
Proof of Proposition 1.6.13 on p. 57

Necessity:

‖x + y‖2 + ‖x− y‖2

= (x + y, x + y) + (x− y, x− y)
= (x, x) + (y, y) + (x, y) + (y, x)

+(x, x) + (y, y)− (y, x)− (x, y)

= 2{(x, x) + (y, y)} = 2(‖x‖2 + ‖y‖2).

Sufficiency: If K = R, define

(∗) (x, y)1 =
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4

(‖x + y‖2 − ‖x− y‖2
)
, x, y ∈ X .

We next verify (·, ·)1 is surely an inner product. In fact, it is clear
that (x, y)1 = (y, x)1. By (∗), (0, z)1 = 0. Furthermore, it follows
by (1.6.8) and (∗) that
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In (∗∗), taking y = 0, we have

(x, z)1 = 2
(x

2
, z

)
1
.

It then follows by substituting x + y for x in the last equation and
making use of (∗∗) that

(∗ ∗ ∗) (x + y, z)1 = 2
(x + y

2
, z

)
1

= (x, z)1 + (y, z)1.

For given x, z ∈ X , define

f (t) = (tx, z)1

for t ∈ R. It is easy to see by (∗∗∗) that the function f (t) satisfies
the equation

(?1) f (t1 + t2) = f (t1) + f (t2), t1, t2 ∈ R.

On the other hand, when tn → t,∣∣‖tnx± z‖ − ‖tx± z‖
∣∣ ≤ ‖tnx− tx‖ = |tn − t|‖x‖ → 0,

which together with (∗) implies that f (t) is continuous. However,
a continuous function f (t) satisfying (?1) must have the following
form (see the appendix for the proof of this fact):

f (t) = f (1)t.
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Therefore for x, z ∈ X and t ∈ R,

(?2) (tx, z)1 = t(x, z)1.

Thus (·, ·)1 is an inner product. If we let x = y in (∗), we then
obtain that

(x, x)1 = ‖x‖2.

So when X is a real space, (·, ·)1 is an inner product, and the norm
induced by the inner product (·, ·)1 is just the originally given ‖ ·‖,
and satisfies (1.6.7).

If X is a complex normed linear space, define

(?3) (x, y)=
1

4

(
‖x + y‖2 − ‖x− y‖2

+i ‖x + iy‖2 − i ‖x− iy‖2
)

= (x, y)1 + i(x, iy)1,

where (x, y)1 is determined by (∗). Now we verify that (·, ·) is an
inner product of X . In fact, by (∗ ∗ ∗),

(x, z) + (y, z) = (x + y, z).

By (?2), for any α ∈ R,

(?4) (αx, y) = α(x, y).

And (?3) shows via a simple computation that

(ix, y) = i(x, y) (i2 = −1),
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from which it follows that (?4) also holds for ∀α ∈ C. It is easy

to see by (?3) that (y, x) = (x, y). Consequently, (·, ·) is an inner
product. If taking y = x in (?3), one also has

(x, x) = ‖x‖2.

So (·, ·) also satisfies (1.6.7). Thus (·, ·) is the required inner prod-
uct.

Appendix: Assume that the function f (t) (t ∈ R) is continu-
ous and satisfies the equation:

(1) f (t1 + t2) = f (t1) + f (t2), t1, t2 ∈ R,

then for ∀t ∈ R,
f (t) = tf(1).

Proof: First, we show that for any natural number n,

(2) f (nt) = nf (t), t ∈ R.

It is clearly that (2) holds when n = 1. Supposing it also holds for
n, then by (1),

f ((n + 1)t) = f (nt) + f (t) = (n + 1)f (t).

Therefore (2) also holds for n + 1. By induction, (2) holds for all
natural numbers n. For any positive rational number n

m, it follows
by making use of (2) twice that

f
( n

m

)
= nf

(
1

m

)
=

n

m
f (1).
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In (1), taking t1 = t2 = 0, we obtain f (0) = 0; if we take t1 =
−t2 = t, we see that

f (−t) = −f (t).

Thus, for all rational numbers t, f (t) = tf(1). By the continuity
of both f (t) and tf(1), we finally obtain that for all real numbers
t,

f (t) = tf(1),

which completes the proof.
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