Spectra of A on p. 154

Example 2.6.2 Assume that $\mathcal{X}=L^{2}[0,1]$,

$$
A: u(t) \mapsto-\frac{d^{2}}{d t^{2}} u(t)
$$

where
$D(A)=\left\{u \in L^{2}[0,1], u\right.$ is second order differentiable, u^{\prime} is absolutely continuous and $u^{\prime \prime} \in L^{2}[0,1]$,

$$
\left.u(0)=u(1), u^{\prime}(0)=u^{\prime}(1)\right\} .
$$

Then

$$
\sigma(A)=\sigma_{p}(A)=\left\{(2 n \pi)^{2}, n \in \mathbb{N}\right\} .
$$

Remark 1 The domain $D(A)$ of Example 2.6.2 in page 154 of the book is not correct.

In order to obtain the spectra of A, we first establish the following lemma.

Lemma 1 Let \mathcal{X} be a B^{*}-space, $A: D(A) \subset \mathcal{X} \rightarrow \mathcal{X}$ be a closed linear operator, and $\lambda \in \mathbb{C}$. Then $\lambda I-A$ is a closed operator.

Proof For any sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset D(A)$ such that

$$
\left\{\begin{array}{l}
u_{n} \rightarrow u, n \rightarrow \infty \\
(\lambda I-A) u_{n} \rightarrow v, n \rightarrow \infty
\end{array}\right.
$$

we see that

$$
\left\{\begin{array}{l}
u_{n} \rightarrow u, n \rightarrow \infty \\
A u_{n} \rightarrow \lambda u-v, n \rightarrow \infty
\end{array}\right.
$$

By the fact that A is closed, we know that $u \in D(A)$ and $(\lambda I-$ A) $u=v$. So $\lambda I-A$ is closed, which completes the proof of the lemma.

Next we compute the spectra set of A.
Let $\widetilde{\sigma}_{p}(A)=\left\{(2 n \pi)^{2} \mid n=0,1,2, \cdots,\right\}$. Since

$$
-\frac{d^{2}}{d t^{2}}\{\sin (2 n \pi t)\}=(2 n \pi)^{2} \sin (2 n \pi t)
$$

and

$$
-\frac{d^{2}}{d t^{2}}\{\cos (2 n \pi t)\}=(2 n \pi)^{2} \cos (2 n \pi t)
$$

for $n=0,1,2, \cdots$, we then see that $\widetilde{\sigma}_{p}(A) \subset \sigma_{p}(A)$. To show the desired conclusion, we only need prove that for any $\lambda \notin \widetilde{\sigma}_{p}(A)$, $\lambda \in \rho(A)$. Indeed, if this is true, since

$$
\mathbb{C}=\tilde{\sigma}_{p}(A) \cup\left(\mathbb{C} \backslash \tilde{\sigma}_{p}(A) \subset \sigma_{p}(A) \cup \rho(A) \subset \mathbb{C}\right.
$$

and $\sigma_{p}(A) \cap \rho(A)=\emptyset$, we then have

$$
\sigma(A)=\widetilde{\sigma}_{p}(A)
$$

To show $\lambda \in \rho(A)$, we first prove that $(\lambda I-A)^{-1}$ exists. Indeed, assume that $u_{1}, u_{2} \in D(A)$ and $u_{1} \neq u_{2}$. If $-\frac{d^{2}}{d t^{2}} u_{1}-\lambda u_{1}=$
$-\frac{d^{2}}{d t^{2}} u_{2}-\lambda u_{2}$, then

$$
-\frac{d^{2}}{d t^{2}}\left(u_{1}-u_{2}\right)=\lambda\left(u_{1}-u_{2}\right)
$$

Let $y:=u_{1}-u_{2}$. The equation above is equivalent to $-\frac{d^{2}}{d t^{2}} y=\lambda y$, that is, $y^{\prime \prime}+\lambda y=0$. Consider the equation $\gamma^{2}+\lambda=0$. From $\gamma^{2}=-\lambda=|\lambda| e^{i(\arg \lambda+\pi+2 k \pi)}, k \in \mathbb{Z}$, it follows immediately that

$$
\gamma=\sqrt{|\lambda|} e^{i\left(\frac{\operatorname{arg\lambda }}{2}+\frac{\pi}{2}+k \pi\right)}, k \in \mathbb{Z}
$$

We then know that the equation $\gamma^{2}+\lambda=0$ has roots $\gamma_{0}=$ $\sqrt{|\lambda|} e^{i\left(\frac{\arg \lambda}{2}+\frac{\pi}{2}\right)}=i \sqrt{|\lambda|} e^{i \frac{\arg ,}{2}}$ and

$$
\gamma_{1}=\sqrt{|\lambda|} e^{i\left(\frac{\arg \lambda}{2}+\frac{\pi}{2}+\pi\right)}=-i \sqrt{|\lambda|} e^{i \frac{\arg \lambda}{2}}=-\gamma_{0}
$$

Since $\lambda \neq 0$, we then see that $\gamma_{0} \neq 0$ and hence $e^{ \pm \gamma_{0}} \neq 1$. Furthermore, $y^{\prime \prime}+\lambda y=0$ has a general solution

$$
y(t)=C_{1} e^{\gamma_{0} t}+C_{2} e^{-\gamma_{0} t}
$$

where $C_{1}, C_{2} \in \mathbb{C}$. In other words, $u_{1}(t)-u_{2}(t)=C_{1} e^{\gamma_{0} t}+$ $C_{2} e^{-\gamma_{0} t}$. Because $u_{i}(0)=u_{i}(1)$ and $u_{i}^{\prime}(0)=u_{i}^{\prime}(1), i=1,2$, we
have

$$
\begin{gathered}
\left\{\begin{array}{l}
C_{1}+C_{2}=C_{1} e^{\gamma_{0}}+C_{2} e^{-\gamma_{0}} \\
C_{1} \gamma_{0}-C_{2} \gamma_{0}=C_{1} \gamma_{0} e^{\gamma_{0}}-C_{2} \gamma_{0} e^{-\gamma_{0}}
\end{array}\right. \\
\Longrightarrow\left\{\begin{array}{l}
C_{1}+C_{2}=C_{1} e^{\gamma_{0}}+C_{2} e^{-\gamma_{0}} \\
C_{1}-C_{2}=C_{1} e^{\gamma_{0}}-C_{2} e^{-\gamma_{0}}
\end{array}\right. \\
\Longrightarrow\left\{\begin{array} { l }
{ C _ { 1 } = C _ { 1 } e ^ { \gamma _ { 0 } } } \\
{ C _ { 2 } = C _ { 2 } e ^ { - \gamma _ { 0 } } }
\end{array} \Longrightarrow \left\{\begin{array}{l}
C_{1}=0 \\
C_{2}=0
\end{array} \Longrightarrow u_{1}(t)=u_{2}(t) .\right.\right.
\end{gathered}
$$

This contradiction implies that $\lambda I-A$ is injective, that is, $(\lambda I-$ $A)^{-1}$ exists.
We next show that $R(\lambda I-A)=L^{2}([0,1])$. Choose any $f \in$ $L^{2}([0,1])$, and let

$$
c_{n}=\int_{0}^{1} f(\tau) e^{-2 \pi i n t} d t
$$

and $u_{m}(t)=\sum_{n=-m}^{m} \frac{c_{n}}{\lambda-(2 n \pi)^{2}} e^{2 \pi i n t}$, then it is clear that $u_{m} \in$ $D(A)$. Since $\left\{e^{2 \pi i n t}\right\}_{n \in \mathbb{Z}}$ is an orthogonal basis of $L^{2}([0,1])$ (see
p. 62, Example 1.6.26), by Theorem 1.6.25 on p. 61 together with Corollary 1.6 .24 on p. 60, we then see that

$$
u(t):=\sum_{n \in \mathbb{Z}} \frac{c_{n}}{\lambda-(2 n \pi)^{2}} e^{2 \pi i n t} \in L^{2}[0,1]
$$

$u_{m} \rightarrow u$ and

$$
\begin{aligned}
(\lambda I-A) u_{m}(t)=\left(\lambda+\frac{d^{2}}{d t^{2}}\right) u_{m}(t) & =\sum_{n=-m}^{m} c_{n} e^{2 \pi i n t} \\
& \rightarrow f
\end{aligned}
$$

in $L^{2}([0,1])$. Moreover, since A is a closed operator, by Lemma 1, we know that $\lambda I-A$ is also a closed operator. Thus, we see that $u \in D(A)$ and $(\lambda I-A) u=f$, which shows $R(\lambda I-A)=$ $L^{2}([0,1])$. Thus, $\lambda \in \rho(A)$, which completes the proof.

