Proof of Proposition 1.6.13 on p. 57

Necessity:

$$
\begin{aligned}
&\|x+y\|^{2}+\|x-y\|^{2} \\
&=(x+y, x+y)+(x-y, x-y) \\
&=(x, x)+(y, y)+(x, y)+(y, x) \\
&+(x, x)+(y, y)-(y, x)-(x, y) \\
&= 2\{(x, x)+(y, y)\}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
\end{aligned}
$$

Sufficiency: If $\mathbb{K}=\mathbb{R}$, define
(*)

$$
(x, y)_{1}=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right), x, y \in \mathcal{X}
$$

We next verify $(\cdot, \cdot)_{1}$ is surely an inner product. In fact, it is clear that $(x, y)_{1}=(y, x)_{1}$. By $(*),(0, z)_{1}=0$. Furthermore, it follows by (1.6.8) and $(*)$ that $(* *)$

$$
\begin{aligned}
&(x, z)_{1}+(y, z)_{1} \\
&= \frac{1}{4}\left(\|x+z\|^{2}-\|x-z\|^{2}+\|y+z\|^{2}-\|y-z\|^{2}\right) \\
&= \frac{1}{4}\left\{\left(\left\|\frac{x+y}{2}+z+\frac{x-y}{2}\right\|^{2}+\left\|\frac{x+y}{2}+z-\frac{x-y}{2}\right\|^{2}\right)\right. \\
&\left.-\left(\left\|\frac{x+y}{2}-z+\frac{x-y}{2}\right\|^{2}+\left\|\frac{x+y}{2}-z-\frac{x-y}{2}\right\|^{2}\right)\right\} \\
&= \frac{1}{4}\left\{2\left(\left\|\frac{x+y}{2}+z\right\|^{2}+\left\|\frac{x-y}{2}\right\|^{2}\right)\right. \\
&\left.-2\left(\left\|\frac{x+y}{2}-z\right\|^{2}+\left\|\frac{x-y}{2}\right\|^{2}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\left\|\frac{x+y}{2}+z\right\|^{2}-\left\|\frac{x+y}{2}-z\right\|^{2}\right) \\
& =2\left(\frac{x+y}{2}, z\right)_{1} .
\end{aligned}
$$

In $(* *)$, taking $y=0$, we have

$$
(x, z)_{1}=2\left(\frac{x}{2}, z\right)_{1}
$$

It then follows by substituting $x+y$ for x in the last equation and making use of $(* *)$ that
$(* * *) \quad(x+y, z)_{1}=2\left(\frac{x+y}{2}, z\right)_{1}=(x, z)_{1}+(y, z)_{1}$.
For given $x, z \in \mathcal{X}$, define

$$
f(t)=(t x, z)_{1}
$$

for $t \in \mathbb{R}$. It is easy to see by $(* * *)$ that the function $f(t)$ satisfies the equation

$$
\begin{equation*}
f\left(t_{1}+t_{2}\right)=f\left(t_{1}\right)+f\left(t_{2}\right), \quad t_{1}, t_{2} \in \mathbb{R} \tag{1}
\end{equation*}
$$

On the other hand, when $t_{n} \rightarrow t$,

$$
\left|\left\|t_{n} x \pm z\right\|-\|t x \pm z\|\right| \leq\left\|t_{n} x-t x\right\|=\left|t_{n}-t\right|\|x\| \rightarrow 0
$$

which together with $(*)$ implies that $f(t)$ is continuous. However, a continuous function $f(t)$ satisfying $\left(\star_{1}\right)$ must have the following form (see the appendix for the proof of this fact):

$$
f(t)=f(1) t
$$

Therefore for $x, z \in \mathcal{X}$ and $t \in \mathbb{R}$,
(\star_{2})

$$
(t x, z)_{1}=t(x, z)_{1} .
$$

Thus $(\cdot, \cdot)_{1}$ is an inner product. If we let $x=y$ in $(*)$, we then obtain that

$$
(x, x)_{1}=\|x\|^{2} .
$$

So when \mathcal{X} is a real space, $(\cdot, \cdot)_{1}$ is an inner product, and the norm induced by the inner product $(\cdot, \cdot)_{1}$ is just the originally given $\|\cdot\|$, and satisfies (1.6.7).

If \mathcal{X} is a complex normed linear space, define

$$
\begin{aligned}
\left(\star_{3}\right) \quad(x, y)= & \frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right. \\
& \left.+i\|x+i y\|^{2}-i\|x-i y\|^{2}\right) \\
= & (x, y)_{1}+i(x, i y)_{1},
\end{aligned}
$$

where $(x, y)_{1}$ is determined by $(*)$. Now we verify that (\cdot, \cdot) is an inner product of \mathcal{X}. In fact, by $(* * *)$,

$$
(x, z)+(y, z)=(x+y, z) .
$$

By $\left(\star_{2}\right)$, for any $\alpha \in \mathbb{R}$,
(\star_{4})

$$
(\alpha x, y)=\alpha(x, y) .
$$

And $\left(\star_{3}\right)$ shows via a simple computation that

$$
(i x, y)=i(x, y) \quad\left(i^{2}=-1\right)
$$

from which it follows that $\left(\star_{4}\right)$ also holds for $\forall \alpha \in \mathbb{C}$. It is easy to see by $\left(\star_{3}\right)$ that $(y, x)=\overline{(x, y)}$. Consequently, (\cdot, \cdot) is an inner product. If taking $y=x$ in $\left(\star_{3}\right)$, one also has

$$
(x, x)=\|x\|^{2}
$$

So (\cdot, \cdot) also satisfies (1.6.7). Thus (\cdot, \cdot) is the required inner product.

Appendix: Assume that the function $f(t)(t \in \mathbb{R})$ is continuous and satisfies the equation:

$$
\begin{equation*}
f\left(t_{1}+t_{2}\right)=f\left(t_{1}\right)+f\left(t_{2}\right), t_{1}, t_{2} \in \mathbb{R}, \tag{1}
\end{equation*}
$$

then for $\forall t \in \mathbb{R}$,

$$
f(t)=t f(1) .
$$

Proof: First, we show that for any natural number n,

$$
\begin{equation*}
f(n t)=n f(t), t \in \mathbb{R} . \tag{2}
\end{equation*}
$$

It is clearly that (2) holds when $n=1$. Supposing it also holds for n, then by (1),

$$
f((n+1) t)=f(n t)+f(t)=(n+1) f(t) .
$$

Therefore (2) also holds for $n+1$. By induction, (2) holds for all natural numbers n. For any positive rational number $\frac{n}{m}$, it follows by making use of (2) twice that

$$
f\left(\frac{n}{m}\right)=n f\left(\frac{1}{m}\right)=\frac{n}{m} f(1)
$$

In (1), taking $t_{1}=t_{2}=0$, we obtain $f(0)=0$; if we take $t_{1}=$ $-t_{2}=t$, we see that

$$
f(-t)=-f(t)
$$

Thus, for all rational numbers $t, f(t)=t f(1)$. By the continuity of both $f(t)$ and $t f(1)$, we finally obtain that for all real numbers t,

$$
f(t)=t f(1)
$$

which completes the proof.

