Proof for completion of $L^{p}(\Omega, \mu)$ with $p \in[1, \infty)$ (\boldsymbol{p}.

Let $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ be a Cauchy sequence in $L^{p}(\Omega, \mu)$. To verify that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ converges in $L^{p}(\Omega, \mu)$, it suffices to show $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ has a convergent subsequence (see Exercise 1.2.2, p.13).
To this end, for $\frac{1}{2}$, there exists $N_{1} \in \mathbb{N}$ s.t. whenever $n, m>N_{1}$, it holds that $\left\|u_{n}-u_{m}\right\|<\frac{1}{2}$.
For $\frac{1}{2^{2}}$, there exists $N_{2} \in \mathbb{N}$ s. t. whenever $n, m>N_{2}$, it holds that $\left\|u_{n}-u_{m}\right\|<\frac{1}{2^{2}}$.

Choosing $n_{1}>N_{1}$ and $n_{2}>\max \left(n_{1}, N_{2}, 2\right)$, then $n_{2}>n_{1}$ and $\left\|u_{n_{1}}-u_{n_{2}}\right\|<\frac{1}{2}$.
Similarly, for $\frac{1}{2^{3}}$, there exists $N_{3} \in \mathbb{N}$ such that whenever $n, m>$ N_{3}, we have that $\left\|u_{n}-u_{m}\right\|<\frac{1}{2^{3}}$.

Take $n_{3}>\max \left(n_{2}, N_{3}, 3\right)$, then $n_{3}>n_{2}>n_{1}$, and $\| u_{n_{2}}-$ $u_{n_{3}} \|<\frac{1}{2^{2}}$.

Repeating the process, we obtain a subsequence $\left\{n_{j}\right\}_{j=1}^{\infty}$, s.t. $n_{1}<n_{2}<n_{3}<\cdots, n_{j} \rightarrow \infty$, and

$$
\left\|u_{n_{j}}-u_{n_{j+1}}\right\|<\frac{1}{2^{j}} .
$$

From this, it follows that

$$
\left\|\sum_{j=1}^{\infty}\left|u_{n_{j}}-u_{n_{j+1}}\right|\right\| \leq \sum_{j=1}^{\infty}\left\|u_{n_{j}}-u_{n_{j+1}}\right\|<\sum_{j=1}^{\infty} \frac{1}{2^{j}}=1 .
$$

Thus $\sum_{j=1}^{\infty}\left|u_{n_{j}}-u_{n_{j+1}}\right| \in L^{p}(\Omega, \mu)$, and then

$$
\sum_{j=1}^{\infty}\left|u_{n_{j}}(x)-u_{n_{j+1}}(x)\right|<\infty \text { a.e. in } \Omega .
$$

For $x \in \Omega$ with $\sum_{j=1}^{\infty}\left|u_{n_{j}}(x)-u_{n_{j+1}}(x)\right|<\infty$ and $N \in \mathbb{N}$, if we set

$$
S_{N}(x)=\sum_{j=1}^{N}\left(u_{n_{j}}(x)-u_{n_{j+1}}(x)\right)
$$

we then have that for any $k \in \mathbb{N}$,

$$
\begin{aligned}
\left|S_{N+k}(x)-S_{N}(x)\right| & =\left|\sum_{j=N+1}^{N+k}\left(u_{n_{j}}(x)-u_{n_{j+1}}(x)\right)\right| \\
& \leq \sum_{j=N+1}^{N+k}\left|u_{n_{j}}(x)-u_{n_{j+1}}(x)\right| \rightarrow 0, N \rightarrow \infty
\end{aligned}
$$

Thus $\left\{S_{N}(x)\right\}_{N \in \mathbb{N}}$ converges; and if we let

$$
S_{*}(x)=\lim _{N \rightarrow \infty} S_{N}(x)
$$

it then follows that $\left|S_{*}(x)\right|<\infty$ a. e. in Ω. Moreover, $\left|S_{*}(x)\right|$ is measurable because of the measurability of $S_{N}(x)$. On the other hand, since $S_{*}(x)=\lim _{N \rightarrow \infty}\left(u_{n_{1}}(x)-u_{n_{N+1}}(x)\right)$, we have

$$
\lim _{N \rightarrow \infty} u_{n_{N+1}}(x)=u_{n_{1}}(x)-S_{*}(x) \triangleq u_{*}(x) \quad \text { a.e. in } \Omega
$$

which together with the fact that

$$
\left\|\sum_{j=1}^{N}\left(u_{n_{j}}-u_{n_{j+1}}\right)\right\| \leq \sum_{j=1}^{N}\left\|u_{n_{j}}-u_{n_{j+1}}\right\|<1
$$

and the Fatou Lemma gives that

$$
\left\|S_{*}\right\| \leq 1
$$

Thus, the triangle inequality of norm yields

$$
\left\|u_{*}\right\| \leq\left\|u_{n_{1}}\right\|+\left\|S_{*}\right\| \leq\left\|u_{n_{1}}\right\|+1<\infty
$$

which means $u_{*} \in L^{p}(\Omega, \mu)$.
Furthermore, noting that

$$
\left\|S_{N+k}-S_{N}\right\| \leq \sum_{j=N+1}^{N+k}\left\|u_{n_{j}}-u_{n_{j+1}}\right\|<\sum_{j=N+1}^{N+k} \frac{1}{2^{j}}
$$

and that

$$
\begin{aligned}
S_{N+k}-S_{N} & =\sum_{j=1}^{N+k}\left(u_{n_{j}}(x)-u_{n_{j+1}}(x)\right)-\sum_{j=1}^{N}\left(u_{n_{j}}(x)-u_{n_{j+1}}(x)\right) \\
& =\sum_{j=N+1}^{N+k}\left(u_{n_{j}}(x)-u_{n_{j+1}}(x)\right) \\
& =u_{n_{N+1}}(x)-u_{n_{N+k+1}}(x),
\end{aligned}
$$

we have

$$
\left\|u_{n_{N+1}}-u_{n_{N+k+1}}\right\|<\sum_{j=N+1}^{N+k} \frac{1}{2^{j}}
$$

Taking $k \rightarrow \infty$ and applying the Fatou Lemma, we see that

$$
\left\|u_{n_{N+1}}-u_{*}\right\| \leq \sum_{j=N+1}^{\infty} \frac{1}{2^{j}}
$$

which implies that $\left\{u_{n_{j}}\right\}$ converges to u_{*} in $L^{p}(\Omega, \mu)$, and therefore $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ also converges to u_{*} in $L^{p}(\Omega, \mu)$. Thus $L^{p}(\Omega, \mu)$ is complete.

