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THE RANGE OF RANDOM WALK ON TREES

AND RELATED TRAPPING PROBLEM

Mu-Fa Chen Shi-Jian Yan Xian-Yin Zhou

(Beijing Normal University)

Abstract. This paper treats with the range of the simple random walk on trees and a related trap-
ping problem. The strong law of large numbers and the central limit theorem for the range, and some
asymptotic behaviour for the mean trapping time and survival probability are presented.

§1. Introduction.
Let TN be the infinite tree with N + 1 branches emanating from each vertex. Namely, TN is an

infinite connected graph with no non-trivial closed loops in which every node belongs to exactly N +1
edges. Since T1 can be thought of as the one dimensional lattice, which is well studied, throughout this
paper we assume that N ≥ 2. Let {Xn}n≥0 be the simple random walk on TN , with the probability
law {Px}x∈TN

. The range of {Xn}n≥0 up to time n is denoted by Rn = #{X0,X1, · · · ,Xn}. Our
first purpose is to study the asymptotic behaviour of Rn as n → ∞. For this, the main result is as
follows.

Theorem 1.1. Let ζ denote a standard normal variable and let Ex be the expectation with respect to
Px. We have

i) lim
n→∞Rn/n = (N − 1)/N, P0 − a.s.,

ii) lim
n→∞ var(Rn)/n = (N2 + 1)/[N2(N − 1)],

iii) (Rn − E0Rn)/n1/2 (d)−−→ ζ (N2 + 1)/[N2(N − 1)], n → ∞.

Next, consider the N-tree T̃N with root 0. Each vertex has exactly N – successors. Again, when
N = 1, T̃N can be thought of as the set {0, 1, · · · }. We restrict ourselves to the case that N ≥ 2.
Clearly, T̃N is a subset of TN . Our next result concerns with the range of the simple random walk
{Yn}n≥0 on T̃N . Let {Px}x∈T̃N

be the probability law and set R̃n = #{Y0, · · · , Yn}.
Theorem 1.2. The same conclusions of Theorem 1.1 hold provided Rn, Ex and Px are replaced by
R̃n, Ẽx and P̃x respectively.

Finally, we study the trapping problem on trees. The problem on lattices has been attracted a lot
of attentions, refer to [4] and references within. Given ε > 0, let C(x), x ∈ TN be i.i.d. {0, 1}–valued
random variables satisfying PC(C(x) = 1) = 1−PC(C(x) = 0) = ε for all x ∈ TN , where PC denotes
the probability law of (C(x), x ∈ TN ). The family (C(x), x ∈ TN ) is called a random trap field with
density ε. In general, 1 corresponds to a trap, and 0 to a trap–free site. The trapping time and the
survival probability are defined by T = inf{n ≥ 0 : C(Xn) = 1} and f(n) = P (T > n), n ≥ 0
respectively, where P = P0 × PC . In this part, we are interested in asymptotic behaviour of f(n)
and E0T . The main result is as follows.
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Theorem 1.3. i) For small ε > 0 and moderate n, we have log f(n) ∼ −ε(N − 1)n/N .
ii) Let E be the expectation with respect to P , then limε→0+(εET ) = N/(N − 1).

The solution to the trapping problem on T̃N is completely the same (see Corollary 6.4 below).
From the arguments in [3] or [4], one knows that Theorem 1.3 is actually a consequence to Theorem

1.1. Thus, we concentrate our attention mainly on the proofs of Theorem 1.1 and Theorem 1.2. Since
TN has some nice symmetric properties and {Xn}n≥0 is transient, some techniques used in [6] or
[5], where the corresponding problem was studied for the lattice case, can be also applied to prove
Theorem 1.1. A key to [6] or [5] is some reasonable estimate for the Green function and hitting time of
random walks on lattices. This was obtained by using some estimate of their transition probability
function. Although there are a lot of works in estimating the transition probability function of
random walk on trees (e.g. [2] and [7]), it is still difficult to use these estimates to get a reasonable
estimate for the corresponding Green function and hitting time. This problem is overcome in the
paper in terms of some techniques in electrical network. Besides, in the present case we can get
the precise limits as described in Theorem 1.1 and Theorem 1.2. However, the coefficients of the
corresponding limits in the lattice case are still not known precisely.

Let us mention that it is also meaningful to study the range of random walks on fractals (see [4]).
However, we do not know at moment how to get a precise asymptotic behaviour even for the range
of the simple random walk on the Sierpinski gaskets.

This paper is organized as follows. In Section 2, we mainly study the hitting time of {Xn}n≥0

and {Yn}n≥0. In Section 3, we obtain an asymptotic behaviour of var(Rn) as n → ∞. In Section 4,
we prove both strong law of large number and central limit theorem for Rn, and complete the proof
Theorem 1.1. In Section 5, we prove that R̃n is very close to Rn in some sense (see Lemma 5.1 and
Lemma 5.2 below). Thus, Theorem 1.2 can be easily proved by means of Theorem 1.1. In Section 6,
we consider the trapping problem on TN and T̃N , and complete the proof of Theorem 1.3.

§2. Hitting time.
In this section, we make some reasonable estimation for the mean and variance of the hitting time

of {Xn}n≥0 and {Yn}n≥0. For this purpose, we introduce some notation. For any x, y ∈ G (= TN ,
or T̃N ), define their distance as follows:

d(x, y) = inf
{
k :∃x1, · · · , xk ∈ G, such that x1 = x, xk = y and

xixi+1 is an edge of G for ∀ i = 1, · · · , k − 1
}
.

Next, define

Bn(x) = {y ∈ G : d(x, y) ≤ n}, Sn(x) = {y ∈ G : d(x, y) = n},
τn(x) = inf{m ≥ 0 : Xm ∈ Sn(x)}, τ̃n(x) = inf{m ≥ 0 : Ym ∈ Sn(x)}.

Let 0 be the root of T̃N , then 0 ∈ TN . For simplicity, set Bn = Bn(0); Sn = Sn(0); τn = τn(0); τ̃n =
τ̃n(0).

One of the main results in this section is as follows.

Proposition 2.1. i) E0τn = n(N + 1)/(N − 1) + O(1) as n → ∞.

ii) There is a constant M ∈ (0,∞) such that E0(τn − E0τn)2 ≤ Mn for all n ≥ 1.

To prove this proposition, construct a random walk {Zn}n≥0 on Z+ = {0, 1, · · · } with transition
probability: pij = 1, if i = 0 and j = 1; = N/(N + 1) if i ≥ 1 and j = i + 1; = 1/(N + 1), if i ≥ 1
and j = i − 1 and = 0, otherwise. Denote by Wx and Qx respectively the probability law and its
corresponding expectation of {Zn} starting from x ∈ Z+. Let σn = inf{m ≥ 0 : Zm = n}, n ≥ 0.
Then, it is easy to see that W0(σn = m) = P0(τn = m), n ≥ 0, m ≥ 0. From this, it is clear that
Proposition 2.1 follows from the next lemma.

Lemma 2.2. i) Q0σn = n(N + 1)/(N − 1) + O(1) as n → ∞.
2



ii) There is a constant M ∈ (0,∞) such that Q0(σn − Q0σn)2 ≤ Mn for all n ≥ 0.

Proof. The proof of this lemma is based on an electrical network. To do so, let Ci,i+1 = 1, if i = 0
and = N i+1/(N + 1), if i ≥ 1. Consider the electrical network Z+ in which a conductor Ci,i+1 is
assigned to the bond i, i + 1. Then the effective resistance Reff(n) between 0 and n is equal to

Reff(n) = 1 +
n−1∑
i=1

N + 1
N i+1

= 1 +
N + 1

N(N − 1)
(1 − N−n+1).

For given n ≥ 1, let uk = Q0

[ ∑σn

j=0 I{Zj=k}
]
, 0 ≤ k ≤ n and vk = Wk(σ0 < σn), 0 ≤ k ≤ n.

Then, we have Q0σn =
∑n−1

k=0 uk. From [1], we know that u0 = Reff(n) and uk/Nk = Reff(n) vk,
k = 0, 1, · · · , n. Therefore, Q0σn = Reff(n)

∑n−1
k=0 Nkvk. Clearly, v′

ks are voltages in the electrical
network Z+ between 0 and n having the property v0 = 1 and vn = 0 (see [1]). Thus. if we denote by
Reff(k, n) is the effective resistance between k and n, then vk = R−1

eff (n)Reff(k, n), 0 ≤ k ≤ n. Hence

Reff(k, n) =
n−1∑
i=k

N + 1
N i+1

=
N + 1

Nk(N − 1)
(1 − N−(n−k)), 1 ≤ k ≤ n − 1.

Collecting the above facts together, we obtain

Q0σn =
[
1 +

N + 1
N(N − 1)

(1 − N−n+1)
]

×
{

1 +
n−1∑
k=1

[
1 +

N + 1
N(N − 1)

(1 − N−n+1)
]−1

N + 1
N − 1

(1 − N−(n−k))
}

=
N + 1
N − 1

(n − 1) − N + 1
(N − 1)2

(1 − N−n+1) + 1 +
N + 1

N(N − 1)
(1 − N−n+1),

which proves i).
Next, consider Q0σ

2
n. By definition, we know that

Q0σ
2
n = 2

∑
0≤k1<k2≤n−1

Q0

[
#{j ≤ σn : Zj = k1} · #{j ≤ σn : Zj = k2}

]

+ 2
n−1∑
k=0

Q0

[ ∑
0≤i<j≤σn

I{Zi=Zj=k}

]
+

n−1∑
k=0

Q0

( ∑
0≤i≤σn

I{Zi=k}

)

=: I1(n) + I2(n) + I3(n).

From the above argument, one sees that

(2.3) I3(n) = n(N + 1)/(N − 1) + O(1), n → ∞.

Moreover, by the strong Markov property we also know that

Q0

( ∑
0≤i<j≤σn

I{Zi=Zj=k}

)
= Q0

[ ∞∑
i=0

I{i≤σn}I{Zi=k}Qk

( σn∑
j=0

I{Zj=k}

)]
(2.4)

= ukQk

( σn∑
j=0

I{Zj=k}

)
.

Let σ′
n = inf{m ≥ 0 : Zm ∈ {0, n}}. Then

(2.5) Qk

( σn∑
j=0

I{Zj=k}

)
≤ Qk

( σ′
n∑

j=0

I{Zj=k}

)
+ Q0

( σn∑
j=0

I{Zj=k}

)
.
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Denote by R′
eff(k, n) the effective resistance between k and {0, n} (1 ≤ k ≤ n − 1). It is easy

to see that there is a constant c1 ∈ (0,∞) such that R′
eff(k, n) ≤ c1, 1 ≤ k ≤ n. This implies

that Qk

(∑σ′
n

i=0 I{Zi=k}
)

= N−kR′
eff(k, n) ≤ c1, 1 ≤ k ≤ n. Inserting this into (2.5), we obtain

Qk

(∑σn

i=0 I{Zi=k}
)
≤ c1 + uk ≤ c2 for some constant c2 ∈ (0,∞). Combining this with (2.4) gives

(2.6) I2(n) ≤ c3n, ∀n ≥ 1

for some constant c3 ∈ (0,∞).
Therefore, it remains to prove that there is a constant c4 ∈ (0,∞) such that

(2.7) I1(n) − (Q0σn)2 ≤ c4n, ∀n ≥ 1.

Indeed, if k1 < k2, then Wk2(σk1 < σn) = Reff(k2, n)/Reff(k1, n) = Nk1−k2(1 − N−(n−k2))(1 −
N−(n−k1))−1. Thus, we have

I1(n) = 2
n−1∑
k1=0

n−1∑
k2=k1+1

Q0

{[
#{j ≤ σk2 : Zj = k1} · Qk2(#{j ≤ σn : Zj = k2})

]
(2.8)

+ Qk2

[
#{j ≤ σn : Zj = k1} · #{j ≤ σn : Zj = k2}

]}

= 2
n−1∑
k1=0

n−1∑
k2=k1+1

uk2Q0(#{j ≤ σk2 : Zj = k1})

+ 2Qk2

[
I{σk1<σn}#{j ≤ σn : Zj = k1} · #{j ≤ σn : Zj = k2}

]

≤ 2
n−1∑
k1=0

n−1∑
k2=k1+1

[
uk2Q0(#{j ≤ σk2 : Zj = k1})

+ 2Q
1/2
k2

(
I{σk1<σn}#{j ≤ σn : Zj = k1}

)2
Q

1/2
k2

(#{j ≤ σn : Zj = k2})2
]
.

From the proofs of (2.3) and (2.6), we see that Qk2(#{j ≤ σn : Zj = k2})2 ≤ c5, k2 ≤ n−1 for some
constant c5 ∈ (0,∞). In addition, by the strong Markov property, we have Qk2

[
I{σk1<σn}(#{j ≤

σn : Zj = k1})2
]

= Wk2(σk1 < σn)Qk1(#{j ≤ σn : Zj = k1})2, which implies that

r.h.s. of (2.8) ≤ 2
n−1∑
k1=0

n−1∑
k2=k1+1

uk2Q0(#{j ≤ σk2 : Zj = k1})

+ 2c5

n−1∑
k1=0

n−1∑
k2=k1+1

N−(k2−k1)/2(1 − N−(n−k2))1/2(1 − N−(n−k1))−1/2.

Hence, to prove (2.7) it suffices to show that

2
n−1∑
k1=0

n−1∑
k2=k1+1

uk2Q0(#{j ≤ σk2 : Zj = k1})−2
n−1∑
k1=0

n−1∑
k2=k1+1

uk2uk1 ≤c6n, n ≥ 1(2.9)

for some constant c6 ∈ (0,∞). Note that Q0(σk2 < σn) = 1 for k2 ≤ n − 1. Then Q0

(
#{j ≤ σk2 :

Zj = k1}
) − uk1 ≤ 0, which yields that l.h.s. of (2.9) ≤ 0. Hence, (2.9) is true. This proves (2.7).

Combining (2.3) and (2.6) with (2.7), we get the desired result. �

We have completed the proof of Proposition 2.1. By a similar argument, we can prove the following
result.
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Proposition 2.10. i) Ẽ0τ̃n = n(N + 1)/(N − 1) + O(1), as n → ∞.

ii) There is a constant M ∈ (0,∞) such that Ẽ0(τ̃n − Ẽ0τ̃n)2 ≤ Mn for all n ≥ 1.

In fact, from the definitions of τ̃n and σn, one can also see that P̃0(τ̃n = m) = Q0(σn = m), for
all n,m ≥ 0. By using this, Proposition 2.10 follows from Lemma 2.2.

§3. Variance of Rn.
Following [6] (or [5]), let

ξn
n = 1; ξn

i = I{Xi �=Xi+1,··· ,Xi �=Xn}, 0 ≤ i < n;
ξi = I{Xi �=Xi+1,Xi �=Xi+2,··· }, i ≥ 0;

ηn
i = ξn

i − ξi, 0 ≤ i < n; ζn =
∑n−1

i=0 ξi; ηn =
∑n−1

i=0 ηn
i .

Then Rn =
∑n

i=1 ξn
i = ζn + ηn + 1. Next, let pk(x, y) = Px(Xk = y) and set

Hx = inf{n ≥ 1 : Xn = x}; F (x, y) = Px(Hy < ∞);

G(n)(x, y) =
∑n

k=0 pk(x, y); G(x, y) = G(∞)(x, y);

pz
k(x, y) = Px(Xk = y; Hz ≥ k).

The main result in this section is as follows.

Proposition 3.1. Let σ = (N2 + 1)/[N2(N − 1)], then limn→∞ var(Rn)/n = σ.

To prove this proposition, we begin with two lemmas.

Lemma 3.2. For any x, y ∈ TN , we have G(x, y) = (N + 1)−d(x,y)+1(N − 1)−1.

Proof. By the symmetry of TN , it suffices to prove that G(0, x) = (N − 1)−1(N + 1)−d(0,x)+1 for
all x ∈ TN . Consider the electrical network TN in which a unit resistor is assigned to each bond of
TN . Let (vx)x∈TN

be the voltage on TN satisfying v0 = 1 and limd(0,x)→∞ vx = 0. Denote by Reff the
effective resistane of TN between 0 and infinity. Then (see [1]), we have G(0, 0)/(N + 1) = Reff and
G(0, x)/(N + 1) = Reff vx. It is clear that Reff = (N + 1)−1 +

∑∞
n=1(N + 1)−1N−n = N(N2 − 1)−1

and vx = R−1
eff · Reff(x) for all x ∈ TN , where Reff(x) is the effective resistance of TN between Sd(0,x)

and infinity. One may check that

Reff(x) =
∞∑

n=d(0,x)

1
(N + 1)Nn

=
1

(N + 1)Nd(0,x)
· N

N − 1
=

1
N2 − 1

N−d(0,x)+1.

Therefore, vx = N−d(0,x) for all x ∈ TN , which implies that G(0, x) = (N +1)N(N2−1)−1N−d(0,x) =
(N − 1)−1N−d(0,x)+1. �

Lemma 3.3. There is a constant c ∈ (0,∞) such that

∑
x∈TN

G(n)(0, x)Px(m < Hx < ∞, H0 < ∞) ≤ c m−3/2, ∀m ≥ 1, n ≥ 0.

In the lattice case, the above bound was obtained by using an estimation of transition probability
(see [5] or [6]). Here, we use Lemma 3.2 and Proposition 2.1 to prove Lemma 3.3.

Proof of Lemma 3.3. First, we show that

(3.4) Py(m < Hz < ∞) ≤ c1m
−3/2, ∀m ≥ 1, ∀y, z ∈ TN

for some constant c1 ∈ (0,∞). Indeed, if d(y, z) ≥ (log m)2, then Lemma 3.2 implies

Py(m < Hz < ∞) ≤ Py(Hz < ∞) ≤ G(y, z) ≤ (N − 1)−1(N + 1)−(log m)2+1.
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Thus, (3.4) holds for d(y, z) ≥ (log m)2. We now assume that d(y, z) ≤ (log m)2. By Proposition 2.1,
we can show that Py(τ[m1/4](y) ≥ m) ≤ c2m

−3/2 for some constant c2 ∈ (0,∞). Thus, to prove (3.4)
it suffices to show the following:

(3.5) Py(τ[m1/4](y) < Hz < ∞) ≤ c1m
−3/2, d(y, z) ≤ (log m)2.

In fact, by Lemma 3.2 and the strong Markov property, we have

l.h.s. of (3.5) = Ey

[
PX(τ

[m1/4]
(y))(Hz < ∞)

] ≤ Ey

[
G(X(τ[m1/4](y)), z)

]
= Ey(N − 1)−1(N + 1)1−d(z,X(τ

[m1/4]
(y)))

,

where X(m) = Xm, m ≥ 0. Recalling the hypothesis: d(y, z) ≤ (log m)2, we get
d(z,X(τ[m1/4](y))) ≥ [m1/4]− (log m)2−1. This implies (3.5) immediately. Hence, (3.4) holds. Thus,
if x 
= 0, then

Px(m < Hx < ∞; H0 < ∞)

≤ Px(m < Hx < ∞)F (x, 0) + Px(m/2 < H0 < ∞)F (0, x) + F (x, 0)P0(m/2 < H0 < ∞)

≤ c2m
−3/2(G(0, x) + G(x, 0)), ∀m ≥ 1, ∀x ∈ TN

for some constant c2 ∈ (0,∞). Actually, the above bound also holds for x = 0. Therefore,
∑

x∈TN

G(n)(0, x)Px(m < Hx < ∞; H0 < ∞)

≤ 2c2m
−3/2

∑
x∈TN

G2(0, x) ≤ c3m
−3/2, ∀m ≥ 1, ∀n ≥ 1

for some constant c3 ∈ (0,∞). �
We are now in the position to prove Proposition 3.1.

Proof of Proposition 3.1. By the symmetry of TN , we easily see that for i < j,

E0η
n
i ηn

j = E0

[
EXi

(ηn−i
0 ηn−i

j−i )
]

= P0

(
X1 
= 0, · · · ,Xn−i 
= 0; Xk = 0 for some k ≥ n − i + 1;

Xj−i 
= Xj−i+1, · · · ,Xj−i 
= Xn−i; Xk = Xj−i for some k ≥ n − i + 1
)

=
∑

x�=0 p0
j−i(0, x)Px(n − j + 1 ≤ H0 < ∞; n − j + 1 ≤ Hx < ∞)

≤ ∑
x�=0 pj−i(0, x)Px(n − j + 1 ≤ Hx < ∞; H0 < ∞).

In fact, the above bound is also valid for i = j. By Lemma 3.3, we have

j∑
i=0

E0(ηn
i ηn

j ) ≤
∑
x�=0

G(j)(0, x)Px(n − j + 1 ≤ Hx < ∞; H0 < ∞) ≤ c4(n − j + 1)−3/2, j ≤ n

for some constant c4 ∈ (0,∞). It follows that E0η
2
n = O(1) as n → ∞. By definition, we know

that var(Rn) = var(ζn) + var(ηn) + 2cov(ζn, ηn). Thus, the desired result follows once we prove the
following:

(3.6) lim
n→∞ var(ζn)/n = σ.

We now compute var(ζn). var(ζn) =
∑n−1

i=0 var(ξi) + 2
∑

0≤i<j≤n−1 cov(ξi, ξj). By the symmetry
of TN , we also have

var(ξi) = P0(Xi 
= Xi+1, Xi 
= Xi+2, · · · ) − P0(Xi 
= Xi+1, Xi 
= Xi+2, · · · )2
= P0(X1 
= 0, X2 
= 0, · · · ) − P0(X1 
= 0, X2 
= 0, · · · )2 = q − q2,
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where q = P0(X1 
= 0, X2 
= 0, · · · ) = R−1
eff (N + 1)−1 = (N − 1)/N (see [1]). Moreover, we have

E0ξiξj = E0ξ0ξj−i = P0(Xn 
= 0, ∀n ≥ 1; Xj−i 
= Xj−i+m, ∀m ≥ 1)

=
∑

x�=0 p0
j−i(0, x)Px(Hx = ∞, H0 = ∞)

=
∑

x�=0 p0
j−i(0, x)

[
Px(Hx = ∞) − Px(Hx = ∞, H0 < ∞)

]
= P0(X1 
= 0, · · · ,Xj−i 
= 0)P0(H0 = ∞) − ∑

x�=0 p0
j−i(0, x)Px(Hx = ∞, H0 < ∞),

and E0ξiE0ξj = P0(H0 = ∞)P0(Xk 
= 0, ∀k ≥ 1). Therefore

cov(ξi, ξj) = P0(H0 = ∞)P0

(
X1 
= 0, · · · ,Xj−i 
= 0; Xk = 0 for some k ≥ j − i + 1

)
− ∑

x�=0 p0
j−i(0, x)Px(Hx = ∞, H0 < ∞)

=
∑

x�=0 p0
j−i(0, x)

[
Px(Hx = ∞)Px(H0 < ∞) − Px(Hx = ∞; H0 < ∞)

]
.

Let aj =
∑j

i=1

∑
x�=0 p0

i (0, x)
[
P0(H0 = ∞)Px(H0 < ∞) − Px(Hx = ∞; H0 < ∞)

]
. Then var(ζn) =

n(q − q2) + 2
∑n−1

j=1 aj . Put a =
∑∞

i=1

∑
x�=0 p0

i (0, x)
[
P0(H0 = ∞)Px(H0 < ∞) − Px(Hx = ∞; H0 <

∞)
]
. We have limn→∞ var(ξn)/n = q − q2 + 2a. Hence, for proving (3.6) it remains to prove the

following

(3.7) σ = q − q2 + 2a.

Note that if x 
= 0, F (0, x) = vx = N−d(o,x), where vx was defined in Lemma 3.1. Therefore, if x 
= 0,

Px(Hx = ∞)Px(H0 < ∞) − Px(Hx = ∞; H0 < ∞)

= Px(Hx = ∞)Px(H0 < ∞) − Px(H0 < ∞) + Px(H0 < ∞; Hx < ∞)

= Px(Hx = ∞)Px(H0 < ∞) − Px(H0 < ∞)

+ Px(H0 < ∞)P0(Hx < ∞) + Px(Hx < ∞)Px(H0 < ∞)

= F (x, 0)F (0, x) = N−2d(0,x).

Additionlly, by the symmetry of TN , we have

Px(X1 
= x, · · · ,Xk−1 
= x, Xk = y) = Py(X1 
= y, · · · ,Xk−1 
= y, Xk = x)

for any x, y ∈ TN , and k ≥ 1, and moreover

Py(X1 
= y, · · · ,Xk−1 
= y, Xk = x) = Px(X1 
= y, · · · ,Xk−1 
= y, Xk = y).

From these facts, it follows that px
k(x, y) = py

k(x, y) for all x, y ∈ TN and k ≥ 1. Therefore

a =
∞∑

j=1

∑
x�=0

px
j (0, x)N−2d(0,x) =

∑
x�=0

F (0, x)N−2d(0,x)

=
∑
x�=0

N−3d(0,x) = (N + 1)N−3 +
∞∑

k=2

N−3k(N + 1)Nk−1 =
1

N(N − 1)
.

Thus, we get q − q2 + 2a = (N2 + 1)/[N2(N − 1)] = σ. The proof of Proposition 3.1 is completed.
�

§4. Proof of Theorem 1.1.
In this section, we prove both strong law of large numbers and the central limit theorem of Rn.
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Proposition 4.1. We have limn→∞ Rn/n = q, P0-a.s.

Proof. From the proof of Proposition 3.1, it follows that E0Rn = E0ζn + E0ηn + 1 = qn + O(1),
and there is a constant c ∈ (0,∞) such that P0(|Rn − qn| ≥ n3/4) ≤ cn−1/2 for large enough n.
By Borel-Cantelli lemma, we have P0

(|n−3Rn3 − q| ≥ n−3/4, i.o.
)

= 0. If n3 ≤ m ≤ (n + 1)3, then
|Rn3 −Rm| ≤ (n + 1)3 −n3 = 3n2 + 3n + 1. From this fact, we get P0

(|Rn/n− q| ≥ n−1/8, i.o.
)

= 0.
This yields the desired result. �

Next, we prove the central limit theorem of Rn. Recall that σ = (N2 + 1)/[N2(N − 1)] and ζ
denotes a standard normal variable.

Proposition 4.2. We have n−1/2(Rn − E0Rn)
(d)−−→ σ · ζ as n → ∞.

Let X(a, b) = {Xi : a ≤ i ≤ b} for a, b ∈ R, and set In = #{X(0, n) ∩ X(n, 2n)}. To prove
Proposition 4.2, we need the following lemma.

Lemma 4.3. There is a constant ck ∈ (0,∞) for every k ≥ 1 such that E0I
k
n ≤ ck for all n ≥ 1.

Proof. Without loss of generality, we consider the case k = 2 only. It is clear that

E0I
2
n =

n∑
i=0

P0{Xi ∈ X(n, 2n)} + 2
∑

0≤i<j≤n

P0{Xi, Xj ∈ X(n, 2n)}(4.4)

=
n∑

i=0

P0{0 ∈ X(n − i, 2n − i)} + 2
∑

0≤i<j≤n

P0{0, Xj−i ∈ X(n − i, 2n − i)}.

Let β1 = inf{m ≥ n − i : Xm = 0} and β2 = inf{m ≥ n − i : Xm = Xj−i}. Then

P0{0, Xj−i ∈ X(n − i, 2n − i)}(4.5)

≤ P0(n − i ≤ β1 ≤ β2 ≤ 2n − i) + P0(n − i ≤ β2 ≤ β1 ≤ 2n − i)

≤ E0

[
vXj−i

I{n−i≤β1≤2n−i}
]
+ E0

[
vXj−i

I{n−i≤β2≤2n−i}
]
,

where vy was defined in the proof of Lemma 3.2. By Proposition 2.1, there is a constant k2 ∈ (0,∞)
such that

P0

(
max

0≤l≤[(j−i)/2]
d(0,Xl) ≤ [(j − i)1/2]

)

= P0

(
τ[(j−i)1/2] ≥ [(j − i)/2]

) ≤ k2(j − i)−3/2, j > i.

Moreover,

P0(d(0,Xj−i) ≤ (j − i)1/4)

≤ k2(j − i)−3/2 + P0

(
τ[(j−i)1/2] < [(j − i)/2]; d(0,Xj−i) ≤ (j − i)1/4

)
≤ k2(j − i)−3/2 + E0

[
I{τ

[(j−i)1/2]
<[(j−i)/2]}PX(τ

[(j−i)1/2]
)(β3 < ∞)

]
,

where β3 = inf{m ≥ 0 : |Xm| ≤ (j − i)1/4}. Noticing the structure of TN and using Lemma 3.2, we
get PX(τ

[(j−i)1/2]
)(β3 < ∞) ≤ k3(j − i)−3/2 on {τ[(j−i)1/2] < ∞} for some constant k3 ∈ (0,∞). These

two estimates give us P0(d(0,Xj−i) ≤ (j − i)1/4) ≤ (k2 + k3)(j − i)−3/2. Hence, there is a constant
k4 ∈ (0,∞) such that

E0vXj−i
= E0

[
n−d(0,Xj−i)

] ≤ (k2 + k3)(j − i)−3/2 + N−(j−i)1/4 ≤ k4(j − i)−3/2.

From the above proof, one also sees that there is a constant k5 ∈ (0,∞) such that

PXj−i
(n − j ≤ β2 ≤ 2n − j) ≤ k5(n − j)−3/2,

P0{0 ∈ X(n − i, 2n − i)} ≤ k5(n − i)−3/2.
8



Therefore, we have

(4.6)
∑n

i=0 P0{0 ∈ X(n − i, 2n − i)} ≤ 1 + k5

∑n−1
i=0 (n − i)−3/2 ≤ c′

and

E0

[
vXj−i

I{n−i≤β2≤2n−i}
]

= E0

[
vXj−i

PXj−i
(n − j ≤ β2 ≤ 2n − j)

]
≤ k5(n − j)−3/2E0(vXj−i

) ≤ k4k5(j − i)−3/2(n − j)−3/2.

In virtue of (4.4), (4.5) and (4.6), to complete the proof of the lemma, it is sufficient to prove the
following

(4.7)
∑

0≤i<j≤n E0

[
vXj−i

I{n−i≤β1≤2n−i}
] ≤ c′1, ∀n ≥ 1

for some constant c′1 ∈ (0,∞). Indeed, by Proposition 2.1 we have

PXj−i

(
max

0≤l≤[(n−j)/2]
d(X0,Xl) ≤ [(n − j)1/2]

)
≤ k2(n − j)−3/2.

Let β4 = inf{m ≥ 0 : d(X0,Xm) ≥ [(n − j)1/2]}. Then

PXj−i
(0 ∈ X(n − j, 2n − j))

≤ k2(n − j)−3/2 + PXj−i

(
β4 ≤ [(n − j)/2]; 0 ∈ X(n − j, 2n − j)

)
≤ k2(n − j)−3/2 + EXj−i

[
PX(β4)(H0 < ∞)I{β4≤[(n−j)/2]}

]
.

If d(0,Xj−i) ≤ 1
2 [(n − j)1/2], then

EXj−i
[PX(β4)(H0 < ∞)I{β4<∞}] ≤ max{Py(H0 < ∞) : y ∈ TN , d(y,Xj−i) = [(n − j)1/2]}

≤ max{Py(H0 < ∞) : y ∈ TN , d(0, y) ≥ 1/2[(n − j)1/2]}
= N− 1

2 [(n−j)1/2] (by Lemma 3.2).

Thus, there is a constant k6 ∈ (0,∞) such that PXj−i
(n− j ≤ β1 ≤ 2n− j) ≤ k6(n− j)−3/2, provided

d(0,Xj−i) ≤ 1
2 [(n − j)1/2]. Therefore

E0[vXj−i
I{n−i≤β1≤2n−i}] ≤ N− 1

2 [(n−j)1/2]P0(n − i ≤ β1 ≤ 2n − i)

+ E0

[
vXj−i

I{d(0,Xj−i)≤ 1
2 [(n−j)1/2]}I{n−i≤β1≤2n−i}

]
≤ k5(n − i)−3/2N− 1

2 [(n−j)1/2]

+ E0

[
vXj−i

I{d(0,Xj−i)≤ 1
2 [(n−j)1/2]}PXj−i

(0 ∈ X(n − j, 2n − j))
]

≤ k5(n − i)−3/2N− 1
2 [(n−j)1/2] + k6(n − j)−3/2E0(vXj−i

)

≤ k5(n − i)−3/2N− 1
2 [(n−j)1/2] + k4k6(n − j)−3/2(j − i)−3/2

which leads to (4.7). We have thus completed the proof of Lemma 4.3. �
We are now in the position to prove Proposition 4.2. The following argument is based on [6, Proof

of Theorem 4.5].

Proof of Proposition 4.2. Given a sufficient small δ ∈ (0, 1). For each n ≥ 1, take p = p(n) = [nδ].
Then, we have

Rn =
p∑

i=1

#
{

X

(
i − 1

p
n,

i

p
n

)}
−

p∑
i=2

#
{

X

(
0,

i − 1
p

n

)⋂
X

(
i − 1

p
n,

i

p
n

)}
.
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By Lemma 4.3, there is a constant k7 ∈ (0,∞) such that

E0

[( p∑
i=2

#
{

X
(
0,

i − 1
p

n
) ⋂

X
( i − 1

p
n,

i

p
n
)})2]1/2

≤ k7 p.

Thus,

E0

∣∣∣∣Rn −
p∑

i=1

#
{

X
( i − 1

p
n,

i

p
n
)}∣∣∣∣

2

= o(n), n → ∞.

Set Rn,i = #{X( i−1
p n, i

pn)}, 1 ≤ i ≤ p, and let {Rn,i} = Rn,i − E0Rn,i. From Proposition 3.1, we
get E0{Rn,i}2 ∼ σn/p, n → ∞.

We now prove that the random variables Rn,1, · · · , Rn,p are independent. Without loss of gen-
erality, we may deal with the independence of Rn,1 and Rn,2 only. Indeed, we have P0(Rn,1 =
m1; Rn,2 = m2) = E0

[
I{Rn,1=m1}PX(n/p)(Rn,1 = m2)

]
. By the symmetry of TN , one knows that

Px(Rn,1 = m2) = P0(Rn,1 = m2) for all x ∈ TN . Hence

P0(Rn,1 = m1; Rn,2 = m2) = P0(Rn,1 = m1) · P0(Rn,1 = m2)

= P0(Rn,1 = m1) · E0

[
PX(n/p)(Rn,1 = m2)

]
= P0(Rn,1 = m1) · P0(Rn,2 = m2), ∀m1, m2 ≥ 0

which deduces the desired result. Thus, the assertion of Proposition 4.1 holds once the so-called
Lindeberg’s condition is satisfied for the family {Rn,1}, · · · , {Rn,p(n)}. Moreover, this condition is
satisfied whenever

(4.8) E0{Rn}4 ≤ k8n
2, ∀n ≥ 1

for some constant k8 ∈ (0,∞). To see this, set n1 = [n/2]. Then

(E0{Rn}4)1/4 ≤ (
E0{#{X(0, n1)} + #{X(n1, n)}}4

)1/4 +
(
E0#{X(0, n1) ∩ X(n1, n)}4

)1/4
.

By Lemma 4.3, we have
(
E0{#{X(0, n1) ∩ X(n1, n)}}4

)1/4 = o(n1/2). Since #{X(0, n1)} and
#{X(n1, n)} are independent, from Proposition 3.1, we get

E0

{
#{X(0, n1)} + #{X(n1, n)}}4 ≤ E0{Rn1}4 + E0{Rn2}4 + k9n

for some constant k9 ∈ (0,∞), where n2 = n − n1. Thus

(E0{Rn}4)1/4 ≤ (
E0{Rn1}4 + E0{Rn2}4 + k9n

2
)1/4 + o(n1/2).

For k ≥ 1, set αk = sup
{
2−k/2(E0{Rn}4)1/4 : 2k ≤ n ≤ 2k+1

}
. Then αk+1 ≤ (1/2α4

k +C)1/4 +O(1).
This implies that the sequence {αk} is bounded. Therefore, (4.8) holds. We have completed the proof
of Proposition 4.2. �
Proof of Theorem 1.1. Simply combine Proposition 3.1, Proposition 4.1 with Proposition 4.2. �
§5. Proof of Theorem 1.2.

We begin with several lemmas.

Lemma 5.1. Let Ẽ0 and R̃n be the same as defined in Section 1. We have
limn→∞ n−1/2|E0Rn − Ẽ0R̃n| = 0.

Proof. Take ε1 ∈ (0, 1/2) and ε2 ∈ (0, 1/2 − ε1). By Proposition 2.1, we know that

P0

(
max

0≤l≤[n1/2−ε1 ]
d(0,Xl) ≤ [nε2 ]

)
≤ C(ε1, ε2)n2ε1+ε2n−1,
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for some constant C(ε1, ε2) ∈ (0,∞). Let νn = inf{m ≥ 0 : Xm ∈ S[nε2 ]}. By Lemma 3.2, we have
PXνn

(H0 < ∞) = N−d(0,Xνn ) = N−[nε2 ]. By Hölder’s inequality, for a fixed ε3 ∈ (0, 1) such that
[1 − (2ε1 + 2ε2)](1 − ε3) > 1/2, we have

E0Rn =E0

[ n∑
i=[n1/2−ε1 ]

I{Xi �=Xi+1,··· ,Xi �=Xn}

]
+ o(n1/2)

=E0

[ n∑
i=νn

I{Xi �=Xi+1,··· ,Xi �=Xn}I{νn≤[n1/2−ε1 ]}

]
+O

(
n1−(1−ε3)n(2ε1+2ε2)(1−ε3)

)
+o(n1/2)

=E0

([ n∑
i=νn

I{Xi �=Xi+1,··· ,Xi �=Xn}

]
I{Xj �=0,j≥νn}I{νn≤[n1/2−ε1 ]}

)
+ o(n1/2)

= E0

[
EXνn

( n∑
i=0

I{Xi �=Xi+1,··· ,Xi �=Xn}I{X1 �=0,··· ,Xn �=0}

)
I{νn≤[n1/2−ε1 ]}

]
+ o(n1/2),

Let μn = inf{m ≥ 0 : Ym ∈ S[nε2 ]} and H0 = inf{m ≥ 1 : Ym = 0}. Then, it is easy to see that
P̃Yμn

(H0 < ∞) = N−[nε2 ]. Thus, a similar argument can imply that

Ẽ0R̃n = Ẽ0

[
ẼYμn

( n∑
i=0

I{Yi �=Yi+1,··· ,Yi �=Yn}I{Y1 �=0,··· ,Yn �=0}

)
I{μn≤[n1/2−ε1 ]}

]
+ o(n1/2).

Since TN and T̃N have the same structure except at the point 0, when μn < ∞ and νn < ∞, we have

EXνn

( n∑
i=0

I{Xi �=Xi+1,··· ,Xi �=Xn}I{X1 �=0,··· ,Xn �=0}

)

= ẼYμn

( n∑
i=0

I{Yi �=Yi+1,··· ,Yi �=Yn}I{Y1 �=0,··· ,Yn �=0}

)

which leads to E0Rn = Ẽ0R̃n + o(n1/2). The proof of Lemma 5.1 is completed. �
From the construction of TN , one also sees that there are T1,N , · · · , TN+1,N such that TN =

∪N+1
i=1 Ti,N and Ti,N ∩ Tj,N = {o} for i 
= j and T1,N , · · · , TN,N+1 are isomorphic. Let {X̄n}n≥0 be

the simple random walk on T1,N with the probability law {P̄x}x∈T1,N
, and rn = #{X̄0, X̄1, · · · , X̄n}.

Lemma 5.2. Let σ = (N2 + 1)/[N2(N − 1)]. Then for every x ∈ R1, we have

P̄0

(
rn − E0Rn

σn1/2
≤ x

)
−→ (2π)−1/2

∫ x

−∞
exp(−y2/2)dy, n → ∞.

Proof. By Proposition 4.2

P0

(
Rn − E0Rn

σn1/2
≤ x

)
−→ (2π)−1/2

∫ x

−∞
exp(−y2/2)dy, n → ∞, ∀x ∈ R1.

Set gn = #{Xνn
, · · · ,Xνn+n}I{Xi �=0, ∀i≥νn; νn≤[n1/2−ε1 ]}. From the proof of Lemma 5.1, one sees that

σ−1n−1/2E0|gn − Rn| = o(1) as n → ∞. Hence P0

(
σ−1n−1/2(gn − E0Rn) ≤ x

) →
(2π)−1/2

∫ x

−∞ exp(−y2/2)dy, n → ∞, x ∈ R1. Let tn = inf{m ≥ 0 : d(0, X̄m) = n} and set
fn = #{X̄tn

, · · · , X̄tn+n}I{Xi �=0, ∀i≥tn; tn≤[n1/2−ε1 ]}. Then the random variables fn gn have the same
distribution, Therefore

P̄0

(
σ−1n−1/2(fn − E0Rn) ≤ x

) −→ (2π)−1/2

∫ x

−∞
exp(−y2/2)dy, n → ∞, ∀x ∈ R1.
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By a similar argument as in the proof of Lemma 5.1, we can prove Ē0|fn − rn| = o(n1/2), n → ∞,

where Ēx is the expectation with respect to P̄x. In other words, we have n−1/2(fn − rn) P̄0−→ 0,
n → ∞. This yields the desired result. �

Having these preparations, we can complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Firstly, we prove

(5.3) P̃0

(
R̃n − Ẽ0R̃n

σn1/2
≤ x

)
→ (2π)−1/2

∫ x

−∞
exp(−y2/2)dy, n → ∞, ∀x ∈ R1.

Let hn = #{Yμn
, · · · , Yμn+n}I{Yi �=0, ∀i≥μn; μn≤[n1/2−ε1 ]}. Then, we have Ẽ0|R̃n − hn| = o(n1/2),

n → ∞, which implies n−1/2(R̃n − hn) P̃0−→ 0, n → ∞. In addition, hn and fn have the same
distribution too. Thus, Lemma 5.2 implies that

P̃0

(
hn − E0Rn

σn1/2
≤ x

)
→ (2π)−1/2

∫ x

−∞
exp(−y2/2)dy, n → ∞, ∀x ∈ R1.

Hence, (5.3) follows from Lemma 5.1 immediately.
Next, we prove

(5.4) Ẽ0(R̃n − Ẽ0Rn)2/n −→ σ, n → ∞.

In fact, from the proof of Lemma 5.1 one sees that E0|Rn − gn|2 = o(n), n → ∞. Thus, Proposition
4.2 yields n−1E0|gn − E0Rn|2 → σ, n → ∞, which implies that n−1Ē0|fn − E0Rn|2 → σ, n → ∞.

Therefore, n−1Ẽ0|hn − E0Rn|2 → σ, n → ∞. From the proof of Lemma 5.1, one can also see that
n−1Ẽ0|R̃n−hn|2 → 0, n → ∞. Thus, we get (5.4) immediately from Lemma 5.1. We have completed
the proof of Theorem 1.2. �

Remark 5.5. Let T ′
N = (E′, V ′), TN = (E, V ), and {X ′

n}n≥0 be the simple random walk on T ′
N .

Suppose that #{(E′ \ E) ∪ (E \ E′)} < ∞ and #{(V ′ \ V ) ∪ (V \ V ′)} < ∞. Then, from the above
arguments we see that the conclusions of Theorem 1.1 hold if Rn is replaced by R′

n = #{X ′
0, · · · ,X ′

n}.
§6. Trapping problem. Proof of Theorem 1.3.

In the present section, we study the trapping problem on trees. The main aim is to complete the
proof of Theorem 1.3. As stated in [4], an accurate approximation to the survival probability at short
times is quite valuable for physical applications. Due to this reason, in this paper we only concern
with the asymptotic behaviour of survival probability for moderately large n and small ε and that of
expected trapping time for small ε.

It is easy to check that f(n) = E0(1 − ε)Rn = E0

[
exp(Rn log(1 − ε))

]
= E0[exp(−λRn)], where

λ = log(1 − ε)−1. As in [4], we can write f(n) =
∑∞

j=0(−1)jλjE0R
j
n/j! =: exp[K(λ, n)], where

K(λ, n) =
∑∞

j=1(−1)jλjkj(n)/j! and kj(n) can be defined in terms of E0Rn and the centering
moments E0(Rn − E0Rn)i of order i ≤ j. As a fact, one can check that

k1(n) = E0Rn, kj(n) = E0(Rn − E0Rn)j , j = 2, 3,

k4(n) = E0(Rn − E0Rn)4 − 3[E0(Rn − E0Rn)2]2.

Recall that (Proposition 4.1) limn→∞ n−1E0Rn = (N − 1)/N and the fact: limε→0+ ε−1λ = 1. For
small ε and moderately large n log f(n) ∼ −εn(N − 1)/N, which proves the first part of Theorem
1.3.

Next, we consider the expected trapping time. By definition, we have ET =
∑∞

n=0 f(n) =∑∞
n=0 E0[exp(−λRn)]. By Jensen’s inequality, we have ET ≥ ∑∞

n=0 exp(−λE0Rn). From the proof
12



of Proposition 4.1, we know E0Rn = n(N−1)/N+O(1), n → ∞. Thus, there is a constant K ∈ (0,∞)
such that E0Rn ≤ n(N − 1)/N + K for all n ≥ 0. Hence

lim
ε→0+

εET ≥ lim
ε→0+

[
ε exp(−λK)

∞∑
n=0

exp
(
− λ

N − 1
N

n
)]

= lim
ε→0+

[
ε exp(−λK)

(
1 − exp

(
− λ

N − 1
N

))−1]
=

N

N − 1
.

As in [3], we let I1(ε, n) =
∑

0≤n≤Mε−1 f(n) and I2(ε, n) =
∑

n>Mε−1 f(n). Then, ET = I1(ε, n) +
I2(ε, n). Clearly, the following desired result limε→0+εET ≤ N/(N − 1) can be deduced from

lim
M→∞

lim
ε→0+

εI2(ε, n) = 0(6.1)

lim
M→∞

lim
ε→∞εI1(ε, n) ≤ N/(N − 1).(6.2)

To prove (6.1) and (6.2), we need a lemma.

Lemma 6.3. There is a constant K1 > 0 such that P0(Rn ≤ h(n)) ≤ exp(−K1n/h(n)) for all n ≥ 2
and for any h(n) with limn→∞ h(n) = ∞ and h(n) = o(n) as n → ∞.

Proof. From Proposition 3.1 and Proposition 4.1, it follows that large enough n, P0

(
Rn ≤ (N −

1)n/(4N)
) ≤ 1/2. Let Rj(n) = #

{
Xm : jδn ≤ m ≤ (j + 1)δn

}
. From the proof of Proposition 4.2,

we see that R0(n), R1(n), · · · , R[1/δ](n) are independent. Take δ = 4 N
N−1h(n)n−1. Then, for large

enough n,

P0(Rn ≤ h(n)) ≤ P0

(
max

0≤j≤ 1
4

N−1
N h(n)n−1

Rj
(4Nh(n)

N − 1

)
≤ h(n)

)

=
[
P0

(
R0

(4Nh(n)
N − 1

)
≤ h(n)

)] (N−1)n
4h(n)N

≤ 2−
(N−1)n
4Nh(n)

which proves the desired result. �

Proof of Theorem 1.3. Setting h(n) = (K1n/ε)1/2 in Lemma 6.3, it follows that for large enough n,
f(n) ≤ E0(exp(−λRn)) ≤ 2 exp

( − (K1εn/2)1/2
)
. Hence

I2(ε, n) ≤ 2
∞∑

n>Mε−1

exp
( − (K1εn/2)1/2

) ≤ 2
∫ ∞

Mε−1/2

exp
( − (K1εx/2)1/2

)
dx

= 2ε−1

∫ ∞

M/2

exp
( − (K1x/2)1/2

)
dx,

which implies (6.1).
It is clear that for sufficient small ε and 0 ≤ n ≤ ε−1M , εE0Rn ≤ ε(N − 1)n/N + εK ≤ 2M(N −

1)/N. Moreover, there is a constant K2 ∈ (0,∞) such that |εRn − εE0Rn| ≤ εK2E0Rn for all
n ≥ 1 and ε > 0. By Proposition 3.1, we can show E0|Rn − E0Rn|k ≤ |K2E0Rn|k−2var(Rn) ≤
K3n

−1(K2E0Rn)k for all k ≥ 2 and some constant K3 ∈ (0,∞). Moreover, one has E0|Rn−E0Rn| ≤
(E0|Rn −E0Rn|2)1/2 ≤ K4n

−1/2(K2E0Rn) for all n ≥ 1 and some constant K4 ∈ (0,∞). Therefore,
if M−1ε−1 ≤ n ≤ Mε−1, then

E0 exp(−λ(Rn − E0Rn)) =
∑∞

k=0 (−1)kλkE0(Rn − E0Rn)k/k!

≤ 1 + max(K3,K4)n−1/2 exp(λK2E0Rn)

≤ 1 + max(K3,K4)n−1/2 exp
(
2(N − 1)K2M/N

)
.
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By Cauchy inequality, we have

E0 exp(−λRn) ≤ [
E0 exp(−2λ(Rn − E0Rn))

]1/2 exp(−λE0Rn)

≤ [
1 + max(K3,K4)n−1/2 exp(4(N − 1)K2M/N)

]1/2 exp(−λE0Rn),

provided M−1ε−1 ≤ n ≤ Mε−1. Thus

I1(ε, n) − M−1ε−1 ≤
∑

M−1ε−1≤n≤Mε−1

exp(−λE0Rn)

· [1 + max(K3,K4)ε1/2M1/2 exp
(
4(N − 1)K2M/N

)]1/2

∼ ε−1
[
1 + ε1/2 max(K3,K4)M1/2 exp

(
4(N − 1)K2M/N

)]1/2
∫ 2M

1
2 M−1

exp
(
− N − 1

N
x
)
dx,

which implies the desired result (6.2). The proof of Theorem 1.3 is completed. �

In a similar way, one may discuss the trapping problem on T̃N . Suppose that the random trap
field (C(x))x∈T̃N

with density ε > 0 is on the tree T̃N . Let T̃ = inf{n ≥ 0 : C(Yn) = 1} and
f̃(n) = P̃ (T̃ > n), where P̃ = P̃0 × PC . Then we have

Corollary 6.4. i) For small ε > 0 and moderately large n, we have log f̃(n) ∼ εn(N − 1)/N.

ii) Let Ẽ is the expectation with respect to P̃ , we have limε→0+ ε · ẼT̃ = N/(N − 1).
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