
Proof of Proposition 1.3.13 on Page 18

The main ideas of the proof are similar to Example 1.1.7 on Page
2 and the difference is that the proof here needs to show that the
limit function is continuous. Suppose that {xn}n∈N is a Cauchy
sequence in C(M), namely, for ∀ϵ > 0, ∃ N(ϵ) ∈ N, s. t. for any
m > N(ϵ) and n > N(ϵ),

max
t∈M

|xn(t)− xm(t)| < ϵ.

Therefore, for ∀t ∈ M, and for any n,m > N(ϵ),

(∗) |xn(t)− xm(t)| < ϵ.

This means that for any fixed t ∈ M , the sequence {xn(t)}n∈N of
numbers is a Cauchy sequence in R, and so the limit lim

n→∞
xn(t)

exists, which will be denoted by x0(t). By letting m → ∞ in (∗),
we see that for all t ∈ M , if n > N(ϵ), then

(∗∗) |xn(t)− x0(t)| ≤ ϵ.

Thus, for any fixed n0 > N(ϵ), since xn0 is continuous at any
point s ∈ M , we have that by Definition 1.1.8 (p.2), for any se-
quence {tm} with tm → s,m → ∞, xn0(tm) → xn0(s),m → ∞,
which implies that there exists Nn0 ∈ N, s. t. whenever m > Nn0,
|xn0(tm)−xn0(s)| < ϵ. From this and (∗∗) with n0, it then follows
that for any m > Nn0,

|x0(tm)− x0(s)| ≤ |x0(tm)− xn0(tm)| + |xn0(tm)− xn0(s)|
+|xn0(s)− x0(s)|

< 3ϵ,

which means that lim
m→∞

x0(tm) = x0(s). This fact together with

Definition 1.1.8 shows that x0 ∈ C(M). On the other hand, by
(∗∗), for ∀ϵ > 0, the inequality d(x0, xn) < ϵ holds for any n >
N(ϵ). Therefore xn → x0 in C(M) and (C(M), d) is complete.
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