Proof for completion of $L^p(\Omega, \mu)$ with $p \in [1, \infty)$ (p. 27)

Let $\{u_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in $L^p(\Omega,\mu)$. To verify that $\{u_n\}_{n\in\mathbb{N}}$ converges in $L^p(\Omega,\mu)$, it suffices to show $\{u_n\}_{n\in\mathbb{N}}$ has a convergent subsequence (see Exercise 1.2.2, p. 13).

To this end, for $\frac{1}{2}$, there exists $N_1 \in \mathbb{N}$ s.t. whenever $n, m > N_1$, it holds that $||u_n - u_m|| < \frac{1}{2}$.

For $\frac{1}{2^2}$, there exists $N_2 \in \mathbb{N}$ s.t. whenever $n, m > N_2$, it holds that $||u_n - u_m|| < \frac{1}{2^2}$.

Choosing $n_1 > N_1$ and $n_2 > max(n_1, N_2, 2)$, then $n_2 > n_1$ and $||u_{n_1} - u_{n_2}|| < \frac{1}{2}$.

Similarly, for $\frac{1}{2^3}$, there exists $N_3 \in \mathbb{N}$ such that whenever $n, m > N_3$, we have that $||u_n - u_m|| < \frac{1}{2^3}$.

Take $n_3 > max(n_2, N_3, 3)$, then $n_3 > n_2 > n_1$, and $||u_{n_2} - u_{n_3}|| < \frac{1}{2^2}$.

Repeating the process, we obtain a subsequence $\{n_j\}_{j=1}^{\infty}$, s.t. $n_1 < n_2 < n_3 < \cdots, n_j \to \infty$, and

$$\|u_{n_j} - u_{n_{j+1}}\| < \frac{1}{2^j}$$

From this, it follows that

$$\left\|\sum_{j=1}^{\infty} |u_{n_j} - u_{n_{j+1}}|\right\| \le \sum_{j=1}^{\infty} ||u_{n_j} - u_{n_{j+1}}|| < \sum_{j=1}^{\infty} \frac{1}{2^j} = 1.$$

Thus $\sum_{j=1}^{\infty} |u_{n_j} - u_{n_{j+1}}| \in L^p(\Omega, \mu)$, and then $\sum_{j=1}^{\infty} |u_{n_j}(x) - u_{n_{j+1}}(x)| < \infty \ a. \ e. \ in \ \Omega.$

For $x \in \Omega$ with $\sum_{j=1}^{\infty} |u_{n_j}(x) - u_{n_{j+1}}(x)| < \infty$ and $N \in \mathbb{N}$, if we set

$$S_N(x) = \sum_{j=1}^N \left(u_{n_j}(x) - u_{n_{j+1}}(x) \right),$$

we then have that for any $k \in \mathbb{N}$,

$$|S_{N+k}(x) - S_N(x)| = \left| \sum_{j=N+1}^{N+k} \left(u_{n_j}(x) - u_{n_{j+1}}(x) \right) \right|$$

$$\leq \sum_{j=N+1}^{N+k} \left| u_{n_j}(x) - u_{n_{j+1}}(x) \right| \to 0, \ N \to \infty.$$

Thus $\{S_N(x)\}_{N\in\mathbb{N}}$ converges; and if we let

$$S_*(x) = \lim_{N \to \infty} S_N(x),$$

it then follows that $|S_*(x)| < \infty$ a.e. in Ω . Moreover, $|S_*(x)|$ is measurable because of the measurability of $S_N(x)$. On the other hand, since $S_*(x) = \lim_{N \to \infty} (u_{n_1}(x) - u_{n_{N+1}}(x))$, we have

$$\lim_{N \to \infty} u_{n_{N+1}}(x) = u_{n_1}(x) - S_*(x) \triangleq u_*(x) \quad a. e. \text{ in } \Omega,$$

which together with the fact that

$$\left\|\sum_{j=1}^{N} \left(u_{n_{j}} - u_{n_{j+1}}\right)\right\| \leq \sum_{j=1}^{N} \left\|u_{n_{j}} - u_{n_{j+1}}\right\| < 1$$

and the Fatou Lemma gives that

$$\|S_*\| \le 1.$$

Thus, the triangle inequality of norm yields

$$|u_*\| \le ||u_{n_1}|| + ||S_*|| \le ||u_{n_1}|| + 1 < \infty,$$

which means $u_* \in L^p(\Omega, \mu)$. Furthermore, noting that

$$\|S_{N+k} - S_N\| \le \sum_{j=N+1}^{N+k} \|u_{n_j} - u_{n_{j+1}}\| < \sum_{j=N+1}^{N+k} \frac{1}{2^j},$$

and that

$$S_{N+k} - S_N = \sum_{j=1}^{N+k} \left(u_{n_j}(x) - u_{n_{j+1}}(x) \right) - \sum_{j=1}^N \left(u_{n_j}(x) - u_{n_{j+1}}(x) \right)$$
$$= \sum_{j=N+1}^{N+k} \left(u_{n_j}(x) - u_{n_{j+1}}(x) \right)$$
$$= u_{n_{N+1}}(x) - u_{n_{N+k+1}}(x),$$

we have

$$||u_{n_{N+1}} - u_{n_{N+k+1}}|| < \sum_{j=N+1}^{N+k} \frac{1}{2^j}.$$

Taking $k \to \infty$ and applying the Fatou Lemma, we see that

$$\left\| u_{n_{N+1}} - u_* \right\| \le \sum_{j=N+1}^{\infty} \frac{1}{2^j},$$

3

which implies that $\{u_{n_j}\}$ converges to u_* in $L^p(\Omega, \mu)$, and therefore $\{u_n\}_{n\in\mathbb{N}}$ also converges to u_* in $L^p(\Omega, \mu)$. Thus $L^p(\Omega, \mu)$ is complete.

4