
Spectra of A on p. 154

Example 2.6.2 Assume that X = L2[0, 1],

A : u(t) 7→ − d2

dt2
u(t),

where

D(A) = {u ∈ L2[0, 1], u is second order differentiable, u′ is

absolutely continuous andu′′ ∈ L2[0, 1],

u(0) = u(1), u′(0) = u′(1)}.

Then
σ(A) = σp(A) = {(2nπ)2, n ∈ N}.

Remark 1 The domain D(A) of Example 2.6.2 in page 154 of
the book is not correct.

In order to obtain the spectra ofA, we first establish the following
lemma.

Lemma 1 Let X be a B∗-space, A : D(A) ⊂ X → X be a
closed linear operator, and λ ∈ C. Then λI − A is a closed
operator.

Proof For any sequence {un}n∈N ⊂ D(A) such that
un → u, n → ∞;

(λI − A)un → v, n → ∞,
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we see that 
un → u, n → ∞

Aun → λu− v, n → ∞.

By the fact that A is closed, we know that u ∈ D(A) and (λI −
A)u = v. So λI − A is closed, which completes the proof of the
lemma.

Next we compute the spectra set of A.
Let σ̃p(A) = {(2nπ)2|n = 0, 1, 2, · · · , }. Since

− d2

dt2
{sin(2nπt)} = (2nπ)2 sin(2nπt)

and

− d2

dt2
{cos(2nπt)} = (2nπ)2 cos(2nπt)

for n = 0, 1, 2, · · · , we then see that σ̃p(A) ⊂ σp(A). To show
the desired conclusion, we only need prove that for any λ /∈ σ̃p(A),
λ ∈ ρ(A). Indeed, if this is true, since

C = σ̃p(A) ∪ (C \ σ̃p(A) ⊂ σp(A) ∪ ρ(A) ⊂ C
and σp(A) ∩ ρ(A) = ∅, we then have

σ(A) = σ̃p(A).

To show λ ∈ ρ(A), we first prove that (λI−A)−1 exists. Indeed,

assume that u1, u2 ∈ D(A) and u1 ̸= u2. If − d2

dt2
u1 − λu1 =
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− d2

dt2
u2 − λu2, then

− d2

dt2
(u1 − u2) = λ(u1 − u2).

Let y := u1−u2. The equation above is equivalent to − d2

dt2
y = λy,

that is, y′′ + λy = 0. Consider the equation γ2 + λ = 0. From
γ2 = −λ = |λ|ei(argλ+π+2kπ), k ∈ Z, it follows immediately that

γ =
√

|λ|ei
(
argλ
2 +π

2+kπ
)
, k ∈ Z.

We then know that the equation γ2 + λ = 0 has roots γ0 =√
|λ|ei

(
argλ
2 +π

2

)
= i

√
|λ|ei

argλ
2 and

γ1 =
√

|λ|ei
(
argλ
2 +π

2+π
)
= −i

√
|λ|ei

argλ
2 = −γ0.

Since λ ̸= 0, we then see that γ0 ̸= 0 and hence e±γ0 ̸= 1. Fur-
thermore, y′′ + λy = 0 has a general solution

y(t) = C1e
γ0t + C2e

−γ0t,

where C1, C2 ∈ C. In other words, u1(t) − u2(t) = C1e
γ0t +

C2e
−γ0t. Because ui(0) = ui(1) and u′i(0) = u′i(1), i = 1, 2, we
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have 
C1 + C2 = C1e

γ0 + C2e
−γ0

C1γ0 − C2γ0 = C1γ0e
γ0 − C2γ0e

−γ0

=⇒


C1 + C2 = C1e

γ0 + C2e
−γ0

C1 − C2 = C1e
γ0 − C2e

−γ0

=⇒


C1 = C1e

γ0

C2 = C2e
−γ0

=⇒


C1 = 0

C2 = 0

=⇒ u1(t) = u2(t).

This contradiction implies that λI −A is injective, that is, (λI −
A)−1 exists.
We next show that R(λI − A) = L2([0, 1]). Choose any f ∈

L2([0, 1]), and let

cn =

∫ 1

0

f(τ )e−2πint dt

and um(t) =

m∑
n=−m

cn
λ− (2nπ)2

e2πint, then it is clear that um ∈

D(A). Since {e2πint}n∈Z is an orthogonal basis of L2([0, 1]) (see
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p. 62, Example 1.6.26), by Theorem 1.6.25 on p. 61 together with
Corollary 1.6.24 on p. 60, we then see that

u(t) :=
∑
n∈Z

cn
λ− (2nπ)2

e2πint ∈ L2[0, 1],

um → u and

(λI − A)um(t) =

(
λ +

d2

dt2

)
um(t)=

m∑
n=−m

cne
2πint

→ f

in L2([0, 1]). Moreover, since A is a closed operator, by Lemma
1, we know that λI − A is also a closed operator. Thus, we see
that u ∈ D(A) and (λI − A)u = f , which shows R(λI − A) =
L2([0, 1]). Thus, λ ∈ ρ(A), which completes the proof.
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