1 }. (3)

Proof. Let & = X(q) — X¢(p). From (1)) we get

t Xs—(q)
sup & < EoJr/ / / / (z —1)N(ds,dz,df, du)
0<s<t 0 JNy J[0,q] / Xs—(p)
t Xs—(p)
+/ / / / (z —1)N(ds,dz,db, du)
0 JNi J(p,q] JO
t pb(p) pXs—(p)
—|—/ / / No(ds, dd, du).
0 Jb(q) JO

Then

B[ sup 6] < &+ olgy() ~ 1+ o) | Bleas

0<s<t

+olgl (1) — g (1) / E[X, (p)]ds.

Since t — E[X:(p)] is locally bounded, by Gronwall’s inequality we get the desired

estimate. O

From the discussion above, given a constant ¢ > 0 and a family of probability
generating functions {gs : @ > 0}, we obtain a continuous time and discrete state
branching process flow {X;(q) : ¢ > 0,9 > 0} as the solution of equation . For any
t > 0 define the random function X, € F[0,1] by X,(1) = X,(1) and

X,(¢q) = inf{X,(u) : rational u € (¢,1]}, 0<gq< 1. (4)
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By Proposition for each ¢ € [0, 1] we have
P{X,(q) = X;(q) for all t > 0} = 1.

Then {X,(q) : t > 0} is also cadlag and solves (1)) for every ¢ € [0, 1].

5. Scaling limits of the discrete branching flows

In this section, we prove some limit theorems for the discrete state branching
flows, which will lead to the continuous state branching flows of Li (2012). We shall
present the limit theorems in the settings of measure-valued processes and path-valued
processes.

Suppose that for each k£ > 1, there is a positive constant o and a family of generating
functions {gék) : 0 > 0} satisfying the assumptions specified at the beginning of the last
section. Then we can define Wék)(dz) and 7(F)(dz, df) in the same way as there. Let
{Xt(k) (q) : t > 0} be the corresponding solution of (1)) and {)N(t(k) (q) :t>0,q €[0,k]}
be defined in the same way as in . Define

v = 2 X ka), g 1] (1)

From (/1)) we have
1 rt kY™ (q)
y® () = Y0<k>(q)+,/ / / / (= — 1)N(ds, dz, 6, du)
k Jo N4 J[0,kq] JO

1t ok kY ()
7%/0/0 /0 No(ds,db, du). (2)

One can use a standard stopping time argument to show that for any ¢ € [0,1], the
function ¢ E[Yt(k)(q)] is locally bounded. Then by an argument similar to the proof
of Proposition [3:2] we have

Proposition 5.1. For anyt >0 and q € [0, 1], we have

E[ sup Y9 (q)] < ¥§" (@) exp {ton (915 (1) — 1+ bulka)) }. 3)

0<s<t

The random function Y;(k) € F|0,1] induces a random measure Yt(k) € M[0,1] so

that Y;(k)([O, q]) = Yt(k)(q) for ¢ € [0,1]. We are interested in the asymptotic behavior
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of {Yt(k) :t >0} as k — oo. For any f € C'[0, 1] one can use Fubini’s theorem to see

v ® 5 = rv®a /f ()

Fix an integer n > 1 and let ¢; = i/2™ for i = 0,1,--- ,2™. By we have

on

Zf v (q Zf a1)Ys" (a)
kY (q:)
ka i) / /N+ /0 o / (2 — 1)N(ds, dz, df, du)

bi(kar) kY (4:)
Zf%// / No(ds, df, du)

on

:Zf QZ z

Ry 2 ()
7/ / / / F¥)(s,0,u)(z — 1)N(ds, dz, df, du)
Ny J[0.k]

be(0) kY (1)
T
where

2"1

ER) (5,0,u) = ; P @)V o<rat L ucky® (g
and

k
ER)(s,0,u) Zf i 1{0<bk(kq1)}1{u§kys(f)(qi)}-
By the right continuity of g — Y;(k) (q) it is easy to see that, as n — oo,

1
27nF7(Lk) (5707u) - F(k)(sagau) = / f,(q)l{QSkq}1{u<ky(k)(q)}dq
0 =P

and

1
27nF7(Lk) (57 97 U) — F(k) (57 03 u) = / f/(q)l{egbk(kq)}1{u<ky(k)(q)}dQ'
0 - T

Then by we have, almost surely,
1
| 1@y / @Y (g
0
Ky ®) (1)
/ / / / F®)(s,0,u)(z —1)N(ds, dz, db, du)
Tk Ny J10,k]
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1ot ey Ea)
1 / / / FO) (s, 0, u)No(ds, db, du). (6)
k 0 0 0

From , and @ it follows that, almost surely,

v = o

)
Ky ® >(1
/ / / / — F®) (5,0, u)](= — 1)N(ds, dz, df, du)
Ny J[0,K]

be(k) pkYF (1 )
,,/ / /0 [f(l)fF<k>(3,0,u)]N0(d5,d97du)

bi(0) pRYF (1)
/ / / F®)(s,0,u)Ny(ds,do, du). (7)
b 0

& (k)

Proposition 5.2. Suppose that Yo(k)(l) converges to some Yo(1) as k — oo and

supa (1)) (1) = 1+ b(0)] < oc.
E>1

Then {Yt(k) 1t >0}, k=1,2,--- is a tight sequence in D([0,00), M0, 1]).
Proof. For any ¢t > 0 and f € C[0, 1], by Proposition it is easy to see that

t— Cy = supE{ sup <Ys(k)7f>]
k>1  Lo<s<t

is locally bounded. Then for every fixed ¢t > 0, the sequence (Yt(k), f) is tight. Let 73 be
a bounded stopping time for {Yt(k) :t > 0} and assume the sequence {7, : k=1,2,---}
is bounded above by T' > 0. Let f € C*[0,1]. By @ we see

E[|(vih 1) - (v, 1)
< l {/ ds/ / / s+7‘k Z_1)|f(1) _F(k)(s+Tk797u)|77(k)(dz,d9)du]
k N, [Ok "
bk (k kY (1)
+(L [/ ds/ dg/ e —F® (5410 u)|du}
kYL (1)
[/ ds/ d9/ F(k)(s+7'k,9,u)|du]. (8)
b (k)

For s,0,u > 0 let stkl(u) = inf{qg > 0 : Ys(k)(q) > u} and b, '(u) = inf{g > 0 :
br(q) > u}. Tt is easy to see that {g > 0 : u < Ly ( b= [Y,; (u/k) o0) and
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{g>0:0 < by(kq)} = [0,b,"(0)/k] except for at most countably many u > 0 and
6 > 0, respectively. Then in the above we can replace f(1) — F*)(s,0,u) by

1
y B u, 0
TO= J T O wm<ada = rvaeve)

and F(k)(s, 0,u) can be replaced by

/0 PO <o) my L vt <ay 94
= [FOA @ O/R) = SO /)Ly~ o o)

Then from we have

E[)<Y£fit,f> <Yr(f’,f>H

<oun| [as [ v, [ [ I s an)
mE[ / s /bk 6 / F@)Y >]
+ou8 / ds /bk(k) a0 / 05 0)/8) = FYE, (1)

< ||f||0'k/0 E[Y;m( )]ds/N (z — )7 (dz)
I loxbi()E / [V, )]ds
42 flonlou(©) - bu(®)] [ B[, m]as

0
< hon (@0 () = 1+ 20 0)) [ B[Y, (1))
<207 1VP (tor A exp {orAn(t + 1) }. (9)

where Ay, = (g,(f))’(l) — 14 bx(0) and the last inequality follows by Proposition
For f € C]0,1] the above inequality follows by an approximation argument. Then we
have

limsup B[ (v, 1) = (v, p|] =0

=0 >

By a criterion of Aldous (1978), the sequence {(K(k), f) :t > 0} is tight in D([0, 00), R);
see also Ethier and Kurtz (1986, pp.137-138). Then the tightness criterion of Roelly
(1986) implies {V,*) : ¢ > 0} is tight in D([0,c0), M0, 1]). 0
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For any z > 0 define
k k)  —=z —z
é )(z) = ko, [g,(ce)(e /Ry —e /k] (10)

Let us consider the following condition:
Condition (5.A) For each > 0 the sequence {gb‘(gk)(z)} is Lipschitz with respect to z
uniformly on [0,1] x [0,1] and there is an admissible family of branching mechanisms
{bo(2) : 0 > 0} with (0/00)de(z) = —1be(2) such that ¢ék)(z) — ¢g(z) uniformly on
[0,1] x [0,] as k — oo.

Let {Y; : t > 0} be the cadlag superprocess with transition semigroup defined by

@ and .

Theorem 4. Suppose that Condition (5.A) holds and supy>; oxbr(0) < oco. If Yo(k)
converges weakly to Yy € M|0,1], then {Yt(k) it > 0} converges to the superprocess
{Y; : t > 0} in distribution on D([0,00), M[0,1]).

Proof. Under the assumption, we have

sup oy, [(g](f))’(l) -1+ bk(O)} < 00.

E>1

By Proposition and Skorokhod’s representation theorem, to simplify the notation
we pass to a subsequence and simply assume {Yt(k) :t > 0} converges a.s. to a process
{Z; : t > 0} in the topology of D([0,c0), M[0, 1]). Since the solution of the martingale
problem is unique, it suffices to prove the weak limit point {Z; : ¢ > 0} of the
sequence {Yt(k) : t > 0} is the solution of the martingale problem. Let stkl(u) and
by, ' (u) be defined as in Proposition For every G € C?(R) and f € C'[0,1] we use
@ and It6’s formula to get

(1)
(k) _ (k) (k)
G(<Y; 7f>)_G(< +0k/d54+%0k]/ stvf>
(= D) = PO (s,0,0)]) *G(<Y““),f>)} )(dz, d6)du

+ak/ ds /bk " do /kY( . y<’€ Yy —ETYQ) - F(k>(3,0,u)])

kY5 (1)
-G, 1) du+ak/ ds/ da/ Ys(f),f>
b (k)
+ETTEM (5,0 U)) - G( Y(k) ))}du+local mart.
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Ky * (1)

= G({Y, (k “l‘O’k/ ds/ / / Y(k7f>
Ny J[0,K]
/k

RNz = D) FY S u/R) V(0 G((Y(k) f))}ﬁ(k)(dz,de)du
bie (k Y(k)(l
to / ds / w [T e(0®n - lfm—kl(u/k)))

% (0) kY8 (1) i
(< s— af du+0k/ dS/ da/ g(—)7f>
by (k)

“UFb(0) /) - (u/km1{y;,;(u/k>§b,;1<e>/k})
Y(k) )}du + local mart.

= G, 1)+ a/ds v dx/ / )
[0,1] N J[0,1]

+E! (z—l)f(a:\/9 G((Y. k)f 7*) (dz, kd&)
ey AR CICENE k‘lf(fv)) Gy, ) byl )

i s [ v / el p + k7 10) - @)
aiy®, f))}bk(kdo) + local mart.

= G \M, f +kak/ ds/ Y™ (dz) // Y(k )
01] [0,1]

Tk - D f(z v 9 f>)} )(dz, kde)
+koy, ds Y7 (dx) ex(s,z, )T () dz, kdf
+ local/mart o /{0} / | | (11)
where
auls0,2) = {G(0, 1) =1 @) ~ (1) -1 10) }

—{G(<Y<’“,f>+k [7(0) = 7)) = Gy .

It is elementary to see that

1
koy, / / en(s, x,0)7 %) (dz, kdd)
{0} Jz

tends to zero uniformly as k — oco. Let G(x) = e™*, by letting k¥ — oo in we
get for f € C1[0,1]. A simple approximation shows the martingale problem
actually holds for any f € C[0,1]. By the proof of Theorem 7.13 in Li (2011) we get
the result. O
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Let {0 < a1 < ag < -+ < a, = 1} be an ordered set of constants. Denote by
{Yi,4; : t >0} and {Y;(Z) :t > 0} the restriction of {¥; : ¢ > 0} and {}Q(k) 1t >0} to
[0, a;], respectively. Let Yi(a;) := Y;[0, a;] and Y;(k) (a;) = Y;(k) [0, a;] for every ¢t > 0,
t=1,2,---  n. By arguments similar to those in He and Ma (2012) we get following

results.

Theorem 5. Suppose that Condition (5.A) is satisfied and supy>; oxby(0) < oo. If
Yo(k) converges weakly to Yo € M[0,1], then {(Y(k) 7Y;(];31) : t > 0} converges to

t,a1?

{Yia1,- » Yia,) 1 t > 0} in distribution on D([0,00), M[0,a1] X --- x M[0, a,)]).

Corollary 1. Suppose that Condition (5.A) is satisfied and supy>q obg(0) < co. If
(Y5 (an). - Y5 (an)) converges to (Yo(ar), -+, Yo(an)), then {(¥" (@), ¥ (an)) -
t >0} converges to {(Yi(ar), - ,Yi(an)) : t > 0} in distribution on D([0,00),R"}).

Example 1. Suppose that ¢ is defined in . Let ©4 be the set of § > 0 such that
/ ue m(du) < oo.
1
Then a particular choice of ¢y is

Po(-) = (- —0) — o(=0), 0 €Oy

Suppose [0, 1] C ©4. Let {g,gk)

: k > 1} be a sequence of generating functions such that
koplgP (/%) — e /M 5 gz — 1) — ¢(=1), k= oo (12)

Since ¢4 (-) is a branching mechanism, then by Li (2011, p.93) holds for some oy,
and g\*. Then for 6 € [0, 1], define

p 18 (k)= iEy A (k) — 1zt
g () =1-eT g (e T ) +e T gV (e 2).

Then one could check that Condition (5.A) holds with ¢y(-) = ¢(- — 6) — ¢(—6). In

fact, if g,(ck) corresponds to a probability measure {pl(»k) :4 > 0}, then for each 6 € [0, 1],

g,(glz,) is the generating function of probability measure

pP(0) =pMem T iz,

and pék)(é‘) =1- Zi21p§k)(9).
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