THE RANGE OF RANDOM WALK ON TREES AND RELATED TRAPPING PROBLEM

Mu-Fa Chen Shi-Jian Yan Xian-Yin Zhou

(Beijing Normal University)

Abstract

This paper treats with the range of the simple random walk on trees and a related trapping problem. The strong law of large numbers and the central limit theorem for the range, and some asymptotic behaviour for the mean trapping time and survival probability are presented.

§1. Introduction.

Let T_{N} be the infinite tree with $N+1$ branches emanating from each vertex. Namely, T_{N} is an infinite connected graph with no non-trivial closed loops in which every node belongs to exactly $N+1$ edges. Since T_{1} can be thought of as the one dimensional lattice, which is well studied, throughout this paper we assume that $N \geq 2$. Let $\left\{X_{n}\right\}_{n \geq 0}$ be the simple random walk on T_{N}, with the probability law $\left\{P_{x}\right\}_{x \in T_{N}}$. The range of $\left\{X_{n}\right\}_{n \geq 0}$ up to time n is denoted by $R_{n}=\#\left\{X_{0}, X_{1}, \cdots, X_{n}\right\}$. Our first purpose is to study the asymptotic behaviour of R_{n} as $n \rightarrow \infty$. For this, the main result is as follows.

Theorem 1.1. Let ζ denote a standard normal variable and let E_{x} be the expectation with respect to P_{x}. We have
i) $\lim _{n \rightarrow \infty} R_{n} / n=(N-1) / N, \quad P_{0}-$ a.s.,
ii) $\lim _{n \rightarrow \infty} \operatorname{var}\left(R_{n}\right) / n=\left(N^{2}+1\right) /\left[N^{2}(N-1)\right]$,
iii) $\quad\left(R_{n}-E_{0} R_{n}\right) / n^{1 / 2} \xrightarrow{(d)} \zeta\left(N^{2}+1\right) /\left[N^{2}(N-1)\right], \quad n \rightarrow \infty$.

Next, consider the N-tree \tilde{T}_{N} with root 0 . Each vertex has exactly N - successors. Again, when $N=1, \tilde{T}_{N}$ can be thought of as the set $\{0,1, \cdots\}$. We restrict ourselves to the case that $N \geq 2$. Clearly, \tilde{T}_{N} is a subset of T_{N}. Our next result concerns with the range of the simple random walk $\left\{Y_{n}\right\}_{n \geq 0}$ on \tilde{T}_{N}. Let $\left\{P_{x}\right\}_{x \in \tilde{T}_{N}}$ be the probability law and set $\tilde{R}_{n}=\#\left\{Y_{0}, \cdots, Y_{n}\right\}$.
Theorem 1.2. The same conclusions of Theorem 1.1 hold provided R_{n}, E_{x} and P_{x} are replaced by $\tilde{R}_{n}, \tilde{E}_{x}$ and \tilde{P}_{x} respectively.

Finally, we study the trapping problem on trees. The problem on lattices has been attracted a lot of attentions, refer to [4] and references within. Given $\epsilon>0$, let $C(x), x \in T_{N}$ be i.i.d. $\{0,1\}$-valued random variables satisfying $P_{C}(C(x)=1)=1-P_{C}(C(x)=0)=\epsilon$ for all $x \in T_{N}$, where P_{C} denotes the probability law of $\left(C(x), x \in T_{N}\right)$. The family $\left(C(x), x \in T_{N}\right)$ is called a random trap field with density ϵ. In general, 1 corresponds to a trap, and 0 to a trap-free site. The trapping time and the survival probability are defined by $T=\inf \left\{n \geq 0: C\left(X_{n}\right)=1\right\}$ and $f(n)=P(T>n), n \geq 0$ respectively, where $P=P_{0} \times P_{C}$. In this part, we are interested in asymptotic behaviour of $f(n)$ and $E_{0} T$. The main result is as follows.

[^0]Theorem 1.3. i) For small $\epsilon>0$ and moderate n, we have $\log f(n) \sim-\epsilon(N-1) n / N$.
ii) Let E be the expectation with respect to P, then $\lim _{\epsilon \rightarrow 0^{+}}(\epsilon E T)=N /(N-1)$.

The solution to the trapping problem on \tilde{T}_{N} is completely the same (see Corollary 6.4 below).
From the arguments in [3] or [4], one knows that Theorem 1.3 is actually a consequence to Theorem 1.1. Thus, we concentrate our attention mainly on the proofs of Theorem 1.1 and Theorem 1.2. Since T_{N} has some nice symmetric properties and $\left\{X_{n}\right\}_{n \geq 0}$ is transient, some techniques used in [6] or [5], where the corresponding problem was studied for the lattice case, can be also applied to prove Theorem 1.1. A key to [6] or [5] is some reasonable estimate for the Green function and hitting time of random walks on lattices. This was obtained by using some estimate of their transition probability function. Although there are a lot of works in estimating the transition probability function of random walk on trees (e.g. [2] and [7]), it is still difficult to use these estimates to get a reasonable estimate for the corresponding Green function and hitting time. This problem is overcome in the paper in terms of some techniques in electrical network. Besides, in the present case we can get the precise limits as described in Theorem 1.1 and Theorem 1.2. However, the coefficients of the corresponding limits in the lattice case are still not known precisely.

Let us mention that it is also meaningful to study the range of random walks on fractals (see [4]). However, we do not know at moment how to get a precise asymptotic behaviour even for the range of the simple random walk on the Sierpinski gaskets.

This paper is organized as follows. In Section 2, we mainly study the hitting time of $\left\{X_{n}\right\}_{n \geq 0}$ and $\left\{Y_{n}\right\}_{n \geq 0}$. In Section 3, we obtain an asymptotic behaviour of $\operatorname{var}\left(R_{n}\right)$ as $n \rightarrow \infty$. In Section 4, we prove both strong law of large number and central limit theorem for R_{n}, and complete the proof Theorem 1.1. In Section 5, we prove that \tilde{R}_{n} is very close to R_{n} in some sense (see Lemma 5.1 and Lemma 5.2 below). Thus, Theorem 1.2 can be easily proved by means of Theorem 1.1. In Section 6 , we consider the trapping problem on T_{N} and \tilde{T}_{N}, and complete the proof of Theorem 1.3.

§2. Hitting time.

In this section, we make some reasonable estimation for the mean and variance of the hitting time of $\left\{X_{n}\right\}_{n \geq 0}$ and $\left\{Y_{n}\right\}_{n \geq 0}$. For this purpose, we introduce some notation. For any $x, y \in G\left(=T_{N}\right.$, or $\left.\tilde{T}_{N}\right)$, define their distance as follows:

$$
\begin{array}{r}
d(x, y)=\inf \left\{k: \exists x_{1}, \cdots, x_{k} \in G, \text { such that } x_{1}=x, x_{k}=y\right. \text { and } \\
\left.x_{i} x_{i+1} \text { is an edge of } G \text { for } \forall i=1, \cdots, k-1\right\} .
\end{array}
$$

Next, define

$$
\begin{aligned}
& B_{n}(x)=\{y \in G: d(x, y) \leq n\}, \quad S_{n}(x)=\{y \in G: d(x, y)=n\} \\
& \tau_{n}(x)=\inf \left\{m \geq 0: X_{m} \in S_{n}(x)\right\}, \quad \tilde{\tau}_{n}(x)=\inf \left\{m \geq 0: Y_{m} \in S_{n}(x)\right\}
\end{aligned}
$$

Let 0 be the root of \tilde{T}_{N}, then $0 \in T_{N}$. For simplicity, set $B_{n}=B_{n}(0) ; S_{n}=S_{n}(0) ; \tau_{n}=\tau_{n}(0) ; \tilde{\tau}_{n}=$ $\tilde{\tau}_{n}(0)$.

One of the main results in this section is as follows.
Proposition 2.1. i) $E_{0} \tau_{n}=n(N+1) /(N-1)+O(1)$ as $n \rightarrow \infty$.
ii) There is a constant $M \in(0, \infty)$ such that $E_{0}\left(\tau_{n}-E_{0} \tau_{n}\right)^{2} \leq M n$ for all $n \geq 1$.

To prove this proposition, construct a random walk $\left\{Z_{n}\right\}_{n \geq 0}$ on $\mathbf{Z}_{+}=\{0,1, \cdots\}$ with transition probability: $p_{i j}=1$, if $i=0$ and $j=1 ;=N /(N+1)$ if $i \geq 1$ and $j=i+1 ;=1 /(N+1)$, if $i \geq 1$ and $j=i-1$ and $=0$, otherwise. Denote by W_{x} and Q_{x} respectively the probability law and its corresponding expectation of $\left\{Z_{n}\right\}$ starting from $x \in \mathbf{Z}_{+}$. Let $\sigma_{n}=\inf \left\{m \geq 0: Z_{m}=n\right\}, n \geq 0$. Then, it is easy to see that $W_{0}\left(\sigma_{n}=m\right)=P_{0}\left(\tau_{n}=m\right), n \geq 0, m \geq 0$. From this, it is clear that Proposition 2.1 follows from the next lemma.

Lemma 2.2. i) $Q_{0} \sigma_{n}=n(N+1) /(N-1)+O(1)$ as $n \rightarrow \infty$.
ii) There is a constant $M \in(0, \infty)$ such that $Q_{0}\left(\sigma_{n}-Q_{0} \sigma_{n}\right)^{2} \leq M n$ for all $n \geq 0$.

Proof. The proof of this lemma is based on an electrical network. To do so, let $C_{i, i+1}=1$, if $i=0$ and $=N^{i+1} /(N+1)$, if $i \geq 1$. Consider the electrical network \mathbf{Z}_{+}in which a conductor $C_{i, i+1}$ is assigned to the bond $\overline{i, i+1}$. Then the effective resistance $R_{\text {eff }}(n)$ between 0 and n is equal to

$$
R_{\mathrm{eff}}(n)=1+\sum_{i=1}^{n-1} \frac{N+1}{N^{i+1}}=1+\frac{N+1}{N(N-1)}\left(1-N^{-n+1}\right)
$$

For given $n \geq 1$, let $u_{k}=Q_{0}\left[\sum_{j=0}^{\sigma_{n}} I_{\left\{Z_{j}=k\right\}}\right], 0 \leq k \leq n$ and $v_{k}=W_{k}\left(\sigma_{0}<\sigma_{n}\right), 0 \leq k \leq n$. Then, we have $Q_{0} \sigma_{n}=\sum_{k=0}^{n-1} u_{k}$. From [1], we know that $u_{0}=R_{\text {eff }}(n)$ and $u_{k} / N^{k}=R_{\text {eff }}(n) v_{k}$, $k=0,1, \cdots, n$. Therefore, $Q_{0} \sigma_{n}=R_{\text {eff }}(n) \sum_{k=0}^{n-1} N^{k} v_{k}$. Clearly, $v_{k}^{\prime} s$ are voltages in the electrical network \mathbf{Z}_{+}between 0 and n having the property $v_{0}=1$ and $v_{n}=0$ (see [1]). Thus. if we denote by $R_{\mathrm{eff}}(k, n)$ is the effective resistance between k and n, then $v_{k}=R_{\text {eff }}^{-1}(n) R_{\mathrm{eff}}(k, n), 0 \leq k \leq n$. Hence

$$
R_{\mathrm{eff}}(k, n)=\sum_{i=k}^{n-1} \frac{N+1}{N^{i+1}}=\frac{N+1}{N^{k}(N-1)}\left(1-N^{-(n-k)}\right), \quad 1 \leq k \leq n-1
$$

Collecting the above facts together, we obtain

$$
\begin{aligned}
Q_{0} \sigma_{n}= & {\left[1+\frac{N+1}{N(N-1)}\left(1-N^{-n+1}\right)\right] } \\
& \times\left\{1+\sum_{k=1}^{n-1}\left[1+\frac{N+1}{N(N-1)}\left(1-N^{-n+1}\right)\right]^{-1} \frac{N+1}{N-1}\left(1-N^{-(n-k)}\right)\right\} \\
= & \frac{N+1}{N-1}(n-1)-\frac{N+1}{(N-1)^{2}}\left(1-N^{-n+1}\right)+1+\frac{N+1}{N(N-1)}\left(1-N^{-n+1}\right),
\end{aligned}
$$

which proves i).
Next, consider $Q_{0} \sigma_{n}^{2}$. By definition, we know that

$$
\begin{aligned}
Q_{0} \sigma_{n}^{2}= & 2 \sum_{0 \leq k_{1}<k_{2} \leq n-1} Q_{0}\left[\#\left\{j \leq \sigma_{n}: Z_{j}=k_{1}\right\} \cdot \#\left\{j \leq \sigma_{n}: Z_{j}=k_{2}\right\}\right] \\
& +2 \sum_{k=0}^{n-1} Q_{0}\left[\sum_{0 \leq i<j \leq \sigma_{n}} I_{\left\{Z_{i}=Z_{j}=k\right\}}\right]+\sum_{k=0}^{n-1} Q_{0}\left(\sum_{0 \leq i \leq \sigma_{n}} I_{\left\{Z_{i}=k\right\}}\right) \\
= & I_{1}(n)+I_{2}(n)+I_{3}(n) .
\end{aligned}
$$

From the above argument, one sees that

$$
\begin{equation*}
I_{3}(n)=n(N+1) /(N-1)+O(1), \quad n \rightarrow \infty . \tag{2.3}
\end{equation*}
$$

Moreover, by the strong Markov property we also know that

$$
\begin{align*}
Q_{0}\left(\sum_{0 \leq i<j \leq \sigma_{n}} I_{\left\{Z_{i}=Z_{j}=k\right\}}\right) & =Q_{0}\left[\sum_{i=0}^{\infty} I_{\left\{i \leq \sigma_{n}\right\}} I_{\left\{Z_{i}=k\right\}} Q_{k}\left(\sum_{j=0}^{\sigma_{n}} I_{\left\{Z_{j}=k\right\}}\right)\right] \tag{2.4}\\
& =u_{k} Q_{k}\left(\sum_{j=0}^{\sigma_{n}} I_{\left\{Z_{j}=k\right\}}\right) .
\end{align*}
$$

Let $\sigma_{n}^{\prime}=\inf \left\{m \geq 0: Z_{m} \in\{0, n\}\right\}$. Then

$$
\begin{equation*}
Q_{k}\left(\sum_{j=0}^{\sigma_{n}} I_{\left\{Z_{j}=k\right\}}\right) \leq Q_{k}\left(\sum_{j=0}^{\sigma_{n}^{\prime}} I_{\left\{Z_{j}=k\right\}}\right)+Q_{0}\left(\sum_{j=0}^{\sigma_{n}} I_{\left\{Z_{j}=k\right\}}\right) . \tag{2.5}
\end{equation*}
$$

Denote by $R_{\text {eff }}^{\prime}(k, n)$ the effective resistance between k and $\{0, n\}(1 \leq k \leq n-1)$. It is easy to see that there is a constant $c_{1} \in(0, \infty)$ such that $R_{\text {eff }}^{\prime}(k, n) \leq c_{1}, 1 \leq k \leq n$. This implies that $Q_{k}\left(\sum_{i=0}^{\sigma_{n}^{\prime}} I_{\left\{Z_{i}=k\right\}}\right)=N^{-k} R_{\text {eff }}^{\prime}(k, n) \leq c_{1}, 1 \leq k \leq n$. Inserting this into (2.5), we obtain $Q_{k}\left(\sum_{i=0}^{\sigma_{n}} I_{\left\{Z_{i}=k\right\}}\right) \leq c_{1}+u_{k} \leq c_{2}$ for some constant $c_{2} \in(0, \infty)$. Combining this with (2.4) gives

$$
\begin{equation*}
I_{2}(n) \leq c_{3} n, \quad \forall n \geq 1 \tag{2.6}
\end{equation*}
$$

for some constant $c_{3} \in(0, \infty)$.
Therefore, it remains to prove that there is a constant $c_{4} \in(0, \infty)$ such that

$$
\begin{equation*}
I_{1}(n)-\left(Q_{0} \sigma_{n}\right)^{2} \leq c_{4} n, \quad \forall n \geq 1 \tag{2.7}
\end{equation*}
$$

Indeed, if $k_{1}<k_{2}$, then $W_{k_{2}}\left(\sigma_{k_{1}}<\sigma_{n}\right)=R_{\mathrm{eff}}\left(k_{2}, n\right) / R_{\mathrm{eff}}\left(k_{1}, n\right)=N^{k_{1}-k_{2}}\left(1-N^{-\left(n-k_{2}\right)}\right)(1-$ $\left.N^{-\left(n-k_{1}\right)}\right)^{-1}$. Thus, we have

$$
\begin{align*}
I_{1}(n)= & 2 \sum_{k_{1}=0}^{n-1} \sum_{k_{2}=k_{1}+1}^{n-1} Q_{0}\left\{\left[\#\left\{j \leq \sigma_{k_{2}}: Z_{j}=k_{1}\right\} \cdot Q_{k_{2}}\left(\#\left\{j \leq \sigma_{n}: Z_{j}=k_{2}\right\}\right)\right]\right. \tag{2.8}\\
& \left.+Q_{k_{2}}\left[\#\left\{j \leq \sigma_{n}: Z_{j}=k_{1}\right\} \cdot \#\left\{j \leq \sigma_{n}: Z_{j}=k_{2}\right\}\right]\right\} \\
= & 2 \sum_{k_{1}=0}^{n-1} \sum_{k_{2}=k_{1}+1}^{n-1} u_{k_{2}} Q_{0}\left(\#\left\{j \leq \sigma_{k_{2}}: Z_{j}=k_{1}\right\}\right) \\
& +2 Q_{k_{2}}\left[I_{\left\{\sigma_{k_{1}}<\sigma_{n}\right\}} \#\left\{j \leq \sigma_{n}: Z_{j}=k_{1}\right\} \cdot \#\left\{j \leq \sigma_{n}: Z_{j}=k_{2}\right\}\right] \\
\leq & 2 \sum_{k_{1}=0}^{n-1} \sum_{k_{2}=k_{1}+1}^{n-1}\left[u_{k_{2}} Q_{0}\left(\#\left\{j \leq \sigma_{k_{2}}: Z_{j}=k_{1}\right\}\right)\right. \\
& \left.+2 Q_{k_{2}}^{1 / 2}\left(I_{\left\{\sigma_{k_{1}}<\sigma_{n}\right\}} \#\left\{j \leq \sigma_{n}: Z_{j}=k_{1}\right\}\right)^{2} Q_{k_{2}}^{1 / 2}\left(\#\left\{j \leq \sigma_{n}: Z_{j}=k_{2}\right\}\right)^{2}\right] .
\end{align*}
$$

From the proofs of (2.3) and (2.6), we see that $Q_{k_{2}}\left(\#\left\{j \leq \sigma_{n}: Z_{j}=k_{2}\right\}\right)^{2} \leq c_{5}, k_{2} \leq n-1$ for some constant $c_{5} \in(0, \infty)$. In addition, by the strong Markov property, we have $Q_{k_{2}}\left[I_{\left\{\sigma_{k_{1}}<\sigma_{n}\right\}}(\#\{j \leq\right.$ $\left.\left.\left.\sigma_{n}: Z_{j}=k_{1}\right\}\right)^{2}\right]=W_{k_{2}}\left(\sigma_{k_{1}}<\sigma_{n}\right) Q_{k_{1}}\left(\#\left\{j \leq \sigma_{n}: Z_{j}=k_{1}\right\}\right)^{2}$, which implies that

$$
\begin{aligned}
\text { r.h.s. of }(2.8) \leq & 2 \sum_{k_{1}=0}^{n-1} \sum_{k_{2}=k_{1}+1}^{n-1} u_{k_{2}} Q_{0}\left(\#\left\{j \leq \sigma_{k_{2}}: Z_{j}=k_{1}\right\}\right) \\
& +2 c_{5} \sum_{k_{1}=0}^{n-1} \sum_{k_{2}=k_{1}+1}^{n-1} N^{-\left(k_{2}-k_{1}\right) / 2}\left(1-N^{-\left(n-k_{2}\right)}\right)^{1 / 2}\left(1-N^{-\left(n-k_{1}\right)}\right)^{-1 / 2} .
\end{aligned}
$$

Hence, to prove (2.7) it suffices to show that

$$
\begin{equation*}
2 \sum_{k_{1}=0}^{n-1} \sum_{k_{2}=k_{1}+1}^{n-1} u_{k_{2}} Q_{0}\left(\#\left\{j \leq \sigma_{k_{2}}: Z_{j}=k_{1}\right\}\right)-2 \sum_{k_{1}=0}^{n-1} \sum_{k_{2}=k_{1}+1}^{n-1} u_{k_{2}} u_{k_{1}} \leq c_{6} n, n \geq 1 \tag{2.9}
\end{equation*}
$$

for some constant $c_{6} \in(0, \infty)$. Note that $Q_{0}\left(\sigma_{k_{2}}<\sigma_{n}\right)=1$ for $k_{2} \leq n-1$. Then $Q_{0}\left(\#\left\{j \leq \sigma_{k_{2}}\right.\right.$: $\left.\left.Z_{j}=k_{1}\right\}\right)-u_{k_{1}} \leq 0$, which yields that l.h.s. of $(2.9) \leq 0$. Hence, (2.9) is true. This proves (2.7).

Combining (2.3) and (2.6) with (2.7), we get the desired result.
We have completed the proof of Proposition 2.1. By a similar argument, we can prove the following result.

Proposition 2.10. i) $\tilde{E}_{0} \tilde{\tau}_{n}=n(N+1) /(N-1)+O(1)$, as $n \rightarrow \infty$.
ii) There is a constant $M \in(0, \infty)$ such that $\tilde{E}_{0}\left(\tilde{\tau}_{n}-\tilde{E}_{0} \tilde{\tau}_{n}\right)^{2} \leq M n$ for all $n \geq 1$.

In fact, from the definitions of $\tilde{\tau}_{n}$ and σ_{n}, one can also see that $\tilde{P}_{0}\left(\tilde{\tau}_{n}=m\right)=Q_{0}\left(\sigma_{n}=m\right)$, for all $n, m \geq 0$. By using this, Proposition 2.10 follows from Lemma 2.2.

§3. Variance of R_{n}.

Following [6] (or [5]), let

$$
\begin{aligned}
& \xi_{n}^{n}=1 ; \quad \xi_{i}^{n}=I_{\left\{X_{i} \neq X_{i+1}, \cdots, X_{i} \neq X_{n}\right\}}, \quad 0 \leq i<n \\
& \xi_{i}=I_{\left\{X_{i} \neq X_{i+1}, X_{i} \neq X_{i+2}, \cdots\right\}}, \quad i \geq 0 ; \\
& \eta_{i}^{n}=\xi_{i}^{n}-\xi_{i}, \quad 0 \leq i<n ; \quad \zeta_{n}=\sum_{i=0}^{n-1} \xi_{i} ; \quad \eta_{n}=\sum_{i=0}^{n-1} \eta_{i}^{n} .
\end{aligned}
$$

Then $R_{n}=\sum_{i=1}^{n} \xi_{i}^{n}=\zeta_{n}+\eta_{n}+1$. Next, let $p_{k}(x, y)=P_{x}\left(X_{k}=y\right)$ and set

$$
\begin{aligned}
& H_{x}=\inf \left\{n \geq 1: \quad X_{n}=x\right\} ; \quad F(x, y)=P_{x}\left(H_{y}<\infty\right) \\
& G_{(n)}(x, y)=\sum_{k=0}^{n} p_{k}(x, y) ; \quad G(x, y)=G_{(\infty)}(x, y) \\
& p_{k}^{z}(x, y)=P_{x}\left(X_{k}=y ; \quad H_{z} \geq k\right)
\end{aligned}
$$

The main result in this section is as follows.
Proposition 3.1. Let $\sigma=\left(N^{2}+1\right) /\left[N^{2}(N-1)\right]$, then $\lim _{n \rightarrow \infty} \operatorname{var}\left(R_{n}\right) / n=\sigma$.
To prove this proposition, we begin with two lemmas.
Lemma 3.2. For any $x, y \in T_{N}$, we have $G(x, y)=(N+1)^{-d(x, y)+1}(N-1)^{-1}$.
Proof. By the symmetry of T_{N}, it suffices to prove that $G(0, x)=(N-1)^{-1}(N+1)^{-d(0, x)+1}$ for all $x \in T_{N}$. Consider the electrical network T_{N} in which a unit resistor is assigned to each bond of T_{N}. Let $\left(v_{x}\right)_{x \in T_{N}}$ be the voltage on T_{N} satisfying $v_{0}=1$ and $\lim _{d(0, x) \rightarrow \infty} v_{x}=0$. Denote by $R_{\text {eff }}$ the effective resistane of T_{N} between 0 and infinity. Then (see [1]), we have $G(0,0) /(N+1)=R_{\text {eff }}$ and $G(0, x) /(N+1)=R_{\text {eff }} v_{x}$. It is clear that $R_{\text {eff }}=(N+1)^{-1}+\sum_{n=1}^{\infty}(N+1)^{-1} N^{-n}=N\left(N^{2}-1\right)^{-1}$ and $v_{x}=R_{\text {eff }}^{-1} \cdot R_{\text {eff }}(x)$ for all $x \in T_{N}$, where $R_{\text {eff }}(x)$ is the effective resistance of T_{N} between $S_{d(0, x)}$ and infinity. One may check that

$$
R_{\mathrm{eff}}(x)=\sum_{n=d(0, x)}^{\infty} \frac{1}{(N+1) N^{n}}=\frac{1}{(N+1) N^{d(0, x)}} \cdot \frac{N}{N-1}=\frac{1}{N^{2}-1} N^{-d(0, x)+1}
$$

Therefore, $v_{x}=N^{-d(0, x)}$ for all $x \in T_{N}$, which implies that $G(0, x)=(N+1) N\left(N^{2}-1\right)^{-1} N^{-d(0, x)}=$ $(N-1)^{-1} N^{-d(0, x)+1}$.
Lemma 3.3. There is a constant $c \in(0, \infty)$ such that

$$
\sum_{x \in T_{N}} G_{(n)}(0, x) P_{x}\left(m<H_{x}<\infty, H_{0}<\infty\right) \leq c m^{-3 / 2}, \quad \forall m \geq 1, n \geq 0
$$

In the lattice case, the above bound was obtained by using an estimation of transition probability (see [5] or [6]). Here, we use Lemma 3.2 and Proposition 2.1 to prove Lemma 3.3.
Proof of Lemma 3.3. First, we show that

$$
\begin{equation*}
P_{y}\left(m<H_{z}<\infty\right) \leq c_{1} m^{-3 / 2}, \quad \forall m \geq 1, \forall y, z \in T_{N} \tag{3.4}
\end{equation*}
$$

for some constant $c_{1} \in(0, \infty)$. Indeed, if $d(y, z) \geq(\log m)^{2}$, then Lemma 3.2 implies

$$
P_{y}\left(m<H_{z}<\infty\right) \leq P_{y}\left(H_{z}<\infty\right) \leq \underset{5}{G(y, z) \leq(N-1)^{-1}(N+1)^{-(\log m)^{2}+1} . . . ~}
$$

Thus, (3.4) holds for $d(y, z) \geq(\log m)^{2}$. We now assume that $d(y, z) \leq(\log m)^{2}$. By Proposition 2.1, we can show that $P_{y}\left(\tau_{\left[m^{1 / 4}\right]}(y) \geq m\right) \leq c_{2} m^{-3 / 2}$ for some constant $c_{2} \in(0, \infty)$. Thus, to prove (3.4) it suffices to show the following:

$$
\begin{equation*}
P_{y}\left(\tau_{\left[m^{1 / 4}\right]}(y)<H_{z}<\infty\right) \leq c_{1} m^{-3 / 2}, \quad d(y, z) \leq(\log m)^{2} \tag{3.5}
\end{equation*}
$$

In fact, by Lemma 3.2 and the strong Markov property, we have

$$
\begin{aligned}
\text { l.h.s. of }(3.5) & =E_{y}\left[P_{X\left(\tau_{\left[m^{1 / 4}\right]}(y)\right)}\left(H_{z}<\infty\right)\right] \leq E_{y}\left[G\left(X\left(\tau_{\left[m^{1 / 4}\right]}(y)\right), z\right)\right] \\
& =E_{y}(N-1)^{-1}(N+1)^{1-d\left(z, X\left(\tau_{\left[m^{1 / 4}\right]}(y)\right)\right)}
\end{aligned}
$$

where $X(m)=X_{m}, m \geq 0$. Recalling the hypothesis: $d(y, z) \leq(\log m)^{2}$, we get
$d\left(z, X\left(\tau_{\left[m^{1 / 4}\right]}(y)\right)\right) \geq\left[m^{1 / 4}\right]-(\log m)^{2}-1$. This implies (3.5) immediately. Hence, (3.4) holds. Thus, if $x \neq 0$, then

$$
\begin{aligned}
& P_{x}\left(m<H_{x}<\infty ; H_{0}<\infty\right) \\
& \leq P_{x}\left(m<H_{x}<\infty\right) F(x, 0)+P_{x}\left(m / 2<H_{0}<\infty\right) F(0, x)+F(x, 0) P_{0}\left(m / 2<H_{0}<\infty\right) \\
& \leq c_{2} m^{-3 / 2}(G(0, x)+G(x, 0)), \quad \forall m \geq 1, \forall x \in T_{N}
\end{aligned}
$$

for some constant $c_{2} \in(0, \infty)$. Actually, the above bound also holds for $x=0$. Therefore,

$$
\begin{aligned}
& \sum_{x \in T_{N}} G_{(n)}(0, x) P_{x}\left(m<H_{x}<\infty ; H_{0}<\infty\right) \\
& \leq 2 c_{2} m^{-3 / 2} \sum_{x \in T_{N}} G^{2}(0, x) \leq c_{3} m^{-3 / 2}, \quad \forall m \geq 1, \forall n \geq 1
\end{aligned}
$$

for some constant $c_{3} \in(0, \infty)$.
We are now in the position to prove Proposition 3.1.
Proof of Proposition 3.1. By the symmetry of T_{N}, we easily see that for $i<j$,

$$
\begin{aligned}
E_{0} \eta_{i}^{n} \eta_{j}^{n}= & E_{0}\left[E_{X_{i}}\left(\eta_{0}^{n-i} \eta_{j-i}^{n-i}\right)\right] \\
= & P_{0}\left(X_{1} \neq 0, \cdots, X_{n-i} \neq 0 ; X_{k}=0 \text { for some } k \geq n-i+1 ;\right. \\
& \left.X_{j-i} \neq X_{j-i+1}, \cdots, X_{j-i} \neq X_{n-i} ; X_{k}=X_{j-i} \text { for some } k \geq n-i+1\right) \\
= & \sum_{x \neq 0} p_{j-i}^{0}(0, x) P_{x}\left(n-j+1 \leq H_{0}<\infty ; n-j+1 \leq H_{x}<\infty\right) \\
\leq & \sum_{x \neq 0} p_{j-i}(0, x) P_{x}\left(n-j+1 \leq H_{x}<\infty ; H_{0}<\infty\right) .
\end{aligned}
$$

In fact, the above bound is also valid for $i=j$. By Lemma 3.3, we have

$$
\sum_{i=0}^{j} E_{0}\left(\eta_{i}^{n} \eta_{j}^{n}\right) \leq \sum_{x \neq 0} G_{(j)}(0, x) P_{x}\left(n-j+1 \leq H_{x}<\infty ; \quad H_{0}<\infty\right) \leq c_{4}(n-j+1)^{-3 / 2}, \quad j \leq n
$$

for some constant $c_{4} \in(0, \infty)$. It follows that $E_{0} \eta_{n}^{2}=O(1)$ as $n \rightarrow \infty$. By definition, we know that $\operatorname{var}\left(R_{n}\right)=\operatorname{var}\left(\zeta_{n}\right)+\operatorname{var}\left(\eta_{n}\right)+2 \operatorname{cov}\left(\zeta_{n}, \eta_{n}\right)$. Thus, the desired result follows once we prove the following:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{var}\left(\zeta_{n}\right) / n=\sigma \tag{3.6}
\end{equation*}
$$

We now compute $\operatorname{var}\left(\zeta_{n}\right) . \operatorname{var}\left(\zeta_{n}\right)=\sum_{i=0}^{n-1} \operatorname{var}\left(\xi_{i}\right)+2 \sum_{0 \leq i<j \leq n-1} \operatorname{cov}\left(\xi_{i}, \xi_{j}\right)$. By the symmetry of T_{N}, we also have

$$
\begin{aligned}
\operatorname{var}\left(\xi_{i}\right) & =P_{0}\left(X_{i} \neq X_{i+1}, \quad X_{i} \neq X_{i+2}, \cdots\right)-P_{0}\left(X_{i} \neq X_{i+1}, \quad X_{i} \neq X_{i+2}, \cdots\right)^{2} \\
& =P_{0}\left(X_{1} \neq 0, \quad X_{2} \neq 0, \cdots\right)-P_{0}\left(X_{1} \neq 0, \quad X_{2} \neq 0, \cdots\right)^{2}=q-q^{2}
\end{aligned}
$$

where $q=P_{0}\left(X_{1} \neq 0, X_{2} \neq 0, \cdots\right)=R_{\text {eff }}^{-1}(N+1)^{-1}=(N-1) / N$ (see [1]). Moreover, we have

$$
\begin{aligned}
E_{0} \xi_{i} \xi_{j} & =E_{0} \xi_{0} \xi_{j-i}=P_{0}\left(X_{n} \neq 0, \forall n \geq 1 ; X_{j-i} \neq X_{j-i+m}, \forall m \geq 1\right) \\
& =\sum_{x \neq 0} p_{j-i}^{0}(0, x) P_{x}\left(H_{x}=\infty, H_{0}=\infty\right) \\
& =\sum_{x \neq 0} p_{j-i}^{0}(0, x)\left[P_{x}\left(H_{x}=\infty\right)-P_{x}\left(H_{x}=\infty, H_{0}<\infty\right)\right] \\
& =P_{0}\left(X_{1} \neq 0, \cdots, X_{j-i} \neq 0\right) P_{0}\left(H_{0}=\infty\right)-\sum_{x \neq 0} p_{j-i}^{0}(0, x) P_{x}\left(H_{x}=\infty, H_{0}<\infty\right),
\end{aligned}
$$

and $E_{0} \xi_{i} E_{0} \xi_{j}=P_{0}\left(H_{0}=\infty\right) P_{0}\left(X_{k} \neq 0, \forall k \geq 1\right)$. Therefore

$$
\begin{aligned}
\operatorname{cov}\left(\xi_{i}, \xi_{j}\right)= & P_{0}\left(H_{0}=\infty\right) P_{0}\left(X_{1} \neq 0, \cdots, X_{j-i} \neq 0 ; X_{k}=0 \text { for some } k \geq j-i+1\right) \\
& \quad-\sum_{x \neq 0} p_{j-i}^{0}(0, x) P_{x}\left(H_{x}=\infty, H_{0}<\infty\right) \\
= & \sum_{x \neq 0} p_{j-i}^{0}(0, x)\left[P_{x}\left(H_{x}=\infty\right) P_{x}\left(H_{0}<\infty\right)-P_{x}\left(H_{x}=\infty ; H_{0}<\infty\right)\right]
\end{aligned}
$$

Let $a_{j}=\sum_{i=1}^{j} \sum_{x \neq 0} p_{i}^{0}(0, x)\left[P_{0}\left(H_{0}=\infty\right) P_{x}\left(H_{0}<\infty\right)-P_{x}\left(H_{x}=\infty ; H_{0}<\infty\right)\right]$. Then $\operatorname{var}\left(\zeta_{n}\right)=$ $n\left(q-q^{2}\right)+2 \sum_{j=1}^{n-1} a_{j}$. Put $a=\sum_{i=1}^{\infty} \sum_{x \neq 0} p_{i}^{0}(0, x)\left[P_{0}\left(H_{0}=\infty\right) P_{x}\left(H_{0}<\infty\right)-P_{x}\left(H_{x}=\infty ; H_{0}<\right.\right.$ $\infty)]$. We have $\lim _{n \rightarrow \infty} \operatorname{var}\left(\xi_{n}\right) / n=q-q^{2}+2 a$. Hence, for proving (3.6) it remains to prove the following

$$
\begin{equation*}
\sigma=q-q^{2}+2 a \tag{3.7}
\end{equation*}
$$

Note that if $x \neq 0, F(0, x)=v_{x}=N^{-d(o, x)}$, where v_{x} was defined in Lemma 3.1. Therefore, if $x \neq 0$,

$$
\begin{aligned}
& P_{x}\left(H_{x}=\infty\right) P_{x}\left(H_{0}<\infty\right)-P_{x}\left(H_{x}=\infty ; H_{0}<\infty\right) \\
& =P_{x}\left(H_{x}=\infty\right) P_{x}\left(H_{0}<\infty\right)-P_{x}\left(H_{0}<\infty\right)+P_{x}\left(H_{0}<\infty ; H_{x}<\infty\right) \\
& =P_{x}\left(H_{x}=\infty\right) P_{x}\left(H_{0}<\infty\right)-P_{x}\left(H_{0}<\infty\right) \\
& \quad+P_{x}\left(H_{0}<\infty\right) P_{0}\left(H_{x}<\infty\right)+P_{x}\left(H_{x}<\infty\right) P_{x}\left(H_{0}<\infty\right) \\
& =F(x, 0) F(0, x)=N^{-2 d(0, x)} .
\end{aligned}
$$

Additionlly, by the symmetry of T_{N}, we have

$$
P_{x}\left(X_{1} \neq x, \cdots, X_{k-1} \neq x, X_{k}=y\right)=P_{y}\left(X_{1} \neq y, \cdots, X_{k-1} \neq y, X_{k}=x\right)
$$

for any $x, y \in T_{N}$, and $k \geq 1$, and moreover

$$
P_{y}\left(X_{1} \neq y, \cdots, X_{k-1} \neq y, \quad X_{k}=x\right)=P_{x}\left(X_{1} \neq y, \cdots, X_{k-1} \neq y, X_{k}=y\right) .
$$

From these facts, it follows that $p_{k}^{x}(x, y)=p_{k}^{y}(x, y)$ for all $x, y \in T_{N}$ and $k \geq 1$. Therefore

$$
\begin{aligned}
a & =\sum_{j=1}^{\infty} \sum_{x \neq 0} p_{j}^{x}(0, x) N^{-2 d(0, x)}=\sum_{x \neq 0} F(0, x) N^{-2 d(0, x)} \\
& =\sum_{x \neq 0} N^{-3 d(0, x)}=(N+1) N^{-3}+\sum_{k=2}^{\infty} N^{-3 k}(N+1) N^{k-1}=\frac{1}{N(N-1)} .
\end{aligned}
$$

Thus, we get $q-q^{2}+2 a=\left(N^{2}+1\right) /\left[N^{2}(N-1)\right]=\sigma$. The proof of Proposition 3.1 is completed.

§4. Proof of Theorem 1.1.

In this section, we prove both strong law of large numbers and the central limit theorem of R_{n}.

Proposition 4.1. We have $\lim _{n \rightarrow \infty} R_{n} / n=q, P_{0}$-a.s.
Proof. From the proof of Proposition 3.1, it follows that $E_{0} R_{n}=E_{0} \zeta_{n}+E_{0} \eta_{n}+1=q n+O(1)$, and there is a constant $c \in(0, \infty)$ such that $P_{0}\left(\left|R_{n}-q n\right| \geq n^{3 / 4}\right) \leq c n^{-1 / 2}$ for large enough n. By Borel-Cantelli lemma, we have $P_{0}\left(\left|n^{-3} R_{n^{3}}-q\right| \geq n^{-3 / 4}\right.$, i.o. $)=0$. If $n^{3} \leq m \leq(n+1)^{3}$, then $\left|R_{n^{3}}-R_{m}\right| \leq(n+1)^{3}-n^{3}=3 n^{2}+3 n+1$. From this fact, we get $P_{0}\left(\left|R_{n} / n-q\right| \geq n^{-1 / 8}\right.$, i.o. $)=0$. This yields the desired result.

Next, we prove the central limit theorem of R_{n}. Recall that $\sigma=\left(N^{2}+1\right) /\left[N^{2}(N-1)\right]$ and ζ denotes a standard normal variable.
Proposition 4.2. We have $n^{-1 / 2}\left(R_{n}-E_{0} R_{n}\right) \xrightarrow{(d)} \sigma \cdot \zeta$ as $n \rightarrow \infty$.
Let $X(a, b)=\left\{X_{i}: a \leq i \leq b\right\}$ for $a, b \in R$, and set $I_{n}=\#\{X(0, n) \cap X(n, 2 n)\}$. To prove Proposition 4.2, we need the following lemma.
Lemma 4.3. There is a constant $c_{k} \in(0, \infty)$ for every $k \geq 1$ such that $E_{0} I_{n}^{k} \leq c_{k}$ for all $n \geq 1$.
Proof. Without loss of generality, we consider the case $k=2$ only. It is clear that

$$
\begin{align*}
E_{0} I_{n}^{2} & =\sum_{i=0}^{n} P_{0}\left\{X_{i} \in X(n, 2 n)\right\}+2 \sum_{0 \leq i<j \leq n} P_{0}\left\{X_{i}, X_{j} \in X(n, 2 n)\right\} \tag{4.4}\\
& =\sum_{i=0}^{n} P_{0}\{0 \in X(n-i, 2 n-i)\}+2 \sum_{0 \leq i<j \leq n} P_{0}\left\{0, X_{j-i} \in X(n-i, 2 n-i)\right\} .
\end{align*}
$$

Let $\beta_{1}=\inf \left\{m \geq n-i: X_{m}=0\right\}$ and $\beta_{2}=\inf \left\{m \geq n-i: X_{m}=X_{j-i}\right\}$. Then

$$
\begin{align*}
& P_{0}\left\{0, X_{j-i} \in X(n-i, 2 n-i)\right\} \tag{4.5}\\
& \quad \leq P_{0}\left(n-i \leq \beta_{1} \leq \beta_{2} \leq 2 n-i\right)+P_{0}\left(n-i \leq \beta_{2} \leq \beta_{1} \leq 2 n-i\right) \\
& \leq E_{0}\left[v_{X_{j-i}} I_{\left\{n-i \leq \beta_{1} \leq 2 n-i\right\}}\right]+E_{0}\left[v_{X_{j-i}} I_{\left\{n-i \leq \beta_{2} \leq 2 n-i\right\}}\right]
\end{align*}
$$

where v_{y} was defined in the proof of Lemma 3.2. By Proposition 2.1, there is a constant $k_{2} \in(0, \infty)$ such that

$$
\begin{aligned}
& P_{0}\left(\max _{0 \leq l \leq[(j-i) / 2]} d\left(0, X_{l}\right) \leq\left[(j-i)^{1 / 2}\right]\right) \\
& =P_{0}\left(\tau_{\left[(j-i)^{1 / 2}\right]} \geq[(j-i) / 2]\right) \leq k_{2}(j-i)^{-3 / 2}, \quad j>i .
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
& P_{0}\left(d\left(0, X_{j-i}\right) \leq(j-i)^{1 / 4}\right) \\
& \leq k_{2}(j-i)^{-3 / 2}+P_{0}\left(\tau_{\left[(j-i)^{1 / 2}\right]}<[(j-i) / 2] ; d\left(0, X_{j-i}\right) \leq(j-i)^{1 / 4}\right) \\
& \leq k_{2}(j-i)^{-3 / 2}+E_{0}\left[I_{\left\{\tau_{\left[(j-i)^{1 / 2}\right]}<[(j-i) / 2]\right\}} P_{X\left(\tau_{\left[(j-i)^{1 / 2}\right]}\right)}\left(\beta_{3}<\infty\right)\right]
\end{aligned}
$$

where $\beta_{3}=\inf \left\{m \geq 0:\left|X_{m}\right| \leq(j-i)^{1 / 4}\right\}$. Noticing the structure of T_{N} and using Lemma 3.2, we get $P_{X\left(\tau_{\left[(j-i)^{1 / 2]}\right)}\right.}\left(\beta_{3}<\infty\right) \leq k_{3}(j-i)^{-3 / 2}$ on $\left\{\tau_{\left[(j-i)^{1 / 2}\right]}<\infty\right\}$ for some constant $k_{3} \in(0, \infty)$. These two estimates give us $P_{0}\left(d\left(0, X_{j-i}\right) \leq(j-i)^{1 / 4}\right) \leq\left(k_{2}+k_{3}\right)(j-i)^{-3 / 2}$. Hence, there is a constant $k_{4} \in(0, \infty)$ such that

$$
E_{0} v_{X_{j-i}}=E_{0}\left[n^{-d\left(0, X_{j-i}\right)}\right] \leq\left(k_{2}+k_{3}\right)(j-i)^{-3 / 2}+N^{-(j-i)^{1 / 4}} \leq k_{4}(j-i)^{-3 / 2}
$$

From the above proof, one also sees that there is a constant $k_{5} \in(0, \infty)$ such that

$$
\begin{aligned}
& P_{X_{j-i}}\left(n-j \leq \beta_{2} \leq 2 n-j\right) \leq k_{5}(n-j)^{-3 / 2} \\
& P_{0}\{0 \in X(n-i, 2 n-i)\} \leq k_{5}(n-i)^{-3 / 2}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
\sum_{i=0}^{n} P_{0}\{0 \in X(n-i, 2 n-i)\} \leq 1+k_{5} \sum_{i=0}^{n-1}(n-i)^{-3 / 2} \leq c^{\prime} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{aligned}
& E_{0}\left[v_{X_{j-i}} I_{\left\{n-i \leq \beta_{2} \leq 2 n-i\right\}}\right]=E_{0}\left[v_{X_{j-i}} P_{X_{j-i}}\left(n-j \leq \beta_{2} \leq 2 n-j\right)\right] \\
& \leq k_{5}(n-j)^{-3 / 2} E_{0}\left(v_{X_{j-i}}\right) \leq k_{4} k_{5}(j-i)^{-3 / 2}(n-j)^{-3 / 2} .
\end{aligned}
$$

In virtue of (4.4), (4.5) and (4.6), to complete the proof of the lemma, it is sufficient to prove the following

$$
\begin{equation*}
\sum_{0 \leq i<j \leq n} E_{0}\left[v_{X_{j-i}} I_{\left\{n-i \leq \beta_{1} \leq 2 n-i\right\}}\right] \leq c_{1}^{\prime}, \quad \forall n \geq 1 \tag{4.7}
\end{equation*}
$$

for some constant $c_{1}^{\prime} \in(0, \infty)$. Indeed, by Proposition 2.1 we have

$$
P_{X_{j-i}}\left(\max _{0 \leq l \leq[(n-j) / 2]} d\left(X_{0}, X_{l}\right) \leq\left[(n-j)^{1 / 2}\right]\right) \leq k_{2}(n-j)^{-3 / 2}
$$

Let $\beta_{4}=\inf \left\{m \geq 0: d\left(X_{0}, X_{m}\right) \geq\left[(n-j)^{1 / 2}\right]\right\}$. Then

$$
\begin{aligned}
& P_{X_{j-i}}(0 \in X(n-j, 2 n-j)) \\
& \leq k_{2}(n-j)^{-3 / 2}+P_{X_{j-i}}\left(\beta_{4} \leq[(n-j) / 2] ; 0 \in X(n-j, 2 n-j)\right) \\
& \leq k_{2}(n-j)^{-3 / 2}+E_{X_{j-i}}\left[P_{X\left(\beta_{4}\right)}\left(H_{0}<\infty\right) I_{\left\{\beta_{4} \leq[(n-j) / 2]\right\}}\right] .
\end{aligned}
$$

If $d\left(0, X_{j-i}\right) \leq \frac{1}{2}\left[(n-j)^{1 / 2}\right]$, then

$$
\begin{aligned}
E_{X_{j-i}}\left[P_{X\left(\beta_{4}\right)}\left(H_{0}<\infty\right) I_{\left\{\beta_{4}<\infty\right\}}\right] & \leq \max \left\{P_{y}\left(H_{0}<\infty\right): y \in T_{N}, d\left(y, X_{j-i}\right)=\left[(n-j)^{1 / 2}\right]\right\} \\
& \leq \max \left\{P_{y}\left(H_{0}<\infty\right): y \in T_{N}, d(0, y) \geq 1 / 2\left[(n-j)^{1 / 2}\right]\right\} \\
& =N^{-\frac{1}{2}\left[(n-j)^{1 / 2}\right]} \quad(\text { by Lemma 3.2 })
\end{aligned}
$$

Thus, there is a constant $k_{6} \in(0, \infty)$ such that $P_{X_{j-i}}\left(n-j \leq \beta_{1} \leq 2 n-j\right) \leq k_{6}(n-j)^{-3 / 2}$, provided $d\left(0, X_{j-i}\right) \leq \frac{1}{2}\left[(n-j)^{1 / 2}\right]$. Therefore

$$
\begin{aligned}
E_{0}\left[v_{X_{j-i}} I_{\left\{n-i \leq \beta_{1} \leq 2 n-i\right\}}\right] \leq & N^{-\frac{1}{2}\left[(n-j)^{1 / 2}\right]} P_{0}\left(n-i \leq \beta_{1} \leq 2 n-i\right) \\
& +E_{0}\left[v_{X_{j-i}} I_{\left\{d\left(0, X_{j-i}\right) \leq \frac{1}{2}\left[(n-j)^{1 / 2}\right]\right\}} I_{\left\{n-i \leq \beta_{1} \leq 2 n-i\right\}}\right] \\
\leq & k_{5}(n-i)^{-3 / 2} N^{-\frac{1}{2}\left[(n-j)^{1 / 2}\right]} \\
& +E_{0}\left[v_{X_{j-i}} I_{\left\{d\left(0, X_{j-i}\right) \leq \frac{1}{2}\left[(n-j)^{1 / 2}\right]\right\}} P_{X_{j-i}}(0 \in X(n-j, 2 n-j))\right] \\
\leq & k_{5}(n-i)^{-3 / 2} N^{-\frac{1}{2}\left[(n-j)^{1 / 2}\right]}+k_{6}(n-j)^{-3 / 2} E_{0}\left(v_{X_{j-i}}\right) \\
\leq & k_{5}(n-i)^{-3 / 2} N^{-\frac{1}{2}\left[(n-j)^{1 / 2}\right]}+k_{4} k_{6}(n-j)^{-3 / 2}(j-i)^{-3 / 2}
\end{aligned}
$$

which leads to (4.7). We have thus completed the proof of Lemma 4.3.
We are now in the position to prove Proposition 4.2. The following argument is based on [6, Proof of Theorem 4.5].
Proof of Proposition 4.2. Given a sufficient small $\delta \in(0,1)$. For each $n \geq 1$, take $p=p(n)=\left[n^{\delta}\right]$. Then, we have

$$
R_{n}=\sum_{i=1}^{p} \#\left\{X\left(\frac{i-1}{p} n, \frac{i}{p} n\right)\right\}-\sum_{i=2}^{p} \#\left\{X\left(0, \frac{i-1}{p} n\right) \bigcap X\left(\frac{i-1}{p} n, \frac{i}{p} n\right)\right\} .
$$

By Lemma 4.3, there is a constant $k_{7} \in(0, \infty)$ such that

$$
E_{0}\left[\left(\sum_{i=2}^{p} \#\left\{X\left(0, \frac{i-1}{p} n\right) \bigcap X\left(\frac{i-1}{p} n, \frac{i}{p} n\right)\right\}\right)^{2}\right]^{1 / 2} \leq k_{7} p
$$

Thus,

$$
E_{0}\left|R_{n}-\sum_{i=1}^{p} \#\left\{X\left(\frac{i-1}{p} n, \frac{i}{p} n\right)\right\}\right|^{2}=o(n), \quad n \rightarrow \infty
$$

Set $R_{n, i}=\#\left\{X\left(\frac{i-1}{p} n, \frac{i}{p} n\right)\right\}, 1 \leq i \leq p$, and let $\left\{R_{n, i}\right\}=R_{n, i}-E_{0} R_{n, i}$. From Proposition 3.1, we get $E_{0}\left\{R_{n, i}\right\}^{2} \sim \sigma n / p, \quad n \rightarrow \infty$.

We now prove that the random variables $R_{n, 1}, \cdots, R_{n, p}$ are independent. Without loss of generality, we may deal with the independence of $R_{n, 1}$ and $R_{n, 2}$ only. Indeed, we have $P_{0}\left(R_{n, 1}=\right.$ $\left.m_{1} ; R_{n, 2}=m_{2}\right)=E_{0}\left[I_{\left\{R_{n, 1}=m_{1}\right\}} P_{X(n / p)}\left(R_{n, 1}=m_{2}\right)\right]$. By the symmetry of T_{N}, one knows that $P_{x}\left(R_{n, 1}=m_{2}\right)=P_{0}\left(R_{n, 1}=m_{2}\right)$ for all $x \in T_{N}$. Hence

$$
\begin{aligned}
& P_{0}\left(R_{n, 1}=m_{1} ; R_{n, 2}=m_{2}\right)=P_{0}\left(R_{n, 1}=m_{1}\right) \cdot P_{0}\left(R_{n, 1}=m_{2}\right) \\
& =P_{0}\left(R_{n, 1}=m_{1}\right) \cdot E_{0}\left[P_{X(n / p)}\left(R_{n, 1}=m_{2}\right)\right] \\
& =P_{0}\left(R_{n, 1}=m_{1}\right) \cdot P_{0}\left(R_{n, 2}=m_{2}\right), \quad \forall m_{1}, m_{2} \geq 0
\end{aligned}
$$

which deduces the desired result. Thus, the assertion of Proposition 4.1 holds once the so-called Lindeberg's condition is satisfied for the family $\left\{R_{n, 1}\right\}, \cdots,\left\{R_{n, p(n)}\right\}$. Moreover, this condition is satisfied whenever

$$
\begin{equation*}
E_{0}\left\{R_{n}\right\}^{4} \leq k_{8} n^{2}, \quad \forall n \geq 1 \tag{4.8}
\end{equation*}
$$

for some constant $k_{8} \in(0, \infty)$. To see this, set $n_{1}=[n / 2]$. Then

$$
\left(E_{0}\left\{R_{n}\right\}^{4}\right)^{1 / 4} \leq\left(E_{0}\left\{\#\left\{X\left(0, n_{1}\right)\right\}+\#\left\{X\left(n_{1}, n\right)\right\}\right\}^{4}\right)^{1 / 4}+\left(E_{0} \#\left\{X\left(0, n_{1}\right) \cap X\left(n_{1}, n\right)\right\}^{4}\right)^{1 / 4}
$$

By Lemma 4.3, we have $\left(E_{0}\left\{\#\left\{X\left(0, n_{1}\right) \cap X\left(n_{1}, n\right)\right\}\right\}^{4}\right)^{1 / 4}=o\left(n^{1 / 2}\right)$. Since $\#\left\{X\left(0, n_{1}\right)\right\}$ and $\#\left\{X\left(n_{1}, n\right)\right\}$ are independent, from Proposition 3.1, we get

$$
E_{0}\left\{\#\left\{X\left(0, n_{1}\right)\right\}+\#\left\{X\left(n_{1}, n\right)\right\}\right\}^{4} \leq E_{0}\left\{R_{n_{1}}\right\}^{4}+E_{0}\left\{R_{n_{2}}\right\}^{4}+k_{9} n
$$

for some constant $k_{9} \in(0, \infty)$, where $n_{2}=n-n_{1}$. Thus

$$
\left(E_{0}\left\{R_{n}\right\}^{4}\right)^{1 / 4} \leq\left(E_{0}\left\{R_{n_{1}}\right\}^{4}+E_{0}\left\{R_{n_{2}}\right\}^{4}+k_{9} n^{2}\right)^{1 / 4}+o\left(n^{1 / 2}\right)
$$

For $k \geq 1$, set $\alpha_{k}=\sup \left\{2^{-k / 2}\left(E_{0}\left\{R_{n}\right\}^{4}\right)^{1 / 4}: 2^{k} \leq n \leq 2^{k+1}\right\}$. Then $\alpha_{k+1} \leq\left(1 / 2 \alpha_{k}^{4}+C\right)^{1 / 4}+O(1)$. This implies that the sequence $\left\{\alpha_{k}\right\}$ is bounded. Therefore, (4.8) holds. We have completed the proof of Proposition 4.2.
Proof of Theorem 1.1. Simply combine Proposition 3.1, Proposition 4.1 with Proposition 4.2.

§5. Proof of Theorem 1.2.

We begin with several lemmas.
Lemma 5.1. Let \tilde{E}_{0} and \tilde{R}_{n} be the same as defined in Section 1. We have $\lim _{n \rightarrow \infty} n^{-1 / 2}\left|E_{0} R_{n}-\tilde{E}_{0} \tilde{R}_{n}\right|=0$.
Proof. Take $\epsilon_{1} \in(0,1 / 2)$ and $\epsilon_{2} \in\left(0,1 / 2-\epsilon_{1}\right)$. By Proposition 2.1, we know that

$$
P_{0}\left(\max _{0 \leq l \leq\left[n^{\left.1 / 2-\epsilon_{1}\right]}\right.} d\left(0, X_{l}\right) \leq\left[n^{\epsilon_{2}}\right]\right) \leq C\left(\epsilon_{1}, \epsilon_{2}\right) n^{2 \epsilon_{1}+\epsilon_{2}} n^{-1}
$$

for some constant $C\left(\epsilon_{1}, \epsilon_{2}\right) \in(0, \infty)$. Let $\nu_{n}=\inf \left\{m \geq 0: X_{m} \in S_{\left[n^{\epsilon_{2}}\right]}\right\}$. By Lemma 3.2, we have $P_{X_{\nu_{n}}}\left(H_{0}<\infty\right)=N^{-d\left(0, X_{\nu_{n}}\right)}=N^{-\left[n^{\epsilon 2}\right]}$. By Hölder's inequality, for a fixed $\epsilon_{3} \in(0,1)$ such that $\left[1-\left(2 \epsilon_{1}+2 \epsilon_{2}\right)\right]\left(1-\epsilon_{3}\right)>1 / 2$, we have

$$
\begin{aligned}
E_{0} R_{n} & =E_{0}\left[\sum_{i=\left[n^{\left.1 / 2-\epsilon_{1}\right]}\right.}^{n} I_{\left\{X_{i} \neq X_{i+1}, \cdots, X_{i} \neq X_{n}\right\}}\right]+o\left(n^{1 / 2}\right) \\
& =E_{0}\left[\sum_{i=\nu_{n}}^{n} I_{\left\{X_{i} \neq X_{i+1}, \cdots, X_{i} \neq X_{n}\right\}} I_{\left\{\nu_{n} \leq\left[n^{\left.\left.1 / 2-\epsilon_{1}\right]\right\}}\right.\right.}\right]+O\left(n^{1-\left(1-\epsilon_{3}\right)} n^{\left(2 \epsilon_{1}+2 \epsilon_{2}\right)\left(1-\epsilon_{3}\right)}\right)+o\left(n^{1 / 2}\right) \\
& =E_{0}\left(\left[\sum_{i=\nu_{n}}^{n} I_{\left\{X_{i} \neq X_{i+1}, \cdots, X_{i} \neq X_{n}\right\}}\right] I_{\left\{X_{j} \neq 0, j \geq \nu_{n}\right\}} I_{\left\{\nu_{n} \leq\left[n^{\left.\left.1 / 2-\epsilon_{1}\right]\right\}}\right.\right.}\right)+o\left(n^{1 / 2}\right) \\
& =E_{0}\left[E_{X_{\nu_{n}}}\left(\sum_{i=0}^{n} I_{\left\{X_{i} \neq X_{i+1}, \cdots, X_{i} \neq X_{n}\right\}} I_{\left\{X_{1} \neq 0, \cdots, X_{n} \neq 0\right\}}\right) I_{\left\{\nu_{n} \leq\left[n^{\left.\left.1 / 2-\epsilon_{1}\right]\right\}}\right.\right.}\right]+o\left(n^{1 / 2}\right),
\end{aligned}
$$

Let $\mu_{n}=\inf \left\{m \geq 0: Y_{m} \in S_{\left[n^{\epsilon}\right]}\right\}$ and $H_{0}=\inf \left\{m \geq 1: Y_{m}=0\right\}$. Then, it is easy to see that $\tilde{P}_{Y_{\mu_{n}}}\left(H_{0}<\infty\right)=N^{-\left[n^{\left.\epsilon_{2}\right]}\right.}$. Thus, a similar argument can imply that

$$
\tilde{E}_{0} \tilde{R}_{n}=\tilde{E}_{0}\left[\tilde{E}_{Y_{\mu_{n}}}\left(\sum_{i=0}^{n} I_{\left\{Y_{i} \neq Y_{i+1}, \cdots, Y_{i} \neq Y_{n}\right\}} I_{\left\{Y_{1} \neq 0, \cdots, Y_{n} \neq 0\right\}}\right) I_{\left\{\mu_{n} \leq\left[n^{\left.\left.1 / 2-\epsilon_{1}\right]\right\}}\right.\right.}\right]+o\left(n^{1 / 2}\right)
$$

Since T_{N} and \tilde{T}_{N} have the same structure except at the point 0 , when $\mu_{n}<\infty$ and $\nu_{n}<\infty$, we have

$$
\begin{aligned}
& E_{X_{\nu_{n}}}\left(\sum_{i=0}^{n} I_{\left\{X_{i} \neq X_{i+1}, \cdots, X_{i} \neq X_{n}\right\}} I_{\left\{X_{1} \neq 0, \cdots, X_{n} \neq 0\right\}}\right) \\
& =\tilde{E}_{Y_{\mu_{n}}}\left(\sum_{i=0}^{n} I_{\left\{Y_{i} \neq Y_{i+1}, \cdots, Y_{i} \neq Y_{n}\right\}} I_{\left\{Y_{1} \neq 0, \cdots, Y_{n} \neq 0\right\}}\right)
\end{aligned}
$$

which leads to $E_{0} R_{n}=\tilde{E}_{0} \tilde{R}_{n}+o\left(n^{1 / 2}\right)$. The proof of Lemma 5.1 is completed.
From the construction of T_{N}, one also sees that there are $T_{1, N}, \cdots, T_{N+1, N}$ such that $T_{N}=$ $\cup_{i=1}^{N+1} T_{i, N}$ and $T_{i, N} \cap T_{j, N}=\{o\}$ for $i \neq j$ and $T_{1, N}, \cdots, T_{N, N+1}$ are isomorphic. Let $\left\{\bar{X}_{n}\right\}_{n \geq 0}$ be the simple random walk on $T_{1, N}$ with the probability law $\left\{\bar{P}_{x}\right\}_{x \in T_{1, N}}$, and $r_{n}=\#\left\{\bar{X}_{0}, \bar{X}_{1}, \cdots, \bar{X}_{n}\right\}$.
Lemma 5.2. Let $\sigma=\left(N^{2}+1\right) /\left[N^{2}(N-1)\right]$. Then for every $x \in R^{1}$, we have

$$
\bar{P}_{0}\left(\frac{r_{n}-E_{0} R_{n}}{\sigma n^{1 / 2}} \leq x\right) \longrightarrow(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-y^{2} / 2\right) d y, \quad n \rightarrow \infty .
$$

Proof. By Proposition 4.2

$$
P_{0}\left(\frac{R_{n}-E_{0} R_{n}}{\sigma n^{1 / 2}} \leq x\right) \longrightarrow(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-y^{2} / 2\right) d y, \quad n \rightarrow \infty, \quad \forall x \in R^{1}
$$

Set $g_{n}=\#\left\{X_{\nu_{n}}, \cdots, X_{\nu_{n}+n}\right\} I_{\left\{X_{i} \neq 0, \forall i \geq \nu_{n} ; \nu_{n} \leq\left[n^{1 / 2-\epsilon_{1}}\right]\right\}}$. From the proof of Lemma 5.1, one sees that $\sigma^{-1} n^{-1 / 2} E_{0}\left|g_{n}-R_{n}\right|=o(1)$ as $n \rightarrow \infty$. Hence $P_{0}\left(\sigma^{-1} n^{-1 / 2}\left(g_{n}-E_{0} R_{n}\right) \leq x\right) \rightarrow$ $(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-y^{2} / 2\right) d y, n \rightarrow \infty, x \in R^{1}$. Let $t_{n}=\inf \left\{m \geq 0: d\left(0, \bar{X}_{m}\right)=n\right\}$ and set $f_{n}=\#\left\{\bar{X}_{t_{n}}, \cdots, \bar{X}_{t_{n}+n}\right\} I_{\left\{X_{i} \neq 0, \forall i \geq t_{n} ; t_{n} \leq\left[n^{\left.\left.1 / 2-\epsilon_{1}\right]\right\}}\right.\right.}$. Then the random variables $f_{n} g_{n}$ have the same distribution, Therefore

$$
\bar{P}_{0}\left(\sigma^{-1} n^{-1 / 2}\left(f_{n}-E_{0} R_{n}\right) \leq x\right) \longrightarrow(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-y^{2} / 2\right) d y, \quad n \rightarrow \infty, \quad \forall x \in R^{1}
$$

By a similar argument as in the proof of Lemma 5.1, we can prove $\bar{E}_{0}\left|f_{n}-r_{n}\right|=o\left(n^{1 / 2}\right), n \rightarrow \infty$, where \bar{E}_{x} is the expectation with respect to \bar{P}_{x}. In other words, we have $n^{-1 / 2}\left(f_{n}-r_{n}\right) \xrightarrow{\bar{P}_{0}} 0$, $n \rightarrow \infty$. This yields the desired result.

Having these preparations, we can complete the proof of Theorem 1.2.
Proof of Theorem 1.2. Firstly, we prove

$$
\begin{equation*}
\tilde{P}_{0}\left(\frac{\tilde{R}_{n}-\tilde{E}_{0} \tilde{R}_{n}}{\sigma n^{1 / 2}} \leq x\right) \rightarrow(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-y^{2} / 2\right) d y, \quad n \rightarrow \infty, \forall x \in R^{1} \tag{5.3}
\end{equation*}
$$

Let $h_{n}=\#\left\{Y_{\mu_{n}}, \cdots, Y_{\mu_{n}+n}\right\} I_{\left\{Y_{i} \neq 0, \forall i \geq \mu_{n} ; \mu_{n} \leq\left[n^{1 / 2-\epsilon_{1}}\right]\right\}}$. Then, we have $\tilde{E}_{0}\left|\tilde{R}_{n}-h_{n}\right|=o\left(n^{1 / 2}\right)$, $n \rightarrow \infty$, which implies $n^{-1 / 2}\left(\tilde{R}_{n}-h_{n}\right) \xrightarrow{\tilde{P}_{0}} 0, n \rightarrow \infty$. In addition, h_{n} and f_{n} have the same distribution too. Thus, Lemma 5.2 implies that

$$
\tilde{P}_{0}\left(\frac{h_{n}-E_{0} R_{n}}{\sigma n^{1 / 2}} \leq x\right) \rightarrow(2 \pi)^{-1 / 2} \int_{-\infty}^{x} \exp \left(-y^{2} / 2\right) d y, \quad n \rightarrow \infty, \quad \forall x \in R^{1}
$$

Hence, (5.3) follows from Lemma 5.1 immediately.
Next, we prove

$$
\begin{equation*}
\tilde{E}_{0}\left(\tilde{R}_{n}-\tilde{E}_{0} R_{n}\right)^{2} / n \longrightarrow \sigma, \quad n \rightarrow \infty \tag{5.4}
\end{equation*}
$$

In fact, from the proof of Lemma 5.1 one sees that $E_{0}\left|R_{n}-g_{n}\right|^{2}=o(n), n \rightarrow \infty$. Thus, Proposition 4.2 yields $n^{-1} E_{0}\left|g_{n}-E_{0} R_{n}\right|^{2} \rightarrow \sigma, \quad n \rightarrow \infty$, which implies that $n^{-1} \bar{E}_{0}\left|f_{n}-E_{0} R_{n}\right|^{2} \rightarrow \sigma, n \rightarrow \infty$. Therefore, $n^{-1} \tilde{E}_{0}\left|h_{n}-E_{0} R_{n}\right|^{2} \rightarrow \sigma, n \rightarrow \infty$. From the proof of Lemma 5.1, one can also see that $n^{-1} \tilde{E}_{0}\left|\tilde{R}_{n}-h_{n}\right|^{2} \rightarrow 0, n \rightarrow \infty$. Thus, we get (5.4) immediately from Lemma 5.1. We have completed the proof of Theorem 1.2.

Remark 5.5. Let $T_{N}^{\prime}=\left(E^{\prime}, V^{\prime}\right), T_{N}=(E, V)$, and $\left\{X_{n}^{\prime}\right\}_{n \geq 0}$ be the simple random walk on T_{N}^{\prime}. Suppose that $\#\left\{\left(E^{\prime} \backslash E\right) \cup\left(E \backslash E^{\prime}\right)\right\}<\infty$ and $\#\left\{\left(V^{\prime} \backslash V\right) \cup\left(V \backslash V^{\prime}\right)\right\}<\infty$. Then, from the above arguments we see that the conclusions of Theorem 1.1 hold if R_{n} is replaced by $R_{n}^{\prime}=\#\left\{X_{0}^{\prime}, \cdots, X_{n}^{\prime}\right\}$.

$\S 6$. Trapping problem. Proof of Theorem 1.3.

In the present section, we study the trapping problem on trees. The main aim is to complete the proof of Theorem 1.3. As stated in [4], an accurate approximation to the survival probability at short times is quite valuable for physical applications. Due to this reason, in this paper we only concern with the asymptotic behaviour of survival probability for moderately large n and small ϵ and that of expected trapping time for small ϵ.

It is easy to check that $f(n)=E_{0}(1-\epsilon)^{R_{n}}=E_{0}\left[\exp \left(R_{n} \log (1-\epsilon)\right)\right]=E_{0}\left[\exp \left(-\lambda R_{n}\right)\right]$, where $\lambda=\log (1-\epsilon)^{-1}$. As in [4], we can write $f(n)=\sum_{j=0}^{\infty}(-1)^{j} \lambda^{j} E_{0} R_{n}^{j} / j!=: \exp [K(\lambda, n)]$, where $K(\lambda, n)=\sum_{j=1}^{\infty}(-1)^{j} \lambda^{j} k_{j}(n) / j$! and $k_{j}(n)$ can be defined in terms of $E_{0} R_{n}$ and the centering moments $E_{0}\left(R_{n}-E_{0} R_{n}\right)^{i}$ of order $i \leq j$. As a fact, one can check that

$$
\begin{aligned}
& k_{1}(n)=E_{0} R_{n}, \quad k_{j}(n)=E_{0}\left(R_{n}-E_{0} R_{n}\right)^{j}, \quad j=2,3, \\
& k_{4}(n)=E_{0}\left(R_{n}-E_{0} R_{n}\right)^{4}-3\left[E_{0}\left(R_{n}-E_{0} R_{n}\right)^{2}\right]^{2}
\end{aligned}
$$

Recall that (Proposition 4.1) $\lim _{n \rightarrow \infty} n^{-1} E_{0} R_{n}=(N-1) / N$ and the fact: $\lim _{\epsilon \rightarrow 0^{+}} \epsilon^{-1} \lambda=1$. For small ϵ and moderately large $n \log f(n) \sim-\epsilon n(N-1) / N$, which proves the first part of Theorem 1.3.

Next, we consider the expected trapping time. By definition, we have $E T=\sum_{n=0}^{\infty} f(n)=$ $\sum_{n=0}^{\infty} E_{0}\left[\exp \left(-\lambda R_{n}\right)\right]$. By Jensen's inequality, we have $E T \geq \sum_{n=0}^{\infty} \exp \left(-\lambda E_{0} R_{n}\right)$. From the proof
of Proposition 4.1, we know $E_{0} R_{n}=n(N-1) / N+O(1), n \rightarrow \infty$. Thus, there is a constant $K \in(0, \infty)$ such that $E_{0} R_{n} \leq n(N-1) / N+K$ for all $n \geq 0$. Hence

$$
\begin{aligned}
\underline{\lim }_{\epsilon \rightarrow 0^{+}} \epsilon E T & \geq{\underset{\epsilon \rightarrow 0^{+}}{\lim }\left[\epsilon \exp (-\lambda K) \sum_{n=0}^{\infty} \exp \left(-\lambda \frac{N-1}{N} n\right)\right]}=\underset{\epsilon \rightarrow 0^{+}}{\lim ^{\prime}}\left[\epsilon \exp (-\lambda K)\left(1-\exp \left(-\lambda \frac{N-1}{N}\right)\right)^{-1}\right]=\frac{N}{N-1} .
\end{aligned}
$$

As in [3], we let $I_{1}(\epsilon, n)=\sum_{0 \leq n \leq M \epsilon^{-1}} f(n)$ and $I_{2}(\epsilon, n)=\sum_{n>M \epsilon^{-1}} f(n)$. Then, $E T=I_{1}(\epsilon, n)+$ $I_{2}(\epsilon, n)$. Clearly, the following desired result $\lim _{\epsilon \rightarrow 0^{+}} \epsilon E T \leq N /(N-1)$ can be deduced from

$$
\begin{align*}
& \lim _{M \rightarrow \infty} \lim _{\epsilon \rightarrow 0^{+}} \epsilon I_{2}(\epsilon, n)=0 \tag{6.1}\\
& \lim _{M \rightarrow \infty} \tag{6.2}
\end{align*} \lim _{\epsilon \rightarrow \infty} \epsilon I_{1}(\epsilon, n) \leq N /(N-1) . ~ \$
$$

To prove (6.1) and (6.2), we need a lemma.
Lemma 6.3. There is a constant $K_{1}>0$ such that $P_{0}\left(R_{n} \leq h(n)\right) \leq \exp \left(-K_{1} n / h(n)\right)$ for all $n \geq 2$ and for any $h(n)$ with $\lim _{n \rightarrow \infty} h(n)=\infty$ and $h(n)=o(n)$ as $n \rightarrow \infty$.
Proof. From Proposition 3.1 and Proposition 4.1, it follows that large enough $n, P_{0}\left(R_{n} \leq(N-\right.$ 1) $n /(4 N)) \leq 1 / 2$. Let $R^{j}(n)=\#\left\{X_{m}: j \delta n \leq m \leq(j+1) \delta n\right\}$. From the proof of Proposition 4.2, we see that $R^{0}(n), R^{1}(n), \cdots, R^{[1 / \delta]}(n)$ are independent. Take $\delta=4 \frac{N}{N-1} h(n) n^{-1}$. Then, for large enough n,

$$
\begin{aligned}
P_{0}\left(R_{n} \leq h(n)\right) & \leq P_{0}\left(\max _{0 \leq j \leq \frac{1}{4} \frac{N-1}{N} h(n) n^{-1}} R^{j}\left(\frac{4 N h(n)}{N-1}\right) \leq h(n)\right) \\
& =\left[P_{0}\left(R^{0}\left(\frac{4 N h(n)}{N-1}\right) \leq h(n)\right)\right]^{\frac{(N-1) n}{4 h(n) N}} \leq 2^{-\frac{(N-1) n}{4 N h(n)}}
\end{aligned}
$$

which proves the desired result.
Proof of Theorem 1.3. Setting $h(n)=\left(K_{1} n / \epsilon\right)^{1 / 2}$ in Lemma 6.3, it follows that for large enough n, $f(n) \leq E_{0}\left(\exp \left(-\lambda R_{n}\right)\right) \leq 2 \exp \left(-\left(K_{1} \epsilon n / 2\right)^{1 / 2}\right)$. Hence

$$
\begin{aligned}
I_{2}(\epsilon, n) & \leq 2 \sum_{n>M \epsilon^{-1}}^{\infty} \exp \left(-\left(K_{1} \epsilon n / 2\right)^{1 / 2}\right) \leq 2 \int_{M \epsilon^{-1} / 2}^{\infty} \exp \left(-\left(K_{1} \epsilon x / 2\right)^{1 / 2}\right) d x \\
& =2 \epsilon^{-1} \int_{M / 2}^{\infty} \exp \left(-\left(K_{1} x / 2\right)^{1 / 2}\right) d x
\end{aligned}
$$

which implies (6.1).
It is clear that for sufficient small ϵ and $0 \leq n \leq \epsilon^{-1} M, \epsilon E_{0} R_{n} \leq \epsilon(N-1) n / N+\epsilon K \leq 2 M(N-$ $1) / N$. Moreover, there is a constant $K_{2} \in(0, \infty)$ such that $\left|\epsilon R_{n}-\epsilon E_{0} R_{n}\right| \leq \epsilon K_{2} E_{0} R_{n}$ for all $n \geq 1$ and $\epsilon>0$. By Proposition 3.1, we can show $E_{0}\left|R_{n}-E_{0} R_{n}\right|^{k} \leq\left|K_{2} E_{0} R_{n}\right|^{k-2} \operatorname{var}\left(R_{n}\right) \leq$ $K_{3} n^{-1}\left(K_{2} E_{0} R_{n}\right)^{k}$ for all $k \geq 2$ and some constant $K_{3} \in(0, \infty)$. Moreover, one has $E_{0}\left|R_{n}-E_{0} R_{n}\right| \leq$ $\left(E_{0}\left|R_{n}-E_{0} R_{n}\right|^{2}\right)^{1 / 2} \leq K_{4} n^{-1 / 2}\left(K_{2} E_{0} R_{n}\right)$ for all $n \geq 1$ and some constant $K_{4} \in(0, \infty)$. Therefore, if $M^{-1} \epsilon^{-1} \leq n \leq M \epsilon^{-1}$, then

$$
\begin{aligned}
& E_{0} \exp \left(-\lambda\left(R_{n}-E_{0} R_{n}\right)\right)=\sum_{k=0}^{\infty}(-1)^{k} \lambda^{k} E_{0}\left(R_{n}-E_{0} R_{n}\right)^{k} / k! \\
& \leq 1+\max \left(K_{3}, K_{4}\right) n^{-1 / 2} \exp \left(\lambda K_{2} E_{0} R_{n}\right) \\
& \leq 1+\max \left(K_{3}, K_{4}\right) n^{-1 / 2} \exp \left(2(N-1) K_{2} M / N\right)
\end{aligned}
$$

By Cauchy inequality, we have

$$
\begin{aligned}
& E_{0} \exp \left(-\lambda R_{n}\right) \leq\left[E_{0} \exp \left(-2 \lambda\left(R_{n}-E_{0} R_{n}\right)\right)\right]^{1 / 2} \exp \left(-\lambda E_{0} R_{n}\right) \\
& \leq\left[1+\max \left(K_{3}, K_{4}\right) n^{-1 / 2} \exp \left(4(N-1) K_{2} M / N\right)\right]^{1 / 2} \exp \left(-\lambda E_{0} R_{n}\right)
\end{aligned}
$$

provided $M^{-1} \epsilon^{-1} \leq n \leq M \epsilon^{-1}$. Thus

$$
\begin{aligned}
& I_{1}(\epsilon, n)-M^{-1} \epsilon^{-1} \leq \sum_{M^{-1} \epsilon^{-1} \leq n \leq M \epsilon^{-1}} \exp \left(-\lambda E_{0} R_{n}\right) \\
& \quad \cdot\left[1+\max \left(K_{3}, K_{4}\right) \epsilon^{1 / 2} M^{1 / 2} \exp \left(4(N-1) K_{2} M / N\right)\right]^{1 / 2} \\
& \sim \epsilon^{-1}\left[1+\epsilon^{1 / 2} \max \left(K_{3}, K_{4}\right) M^{1 / 2} \exp \left(4(N-1) K_{2} M / N\right)\right]^{1 / 2} \int_{\frac{1}{2} M^{-1}}^{2 M} \exp \left(-\frac{N-1}{N} x\right) d x,
\end{aligned}
$$

which implies the desired result (6.2). The proof of Theorem 1.3 is completed.
In a similar way, one may discuss the trapping problem on \tilde{T}_{N}. Suppose that the random trap field $(C(x))_{x \in \tilde{T}_{N}}$ with density $\epsilon>0$ is on the tree \tilde{T}_{N}. Let $\tilde{T}=\inf \left\{n \geq 0: C\left(Y_{n}\right)=1\right\}$ and $\tilde{f}(n)=\tilde{P}(\tilde{T}>n)$, where $\tilde{P}=\tilde{P}_{0} \times P_{C}$. Then we have
Corollary 6.4. i) For small $\epsilon>0$ and moderately large n, we have $\log \tilde{f}(n) \sim \epsilon n(N-1) / N$.
ii) Let \tilde{E} is the expectation with respect to \tilde{P}, we have $\lim _{\epsilon \rightarrow 0^{+}} \epsilon \cdot \tilde{E} \tilde{T}=N /(N-1)$.

References.

[1] P.G.Doyle, J.L.Snell (1984): Random Walks and Electric Networks, Washington DC, Math. Assoc. Amer.
[2] P.Gerl, W.Woess (1986): Local limits and harmonic functions for nonisotropic random walks on free groups, Prob. Th. Rel. Fields 71, 341-355.
[3] F.den Hollander, K.E.Shuler (1992): Random walks in a random field of decaying traps, J. Statis. Phys. 67, 13-31.
[4] F.den Hollander, G.H.Weiss (1992); Aspects of trapping in transport processes, To appear in "Some Problems in Statistical Physics", published by SIAM.
[5] N.C.Jain, W.E.Pruitt (1971): The range of transient random walk, J. Analyse Math. 24, 369-373.
[6] J.F.Le Gall, J.Rosen(1991): The range of stable random walks, Ann. Prob. 19, 650-705.
[7] S.Sawyer (1978): Isotropic random walks in a tree, Z. W. Verw Gebiete 42, 279-292.

[^1]
[^0]: 1991 Mathematics Subject Classification. 60J15, 60K40,60F05.
 Key words and phrases. Hitting time, Green function, central limit theorem, trapping time, survival probability, electrical network.

 Partly supported by National Natural Science Foundation and State Educational Committee of China.

[^1]: Department of Mathematics, Beijing Normal University, Beijing 100875, The People's Republic of China

