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ON THE OPTIMALITY IN GENERAL SENSE FOR ODD-BLOCK SEARCH

Mu-Fa Chen and Dan-Hua Huang

(Beijing Normal University and Fujian Normal University)

Abstract. In his classical article[3](1953), J.Kiefer introduced the Fibonacci search as a direct optimal
method. The optimality was proved under the restriction: the total number of tests is given in advance
and fixed. To avoid this restriction, some different concepts of optimality were proposed and some
corresponding optimal methods were obtained in [1], [2], [5] and [6]. In particular, the even-block search
was treated in [1]. This paper deals with the odd-block search. The main result is Theorem (1.15).

1. Backgrounds and Main Results

In this section, we first review some necessary preliminaries and then state our main result. The
study of optimal search is usually restricted on the unimodal functions.

(1.1)Definition[3]. A function f on interval [0, 1] is called unimodal if there exists precisely one maxi-
mum at a point cf ∈ [0, 1] and the function is strictly monotone on [0, cf ] and [cf , 1].

Let F denote the set of all unimodal functions on [0, 1]. It is obvious that the unimodal functions
have the following advantage: Whenever we have had two tests, we can compare the two results and
cancel a part of the interval. Next, we consider only the following testing methods.

(1.2)Definition[3,8]. A policy (or strategy, or sequential search ) P is such a rule: at the first step, the
rule determines a test point x1 = x1(P) independent of f ∈ F ; at the n-th step, the rule determines the
n-th test point xn = xn(P, f) according to the first (n− 1) tested points x1, · · · , xn−1 and their results
f(x1), · · · , f(xn−1).

An example of policies is the Fibonacci search or fraction method Fn. Recall the Fibonacci se-
quence: F0 = F1 = 1, Fn = Fn−1 + Fn−2, n ≥ 2. For fixed n ≥ 1, the policy Fn is defined as follows:
Set x1 = x1(Fn) = Fn/Fn+1. Assume that at the m-th step (1 ≤ m ≤ n − 1), we have eliminated a
part of the interval and the remaining interval is [am, bm] with a tested point cm inside. Then, we
choose xm+1 = xm+1(Fn, f) = am + bm − cm, which is just the mirror image of cm with respect to
the middle point of the interval [am, bm]. In what follows, we call the last procedure the symmetry
rule.

Warning. It can be happened that for a given f , at some steps the two tested results are the same.
And so after the elimination, the remaining interval has no tested point inside. In this case, we have to
modify the above Fn. Simply regard the remaining interval as our initial testing interval and apply the
same rule. But in what follows we may and will omit this exceptional case for saving the space.

Let policy P act on f ∈ F for n times, among the n tested points, there is one point, denoted by
cf (P, n), at which, f achieves its maximum. Recall the real maximum of f is achieved at cf .
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(1.3)Definition. We call δ(P, n) := supf∈F |cf − cf (P, n)| the accuracy of P at the n-th step. We
say that a policy Q is optimal with n steps if for any policy P, δ(P, n) ≥ δ(Q, n).

(1.4)Theorem (J. Kiefer[3]). The fraction method Fn is optimal with n steps.

At the end of his paper [3], Kiefer noted that it is not convenient in practice to use Fn since we
have to decide in advance the precise number n of tests. Because of this reason, Kiefer suggested to
use ω := limn→∞ Fn/Fn+1 = (

√
5 − 1)/2 as the first testing point x1 instead of Fn/Fn+1 and then

keep the symmetry rule. The later one is called the golden section search (see also [8]), denoted by
W. However, L. K. Hua pointed out that W is optimal in a different sense and he regarded Fn as
an approximation of W.

(1.5)Definition. A policy P is called symmetric if at the first step, choose x1 = x1(P) independent of
f ∈ F . Starting from the second step, choose the new test point according to the symmetry rule.

The next result is due to Hua for symmetric policy and extended by J. W. Hong to the general
case.

(1.6)Theorem(Hua[6,7] and Hong[4]). For any policy P, we have δ(P, n) ≥ δ(W, n) for all suffi-
ciently large n. In other words, the policy W is optimal at infinity.

To understand our optimality in a general sense, recall that for each n, the optimal policy Fn

gives us the optimal accuracy at the last (n-th) step: δ(Fn, n)= 1/Fn+1. By comparing the relative
difference (but not the absolute difference since at different steps, the testing intervals have different
scale) between a policy P and the policy Fn at the n-th step:

(δ(P, n) − δ(Fn, n))/δ(Fn, n) = Fn+1δ(P, n) − 1,

we arrive at the following notion

(1.7)Definition[1]. We call δ(P) := supn≥1 Fn+1δ(P, n) the accuracy of P. A policy Q is called
optimal if for any policy P, δ(P) ≥ δ(Q).

(1.8)Theorem[1]. For any symmetric P, we have δ(P) ≥ δ(W).

Before moving further, let us introduce some notations which will be used throughout this paper.
Let k1, k2, · · · (k1 ≥ 2) be a sequence of positive integers. Set

c(k) =
(

χ(k) [k+1
2 ]

χ(k + 1) [k+2
2 ]

)

where [x] is the integer part of x and χ(k) = 0 or 1 according to k being odd or even respectively.

Next, let
(

xn

yn

)
be the solution to the equations

(
xn

yn

)
= c(kn+1)

(
xn+1

yn+1

)
, n ≥ 0, x0 = 1.

It was proved in [5] that the solution
(

xn

yn

)
not only exists but also unique whenever there are

infinitely many odd numbers in the sequence {k1, k2, · · · }.
We now fix n ≥ 1 and make the boundary condition at the final (rather than the first) step:(
Xn

Yn

)
=

(
1
2

)
. Define

(
Xm

Ym

)
= c(km+1)

(
Xm+1

Ym+1

)
, 0 ≤ m ≤ n − 1. In particular, if km ≡

2i − 1, then X0 =: F
(i)
n+1 gives us the generalized Fibonacci sequence[8]: F

(i)
0 = F

(i)
1 = 1 and

F
(i)
n = i(F (i)

n−1 + F
(i)
n−2) for n ≥ 2. For the special case that km ≡ 2i (i ≥ 1), we rewrite X0 as E

(i)
n :

E
(i)
n = 2(i + 1)n − 1.
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(1.9)Definition. Given an interval [a, b] and α, β > 0. The partition a = a1 < b1 = a2 < b2 = a3 <
· · · < bN = b satisfying b2k−1 − a2k−1 = α and b2k − a2k = β for each k ≥ 1, if exists, is called an
[α, β]-partition.

(1.10)Definition. Fix n ≥ 1 and k1 ≥ 2, k2, · · · , kn. Define the policy Gn as follows. At the first
step, we take the [α, β]-partition with ratio α/β = X1/(Y1 − X1) and arrange the tests at the dividing
points. At the m-th step, we choose the [α, β]-partition with ratio α/β = Xm/(Ym −Xm), 2 ≤ m ≤ n,
and arrange the tests, including the tested point left from the previous step, at the dividing points.

(1.11)Theorem (Hong[5]). The policy Gn is optimal with n steps. Moreover, δ(Gn, n)= 1/X0.

(1.12)Definition. A policy P is called basic if at each step the tests are arranged at the dividing points
of an [α, β]-partition. For the special case that kn ≡ 2i and α = β at each step, the basic policy is
denoted by E(i).

The reason we pay special attention to the basic policies is that all known optimal policies are basic
and on the other hand, complicated policies are not useful in practice. Having these preparations in
mind, we can return to our main discussion. Suppose that at each step, km = 2i (i ≥ 1). Then, it is
known that there is no optimal policy at infinity[5]. Nevertheless, in our new sense, there does exist
an optimal one.

(1.13)Theorem[1]. Let i ≥ 2. For any basic policy P, we have δ(P) ≥ δ(E(i)) = 2(i + 1)/(2i + 1).
where the accuracy δ(P) is defined by Definition (1.7) but replacing Fn+1 with E

(i)
n .

The policy E(i) comes with no surprise since its construction is quite natural. However, the case
that kn ≡ 2 is excluded from the above theorem. In this case, the optimal policy takes 3/7 and 4/7
as the testing points at the first step and uses the same construction as E(i)(i ≥ 2) for the subsequent
steps [1].

We now consider the odd-block search. That is, kn ≡ 2i − 1 (i ≥ 2). In this case, for fixed n,
the optimal policy Gn gives us the [α, β]-partition: α = α(n) =F

(i)
n /F

(i)
n+1, β = β(n) = 1/i − α

for the first step. By the same procedure as we mentioned before, ω(i) :=limn→∞ F
(i)
n /F

(i)
n+1 =(√

i(i + 4)− i
)
/(2i), we obtain a basic policy W(i) by replacing α = F

(i)
n /F

(i)
n+1 with ω(i) at the first

step. More precisely, at the m-th (m ≥ 1) step, we have the [α, β]-partition with α = αm = ω(i)m,
β = βm = ω(i)m+1. Moreover, it is easy to check that δ(W(i), n) = ω(i)n, n ≥ 1. Furthermore, it
was proved[4,5] in a slight different sense that the policy W(i) is indeed the optimal policy at infinity
(See Section 4 for details).

Next, is it true the policy W(i) (i ≥ 2) being the optimal one in the general sense? The answer is
surprisingly to be negative!

(1.14)Definition. Define a basic policy H = H(i) as follows. At the first step, we take the [α1, β1]-
partition:

α1 =
{

1
i

[
i + 1

2

]
+ χ(i)ω(i)

}
ω(i) =

1
i

{
χ(i) + (χ(i − 1) − χ(i))

[
i + 1

2

]
ω(i)

}
, β1 = 1/i − α1

and at the n-th step, we choose the [αn, βn]-partition: αn = ω(i)n, βn = ω(i)n+1, n ≥ 2.

The remainder of this paper is to prove the following result.

(1.15)Theorem. For any basic policy P, we have δ(P) ≥ δ(H). In other words, the policy H = H(i)

is optimal in the general sense among the basic policies.

The paper is organized as follows. In the next section, we prove some elementary properties about
the generalized Fibonacci sequence and a related sequence. In Section 3, we study how to compute
the accuracy δ(P, n). At the end of this section, we explain the main steps of the proof of Theorem
(1.15). Especially, we explain why we have to study the optimal policy at infinity, which is the topic
studied in Section 4. Having these preparations, the proof of Theorem (1.15) is completed in Section
5. It turns out that the present proof of the main theorem is quite complicated and lengthy but we
hope that the work would provide some light to solve the problem for the general situation where
the numbers {kn} being arbitrary.



4 MU-FA CHEN AND DAN-HUA HUANG

2. Properties of F -sequence and G-sequence

From now on, we fix i ≥ 2 and kn = 2i−1 at least for all n ≥ 2. Thus, we may drop the superscript
i from W(i), F

(i)
n and so on without any confusion.

Recall the F -sequence is defined by

(2.1) F0 = F1 = 1, Fn = i(Fn−1 + Fn−2), n ≥ 2.

A related sequence, called G-sequence, is defined by

(2.2) G−1 = 0, G0 = 1, Gn = i(Gn−1 + Gn−2), n ≥ 1.

Let ω = ω(i) =
(√

i(i + 4) − i
)
/(2i) which is the positive root of

(2.3) i(ω + ω2) = 1.

(2.4)Lemma. For the F -sequence, we have

Fn+1 =
1
2

{(
1+3

√
i

i+4

)(
i+

√
i(i+4)
2

)n

+
(

1−3

√
i

i+4

)(
i−√

i(i+4)
2

)n}
(2.5)

=
1
2

{(
1+3

√
i

i+4

)
ω−n+

(
1−3

√
i

i+4

)
(−iω)n

}
, n ≥ −1.

Fn+1Fn−1 − F 2
n = (2i − 1)(−i)n−1, n ≥ 1.(2.6)

FnFn−1 − Fn+1Fn−2 = (2i − 1)(−i)n−1, n ≥ 2.(2.7)

As n → ∞,
F2n−1

F2n
strictly increases to ω and

F2n

F2n+1
strictly decreases to ω.(2.8)

As n → ∞,
F2n−1

F2n+1
strictly increases to ω2 and

F2n

F2n+2
strictly decreases to ω2.(2.9)

Proof. Clearly, (2.5) follows from (2.1) and (2.3). One may prove (2.6) by using induction and (2.1).
Then (2.7) follows from (2.6). Next, by (2.7), we have

F2n+1

F2n+2
− F2n−1

F2n
=

(2i − 1)(−i)2n

F2nF2n+2
> 0,

F2n

F2n+1
− F2n−2

F2n−1
=

(2i − 1)(−i)2n−1

F2n−1F2n+1
< 0.

From this and (2.1), it is easy to see that (2.8) holds. Similarly, (2.9) follows from (2.1), (2.7) and
(2.8). �
(2.10)Lemma. For the G-sequence, we have

Gn =
1√

i(i + 4)

{(
i +

√
i(i + 4)
2

)n+1

−
(

i − √
i(i + 4)
2

)n+1}
(2.11)

=
1√

i(i + 4)
{ω−(n+1) − (−iω)n+1}, n ≥ −1.

GnGm − Gn+1Gm−1 = (−i)mGn−m, n + 1 ≥ m ≥ 0.(2.12)

GnGm − Gn+2Gm−2 = −(−i)mGn−m+1, n + 1 ≥ m ≥ 1.(2.13)

As n → ∞,
G2n−1

G2n
strictly increases to ω and

G2n

G2n+1
strictly decreases to ω.(2.14)

As n → ∞,
G2n−1

G2n+1
strictly increases to ω2 and

G2n

G2n+2
strictly decreases to ω2.(2.15)

Proof. The proof is similar to the previous one except (2.12) and (2.13). But one may use induction
on m ≥ 0 to prove that (2.12) holds for all m ≤ n+1. Then, (2.13) follows from (2.12) and (2.2). �
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(2.16)Lemma. Let a, b, c, d be positive numbers and n,m be non-negative integers with n ≥ m. Then

aGm + bGm−1

aGn+1 + bGn
− cGm + dGm−1

cGn+1 + dGn
< 0 (resp. > 0, = 0)

if and only if (−1)m(ad − bc) < 0 (resp. > 0, = 0).

Proof. Simply use (2.13) . �
(2.17)Lemma. For the relation between the F -sequence and G-sequence, we have

Fn = Gn−1 + iGn−2, n ≥ 1,(2.18)

FnGm − Fn+2Gm−2 = −(−i)mFn−m+1, n + 1 ≥ m ≥ 1,(2.19)
F2n−1

F2n+1
<

G2n−1

G2n+1
<

F2n+1

F2n+3
,

F2n

F2n+2
<

G2n−2

G2n
<

F2n−2

F2n
, n ≥ 1.(2.20)

Proof. The first assertion follows from the definitions of the sequences plus induction. Then, (2.19)
follows from (2.18) and (2.13). Finally, (2.20) follows from (2.18) and (2.12). �

To conclude this section, we list the first few terms of the sequences for the subsequent use.

F0 = F1 = 1, F2 = 2i, F3 = i(2i + 1), F4 = i2(2i + 3),(2.21)

F5 = i2(2i2 + 5i + 1), F6 = i3(2i2 + 7i + 4), F7 = i3(2i3 + 9i2 + 9i + 1).

G−1 = 0, G0 = 1, G1 = i, G2 = i(i + 1),(2.22)

G3 = i2(i+2), G4 = i2(i2 + 3i + 1), G5 = i3(i2 + 4i + 3).

3. The Accuracy of H and W. The Idea of the Main Proof.

Suppose that a policy P acts on f ∈ F , after n steps, the remaining interval is [an, bn]. If there is
a tested point inside of [an, bn], then let cn denote this point. Next, set

Δ(P, f, n) = bn − an, δ(P, f, n) =
{

bn − an, if there is no cn

max{cn − an, bn − cn}, if cn exists.

For convenience, put Δ(P, f, 0) = δ(P, f, 0) = 1. Define Δ(P, n) = supf Δ(P, f, n) and δ(P, n) =
supf δ(P, f, n). The last one is the accuracy of P at the n-th step, which is precisely the same as we
defined before. Finally, the accuracy of P is given by δ(P) = supn≥1 Fn+1δ(P, n), since we are now
in the case that kn = 2i − 1.

As we have seen in the first section, δ(W, n) = ωn, n ≥ 0. We now prove

(3.1)Lemma. δ(W) = F2ω = 2iω.

Proof. The proof will be done once we show that as n → ∞, F2n+1ω
2n increases and F2n+2ω

2n+1

decreases to the same limit

(3.2) lim
n→∞Fn+1ω

n =
1
2

+
3
2

√
i

i + 4
=

1
i + 4

(
2(i + 1) + 3iω

)
.

The last conclusion follows from (2.5) immediately. On the other hand, by (2.9), we have

F2n+3ω
2n+2

F2n+1ω2n
= ω2

/
F2n+1

F2n+3
↓ 1,

F2n+2ω
2n+1

F2nω2n−1
= ω2

/
F2n

F2n+2
↑ 1.

Hence the proof is completed. �
As for the policy H defined in (1.14), we have



6 MU-FA CHEN AND DAN-HUA HUANG

(3.3)Lemma. δ(H) = F4ω
3 = i2(2i + 3)ω3 =: δ.

Proof. The last equality follows from (2.21). By (2.3), we can also express δ as follows:

δ = i(2i + 3)(1 − iω)ω = i(2i + 3)((i + 1)ω − 1)(3.4)

=
2i + 3

2
(
(i + 1)

√
i(i + 4) − i(i + 3)

)
< 2.

By the definition of H, it is easy to check that

δ(H, 1) =
{

1
i

[
i + 1

2

]
+ χ(i)ω

}
ω, Δ(H, 1) = 1/i

and δ(H, n) = ωn, Δ(H, n) = ωn−1/i, n ≥ 2. Thus, it follows from the proof of Lemma (3.1) that

δ(H) = sup
n≥1

Fn+1δ(H, n) = max
{

F2δ(H, 1), sup
n≥2

Fn+1δ(H, n)
}

= max{F2δ(H, 1), F4ω
3}.

Hence, we need only to show that

(3.5) 2i
(

1
i

[
i + 1

2

]
+ χ(i)ω

)
< i(2i + 3)(1 − iω).

If i = 2, then ω = (
√

3 − 1)/2. In this case, a direct computation shows that (3.5) holds. For
i ≥ 3, the left hand side of (3.5) is less or equal to i + 1 + 2iω. Thus, it suffices to show that
i(2i2 +3i+2)ω < 2i2 +2i−1. Noticing that ω < F4/F5 = (2i+3)/(2i2 +5i+1), the above inequality
follows immediately for all i ≥ 3. �
(3.6)Corollary. δ(W) > δ(H).

This corollary means that H is better than W in the general sense. Comparing H with W carefully,
we see that the difference between these two policies is only at the first step. For H, we choose

α1(H) =
{

1
i

[
i + 1

2

]
+ χ(i)ω

}
ω, β1(H) = 1/i − α1(H).

For W, we choose α1(W) = ω, β1(W) = 1/i−α1(W). Starting from the second step, the construction
rule for the two policies is completely the same. Now, what is the key point to making such a choice
for H. The reason is as follows. Since at the first step, we have an odd-block search k1 = 2i − 1, for
any basic policy P, we always have Δ(P, 1) = 1/i. On the other hand, at the second step, including
the tested point (left from the first step), there are altogether 2i tests. However, the �-th position
(1 ≤ � ≤ 2i) located by the tested point left from the first step does not make any influences to the
construction for the second step, since the key of the construction is the ratio α2/β2. This is due
to the fact that our policies are basic. But the location of the tested point does influence δ(P, 1).
Furthermore, each basic policy P corresponds uniquely a basic policy with initial testing interval
[0, 1/i] and with testing numbers: k1 = 2i, kn = 2i− 1, n ≥ 2. Let us denote the later policy by P1.
Corresponding to H, we have H1. Conversely, due to the rule for the basic policies, a basic policy P1

with initial testing interval [0, 1/i] and with testing numbers k1 = 2i, kn = 2i− 1, n ≥ 2, determines
uniquely (here we regard those policies which have the same accuracy at the first step as the same)
a basic policy P with initial testing interval [0, 1] and with testing numbers kn ≡ 2i − 1. Moreover,
It is obvious that

(3.7) δ(P) = sup
n≥1

Fn+1δ(P, n) = sup
n≥1

Fn+2δ(P1, n).

In particular,

(3.8) δ(H) = sup
n≥1

Fn+2δ(H1, n) = F4ω
3.

The above discussions tell us, in order to prove Theorem (1.15), we need only to study the basic
polices P1 and proving that

(3.9) sup
n≥1

Fn+2δ(P1, n) ≥ F4ω
3 = sup

n≥1
Fn+2δ(H1, n).

To fix our idea, let us repeat the construction of the basic policy H1. At the n-th step, we take the
[αn, βn]-partition with αn = ωn+1, βn = ωn.
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(3.10)Definition. We say that two policies P and P ′ are equivalent if for all n ≥ 1, δ(P, n) = δ(P ′, n).

Again, due to the rule of the basic policies, it is easy to check the following fact:

(3.11)Lemma. If a basic policy P1 is not equivalent to H1, then we must have α1 = α1(P1) �= ω2 =
α1(H1).

We now going to study how to compute the accuracy at each step.

(3.12)Remark. Let [an, cn, bn] be the remaining interval left from the n-th step, for the purpose of
computing the accuracy at the (n + 1)-th step, we may and will assume that an = 0, cn = δ(P1, n),
bn = Δ(P1, n) and cn ≥ bn/2. Moreover, since kn = 2i − 1 for all n ≥ 2, we may also assume that
cn > bn/2.

(3.13)Definition. Let [0, δ(P1, n), Δ(P1, n)] be the remaining interval from the n-th step, n ≥ 0.
For simplicity, we write δn = δ(P1, n) and Δn = Δ(P1, n) respectively. At the (n + 1)-th step, there are
2i tests including the tested point δn. Denoted them by 0 = z0 < z1 < · · · < z2i < z2i+1 = Δn. Then,
it follows from the last remark that δn must be one of {zi+1, zi+2, · · · , z2i}. If δn = z�, we say that δn

is located at the �-th position.

(3.14)Lemma. Let δm−1 be located at the �-th position. Then

(3.15)
(

αm

Δm

)
=

1
i χ(� − 1) − [�/2]

(
iδm−1 − [�/2]Δm−1

χ(� − 1)Δm−1 − δm−1

)

This occurs only if

(3.16) δm−1 >
�

2(i + 1)
Δm−1, if � = 2j, δm−1 <

� + 1
2(i + 1)

Δm−1, if � = 2j − 1.

Then, δm = αm if and only if

(3.17) δm−1 <
�

2i + 1
Δm−1, if � = 2j, δm−1 >

�

2i + 1
Δm−1, if � = 2j − 1.

Otherwise,

(3.18) δm = Δm − αm =
(χ(� − 1) + [�/2])Δm−1 − (i + 1)δm−1

iχ(� − 1) − [�/2]
.

Proof. Since δm−1 located at the �-th position, we have

(3.19)
(

δm−1

Δm−1

)
=

(
χ(� − 1) [�/2]
1 i

)(
αm

Δm

)

and

(3.20) Δm > αm.

Now, (3.15) follows from (3.19). By using (3.15), it is easy to check that (3.16) is equivalent to (3.20).
On the other hand, δm = αm is equivalent to say that αm > Δm/2 by Remark (3.12). Hence, the
last two assertions follows by a simple computation. �

Let je = i/2+1 and j0 = (i+1)/2 for even and odd i respectively. Define K(j) = jΔm−1/(i+1).

(3.21)Lemma. There are altogether four cases:
i) If δm−1 ∈ (K(j),K(j +1)) and δm−1 is located at an even’s position �, then � = 2j. Where j varies

from je to i − 1 if i is even; otherwise, from j0 to i − 1.
ii) If δm−1 ∈ (K(j),K(j + 1)) and δm−1 is located at an odd’s position �, then � = 2j + 1. Where j

varies from je to i − 1 if i is even; otherwise, from j0 + 1 to i − 1.
iii) If δm−1 ∈ (K(i),Δm−1), then δm−1 can only be located at the (2i)-th position.
iv) If δm−1 ∈ (Δm−1/2,K([(i + 3)/2])), then δm−1 can only be located at the �0-th position with

�0 = 2
[

i+3
2

] − 1 = i + 1 − χ(i + 1).

Proof. The partition of sub-intervals (K(j),K(j + 1)) is suggested by Lemma (3.14), especially
(3.16). The range of j ’s is due to the fact that the position � varies from i + 1 to 2i and the fact
that 1

2Δm−1 < δm−1 < Δm−1. �
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(3.22)Lemma. Given a basic policy P1. Assume that at the m-th step, we have the [αm, βm]-partition.
i) If α1 ∈ (F2n−1/F2n+1, G2n−2/G2n), then

(3.23) δ(P1,m) = (−1)m(Gm−2 − Gmα1)/im, 1 ≤ m ≤ 2n − 1

(3.24) Δ(P1,m) = δ(P1,m − 1)/i, 2 ≤ m ≤ 2n − 1.

Moreover, δ(P1,m − 1) = αm > βm for all 1 ≤ m ≤ 2n − 1.
ii) If α1 ∈ (G2n−1/G2n+1, F2n/F2n+2), then the same assertions in i) hold for all m up to 2n.

(3.25)Remark. If we set G−2 = 1/i, then we can keep not only the recurrence Gm = i(Gm−1 +
Gm−2), m ≥ 0 but also extend (3.24) to m = 1, regarding δ(P1, 0) as those given by the right hand
side of (3.23). We will use this convention for simplicity. However, we will use this convention only for
computing δm’s and Δm’s with starting value m = 1. Otherwise, it would contradict to our original
convention that δ(P1, 0) = 1/i which is the length of the initial testing interval.

Proof of Lemma (3.22).
a) Let us begin with the first step. We have Δ1 = 1

i

(
1
i − α1

)
> α1. This gives us one condition

α1 < 1
i(i+1) = G0

G2
. Clearly, δ1 = α1 if and only if α1 > 1

i(2i+1) = F1
F3

. Hence α1 ∈ (F1
F3

, G0
G2

).
b) Next, consider the second step. Assume that α1 ∈ (G1

G3
, F2

F4
) ⊂ (F1

F3
, G0

G2
). Since in the present

situation, K(i) = i
i+1Δ1, by a), it follows that δ1 ∈ (K(i),Δ1) ⇔ α1 ∈ (

G1
G3

, G0
G2

)
. But

(
G1
G3

, F2
F4

) ⊂(
G1
G3

, G0
G2

)
, hence by Lemma (3.21) we see that δ1 must be located at the (2i)-th position. On the

other hand, by (3.17), δ2 = α2 is equivalent to α1 < F2/F4. Thus, we have proved the lemma for
n = 1.

c) Suppose that we now arrive at the m-th step. Then δm > K(i) means that

(3.26) αm > iΔm/(i + 1) = δm−1/(i + 1).

Noticing that we have already had δm < Δm by our assumption, hence by Lemma (3.21), δm must
be located at the (2i)-th position whenever (3.26) holds. On the other hand, by (3.17), δm+1 = αm+1

if and only if

(3.27) (2i + 1)δm < 2δm−1.

Furthermore, if these all hold, then δm+1 = αm+1 = δm−1/i − δm. By the hypotheses of induction,
we then obtain

δm+1 =
(−1)m−1

im−1
(Gm−3 − Gm−1α1) − (−1)m

im
(Gm−2 − Gmα1) =

(−1)m+1

im+1
(Gm−1 − Gm+1α1).

This gives (3.23).
We now return to (3.26). By the hypotheses of induction, (3.26) is equivalent to

(3.28) (i + 1)(−1)m(Gm−2 − Gmα1)/im > (−1)m−1(Gm−3 − Gm−1α1)/im−1.

For odd m, this becomes

Gm−3 + (i + 1)Gm−2/i < (Gm−1 + (i + 1)Gm/i)α1.

By (2.2), this gives us α1 > Gm/Gm+2. For even m, (3.28) is equivalent to α1 < Gm/Gm+2. On the
other hand, for odd and even m, (3.27) gives us

α1 < (2Gm−1 + Gm−2)/(2Gm+1 + Gm) = Fm+1/Fm+3

and α1 > Fm+1/Fm+3 respectively. Combining these facts, we prove the required conclusions. �
Observing (2.9), (2.15), (2.20), Lemma (3.11) and Lemma (3.22), it is natural to assume that

α1 = α1(P1) is in one of the following sub-intervals:(
0,

F1

F3

)
,

(
F2n−1

F2n+1
,
G2n−1

G2n+1

)
,

(
G2n−1

G2n+1
,
F2n+1

F2n+3

)
(3.29)

(
G2n

G2n+2
,

F2n

F2n+2

)
,

(
F2n

F2n+2
,
G2n−2

G2n

)
,

(
G0

G2
,
1
i

)
, n ≥ 1.

The first three are contained in [0, ω2] but the second three in [ω2, 1/i]. However, as we have seen
from the proof a) of Lemma (3.22), α1 < G0/G2. Thus, the last one in (3.29) can be ignored. Now,
we want to prove that the second one for n ≥ 2 and the third one for all n can also be ignored.
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(3.30)Lemma. Let m ≥ 1 and δm = (−1)m(Gm−2 − Gmα1)/im. Then Fm+2δm < δ if and only if

(3.31) (−1)m−1α1 <
{
imδ/Fm+2 + (−1)m−1Gm−2

}
/Gm =: (−1)m−1Am.

In particular, A1 = δ/F3 = F4ω
3/F3 and A2 = ω2.

Proof. The assertions follow by some simple computations. For instance, let m = 2, then

α1 >
1
G 2

(
G0 − i2δ

F4

)
=

1
i(i + 1)

{1 − i2ω3} =
1

i(i + 1)
{1 − iω(1 − iω)} = ω2.

This shows that A2 = ω2. �
By Lemma (3.22), if α1 ∈ (F2n−1

F2n+1
, G2n−1

G2n+1
) with n ≥ 2 or α1 ∈ (G2n−1

G2n+1
, F2n+1

F2n+3
) with n ≥ 1, then the

assumption of Lemma (3.30) holds for m = 1 and 2. Hence F4δ2 ≥ δ and so (3.9) holds. Thus, the
proof of our main theorem is done for these cases. Therefore, we need only to consider the cases that
α1 is in one of the sub-intervals:

(3.32)
(

0,
F1

F3

)
,

(
F1

F3
,
G1

G3

)
,

(
G2n

G2n+2
,

F2n

F2n+2

)
,

(
F2n

F2n+2
,
G2n−2

G2n

)
.

Suppose that α1 is in the second interval. Then, by Lemma (3.22), the explicit expression for δ(P1,m)
works only for m = 1. If we could find an n0 so that

(3.33) Fn0+2δ(P1, n0) ≥ δ.

Then, we were done. The problem is that such an n0 for which (3.33) holds can be very large. And
there is no simple way to find out n0 since there is no simple expression for δ(P1,m) when m > 1.
Because of this, we employ the limiting behavior of Fn+2δ(P1, n) as n → ∞. And this is just what
we are going to study in the next section.

4. Optimal Policy at Infinity.

In this section, we study the optimal policy at infinity. The results obtained here are not only for
the later use but also have their own interesting. For our reader’s convenience, we first copy some

lemmas from [5] which are available for any sequence k1 ≥ 2, k2, · · · of positive integers. Let
(

xn

yn

)

be the solution to the equations

(4.1)
(

xn

yn

)
= c(kn+1)

(
xn+1

yn+1

)
, n ≥ 0, x0 = b − a > 0,

and
(

un

vn

)
satisfies

(4.2)
(

un

vn

)
≤ c(kn+1)

(
un+1

vn+1

)
, n ≥ 0, u0 = b − a.

Put

(4.3) μ(m,n) =
vn

yn

/
um

xm
, λ(m,n) =

vn

yn

/
vm

ym
, ρ(m,n) =

un

xn

/
um

xm
.

Obviously, we have

(4.4)Lemma[5]. λ(m, l)λ(l, n) = λ(m,n), ρ(m, l)ρ(l, n) = ρ(m,n),
μ(m, l)λ(l, n) = μ(m,n), ρ(m, l)μ(l, n) = μ(m,n), m,n, l ≥ 0.
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(4.5)Lemma[5]. If kn+1 = 2i, then λ(n, n+1) ≥ 1 and μ(n, n+1) ≥ i/(i+1). If kn+1 = 2i− 1, then
λ(n, n + 1) ≥ i/(i + 1) and μ(n, n + 1) ≥ 1.

(4.6)Lemma[5]. If λ(n, n + 1) < 1, then μ(n + 1, n)−1 ≥ λ(n, n + 1)−1.

(4.7)Lemma[5]. If μ(n, n + 1) < 1, then ρ(n, n + 1) ≥ μ(n, n + 1)−1.

Now, we return to our main setup: k1 ≥ 2, kn = 2i − 1 for all n ≥ 2. In this case, by Lemma
(4.5), we have

(4.8) λ(n, n + 1) ≥ i/(i + 1) and μ(n, n + 1) ≥ 1 for all n ≥ 2.

(4.9)Lemma. For each n ≥ 0, if λ(n, n + 1) < 1, then λ(n, n + 2) ≥ λ(n, n + 1)−1 > 1.

Proof. By Lemma (4.4), it follows that μ(n + 1, n)λ(n, n + 2) = μ(n + 1, n + 2). Hence, by Lemma
(4.6), we have λ(n, n + 2) = μ(n + 1, n)−1μ(n + 1, n + 2) ≥ μ(n + 1, n)−1 ≥ λ(n, n + 1)−1. �
(4.10)Lemma[5]. Let σ = (b − a)

/{
χ(k1)ω +

[
k1+1

2

]/
i
}
. Then xn = σωn, yn = σωn−1/i, n ≥ 1 is

the unique solution to the equations(
xn

yn

)
= c(kn+1)

(
xn+1

yn+1

)
, n ≥ 0, x0 = b − a.

From now on, unless otherwise stated, let P2 to denote an arbitrary policy with initial testing
interval [a, b] and with successive testing numbers k1 ≥ 2, kn = 2i−1 for all n ≥ 2. Let H2 denote the
basic policy: at the n-th step, the [αn, βn]-partition is determined by αn = xn, βn = yn−xn, n ≥ 1,
where (xn, yn) is given by Lemma (4.10). For simplicity, we put un = δ(P2, n), vn = Δ(P2, n), n ≥ 0

where u0 = δ(P2, 0) = b − a. It is known that
(

un

vn

)
satisfies (4.2)[5].

Actually, the policies P2 and H2 are the generalization of P1 and H1 respectively. If we take
[a, b] = [0, 1/i] and k1 = 2i, then P2 and H2 coincide with P1 and H1 respectively. But we prefer to
distinguish them.

Next, we introduce a sequence {ϕj} by the following procedure.
(I) Let k1 be an odd integer. In this case, we always have μ(0, 1) ≥ 1. If μ(0, 1) > 1, we simply

take ϕ1 = μ(0, 1). Otherwise, we look at the sequence {λ(n, n + 1) : n ≥ 1}. If λ(n, n + 1) ≥ 1
for all n ≥ 1, we cancel those λ(n, n + 1) which equals one and denote by ϕ1, ϕ2, · · · the remaining
λ(n, n+1)’s successively. Then the construction is done. Conversely, if we find some λ(n, n+1) < 1.
Then, by Lemma (4.9), we have λ(n, n + 2) ≥ λ(n, n + 1)−1 > 1. In this case, we will forget
λ(n, n + 1) and λ(n + 1, n + 2) and take λ(n, n + 2) as one of the ϕ’s. Then go ahead to look at
{λ(m,m + 1) : m ≥ n + 2} and repeat the same procedure. Of course, the index set J of {ϕj} may
be empty, which is equivalently to say that μ(0, 1) = 1 and λ(n, n + 1) = 1 for all n ≥ 1.

(II) Let k1 be an even integer. If μ(0, 1) ≥ 1, then we can adopt the same construction for ϕ as
given in (I). But in this case, it can be happen that μ(0, 1) < 1 for which we have to modify the above
construction. By Lemma (4.7), we then have ρ(0, 1) ≥ μ(0, 1)−1 > 1. And so we set ϕ1 = ρ(0, 1) > 1.
Now, we have μ(1, 2) ≥ 1. This enables us to return to the previous construction by regarding μ(1, 2)
and {λ(n, n + 1) : n ≥ 2} as μ(0, 1) and {λ(n, n + 1) : n ≥ 1} respectively. Again, the index set J of
{ϕj} is empty if and only if μ(0, 1) = λ(n, n + 1) = 1 for all n ≥ 1.

To get a precise impression of the above construction, consider a special case:

μ(0, 1) < 1, μ(1, 2) > 1, λ(2, 3) = 1, λ(3, 4) < 1 and λ(n, n + 1) = 1 for all n ≥ 5.

Then we have ϕ1 = ρ(0, 1), ϕ2 = μ(1, 2), ϕ3 = λ(3, 5) and J = {1, 2, 3}. On the other hand, by
Lemma (4.4), we see that

Δ(P2, n)
Δ(H2, n)

=
vn

yn
=

vn

yn

/
u0

x0
= μ(0, n) = ρ(0, 1)μ(1, n) = ρ(0, 1)μ(1, 2)λ(2, n)

= [ρ(0, 1)] [μ(1, 2)] λ(2, 3) [λ(3, 4)λ(4, 5)] λ(5, 6) · · ·λ(n − 1, n) ≥
3∏

j=1

ϕj , n ≥ 5.

This example not only shows the reason why we introduced such a construction for ϕ′s but also
indicates the proof of the following result.
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(4.11)Proposition[4,5]. For any P2, we have lim
n→∞

Δ(P2, n)
Δ(H2, n)

≥
∏
j

ϕj ≥ 1. Moreover, the equality

holds if and only if μ(0, 1) = λ(n, n + 1) = 1 for all n ≥ 1.

We are now ready to prove the main result of this section.

(4.12)Theorem. H2 is the optimal policy at infinity. That is, for any policy P2, we have

lim
n→∞

δ(P2, n)
δ(H2, n)

= lim
n→∞

Δ(P2, n)
Δ(H2, n)

=
∏
j

ϕj ≥ 1.

Proof. Write δ(P2, n)/δ(H2, n) as

(4.13)
δ(P2, n)
δ(H2, n)

=
Δ(P2, n)
Δ(H2, n)

· δ(P2, n)
Δ(P2, n)iω

= Dn
ξn

iω
,

where

Dn =
Δ(P2, n)
Δ(H2, n)

, ξn =
δ(P2, n)
Δ(P2, n)

.

Here, we have used the fact that δ(H2, n) = σωn = (σωn−1/i) · iω = Δ(H2, n)iω as given in Lemma
(4.10). By Proposition (4.11), the limit limn→∞ Dn exists. If limn Dn = ∞, then it follows from
ξn ≥ 1/2 that

(4.14) lim
n→∞

δ(P2, n)
δ(H2, n)

= lim
n→∞

Δ(P2, n)
Δ(H2, n)

.

Hence, we may and will assume that limn→∞ Dn < ∞. But then, from (4.11) and the construction
of ϕj ’s, we must have

(4.15)
Δ(P2, n + 1)
Δ(P2, n)ω

= λ(n, n + 1) −→ 1 as n → ∞.

On the other hand, as we have mentioned above, for any policy P2, we have

(4.16)
(

δ(P2, n)
Δ(P2, n)

)
≤

(
0 i
1 i

) (
δ(P2, n + 1)
Δ(P2, n + 1)

)
.

In particular,

(i + ξn)λ(n − 1, n)ω =
(

i +
δ(P2, n)
Δ(P2, n)

)
Δ(P2, n)

Δ(P2, n − 1)
=

δ(P2, n) + iΔ(P2, n)
Δ(P2, n − 1)

≥ 1.

Hence
ξn

iω
≥ 1 − iλ(n − 1, n)ω

iλ(n − 1, n)ω2
.

From this and (4.15), we get

(4.17) limn→∞ξn/(iω) ≥ (1 − iω)/(iω2) = 1.

On the other hand, by (4.16) again, we have

δ(P2, n)
δ(H2, n)

≤ iΔ(P2, n + 1)
δ(H2, n)

=
Δ(P2, n + 1)
Δ(H2, n + 1)

.

Combining this with (4.13) and (4.17), we finally arrive at

lim
n

Dn ≤
(

lim
n

Dn

)
limn

ξn

iω
≤ limn

δ(P2, n)
δ(H2, n)

≤ limn
δ(P2, n)
δ(H2, n)

≤ lim
n

Δ(P2, n + 1)
Δ(H2, n + 1)

= lim
n

Dn.

Therefore, we claim that limn ξn/(iω) = 1 and hence (4.14) holds. �
To conclude this section, we show that the optimal policy at infinity is essentially unique.

(4.18)Corollary. If P2 is not equivalent to H2, then we have lim
n→∞

δ(P2, n)
δ(H2, n)

> 1.

Proof. The conclusion follows from Proposition (4.11) and Theorem (4.12) immediately. �
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5. Proof of Theorem (1.15).

We begin this section by introducing a comparison lemma. Suppose that we are now at the
N -th step. Then the policy P1 corresponds in a natural way a basic policy P2 having successive
testing numbers k1 = 2i, kn = 2i − 1 for all n ≥ 2 and initial testing interval [0,ΔN−1]. Moreover,
δ(P1, N + m − 1) = δ(P2,m), m ≥ 1. Recalling that for the policy H2 defined by Lemma (4.10), we
have δ(H2,m) = σωm, where

(5.1) σ = ΔN−1.

As an application of Theorem (4.12), we obtain

sup
m≥1

Fm+2δ(P1,m) ≥ lim
m→∞Fm+2δ(P1,m) = lim

m→∞FN+m+1δ(P1, N + m − 1)(5.2)

= lim
m→∞

(
FN+m+1

Fm+1
Fm+1δ(P2,m)

)
=

1
ωN

lim
m→∞Fm+1δ(P2,m)

≥ ω−N lim
m→∞Fm+1δ(H2,m) = σω−N lim

m→∞Fm+1ω
m.

Thus, we have proved the following result:

(5.3)Lemma. Let γ = F4ω
3/ limn→∞ Fn+1ω

n. Then, we have δ(P1) ≥ δ provided

(5.4) σω−N ≥ γ.

Based on this lemma, we can now make a complement to Lemma (3.30).

(5.5)Lemma. Let m ≥ 1 and Δm = (−1)m−1(Gm−3 − Gm−1α1)/im. Then δ(P1) < δ only if

(5.6) (−1)mα1 < {imωm+1γ + (−1)mGm−3}/Gm−1 =: Bm.

Proof. Applying Lemma (5.3) to the case that N = m + 1, we obtain

σω−N = Δm/ωm+1 = (−1)m−1(Gm−3 − Gm−1α1)/(imωm+1).

Thus, σω−N ≥ γ is equivalent to (−1)mα1 ≤ {imωm+1γ + (−1)mGm−3}/Gm−1. This proves our
assertion. �

Consider the special case that m = 1. That is

(5.7) Δ1 = (1/i − α1)/i.

Then, the condition (5.6) becomes α1 ≥ 1
i − iγω2 > 1

i − γω. But we have

(5.8) 1/i − γω > G1/G3.

The proofs of this and some subsequent elementary inequalities are delayed to the end of this section
for keeping the main line of the proof of Theorem (1.15).

Because (5.7) holds for any choice of α1, the above facts enable us to remove the first two sub-
intervals in (3.32). Thus, for the rest of the proof, we need only to consider the intervals:

(5.9)
(

G2n

G2n+2
,

F2n

F2n+2

)
,

(
F2n

F2n+2
,
G2n−2

G2n

)
.

Now, we are at the position to complete the proof of Theorem (1.15). Note that μ(0, 1) =
Δ(P1, 1)/Δ(H1, 1) = iΔ1/ω. Thus, α1 > ω2 ⇔ μ(0, 1) < 1. If μ(0, 1)−1 ≥ γ, then ϕ1 ≥ γ and there
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is nothing to do. We assume that μ(0, 1)−1 < γ. Equivalently, α1 < 1
i − ω

γ . But as we will prove
later (Lemma (5.20)) that

(5.10) 1/i − ω/γ < F2/F4.

This means that we do not need to consider the sub-interval (F2/F4, G0/G2). Furthermore, by
Lemma (3.22), for

(5.11) α1 ∈
(

G2n

G2n+2
,

F2n

F2n+2

)
, n ≥ 1

or

(5.12) α1 ∈
(

F2n

F2n+2
,
G2n−2

G2n

)
, n ≥ 2

the formulas of δm and Δm given by (3.23) and (3.24) are available at least for m ≤ 2. In particular,
μ(0, 1) = Δ(P1, 2)/Δ(H1, 2) = α1/ω2. Hence, the proof is deduced to consider the case that ω2 <
α1 < γω2. Given such an α1, there exists uniquely an n0 so that one of (5.11) and (5.12) holds. We
now discuss these two cases separately.

(I) Let (5.12) hold for some n0 ≥ 2. Then by Lemma (3.22) and Lemma (3.30), we have
F2n0+1δ2n0−1 ≥ δ unless α1 < A2n0−1. We now prove that this is impossible. This follows once
we prove that A2n0−1 < F2n0/F2n0+2 which contradicts to our assumption. To do so, noticing that
the last inequality is equivalent to δ < F2F2n0+1/F2n0+2, by (2.8), we need only to show that

(5.13) δ < F2F5/F6.

We will check this in Lemma (5.15).
(II) Let (5.11) hold for some n0 ≥ 1. Then, we have F2n0+2δ2n0 ≥ δ unless α1 <B2n0 . But we can

prove that B2n0 < G2n0/G2n0+2. This again gives us a contradiction. Actually, the above inequality
is equivalent to ω2n0+1G2n0+2 < (i + 1)/γ. Hence, it suffices to show that

(5.14) ω3G4 < (i + 1)/γ.

This will be done by Lemma (5.19). Finally, we conclude our main proof by the following four
lemmas.

(5.15)Lemma. δ < F2F5/F6.

Proof. By (3.4), δ = i(2i + 3)((i + 1)ω − 1). We need only to show that (i + 1)ω < 1 + 2F5
(2i+3)F6

. But
the right hand side equals to

1 +
2

2i + 3
· 2i2 + 5i + 1
i(2i2 + 7i + 4)

= 1 +
2

i(2i + 3)

(
1 − 2i + 3

2i2 + 7i + 4

)
= 1 +

2
i(2i + 3)

− 2
i(2i2 + 7i + 4)

.

On the other hand,

(5.16) (i + 1)ω<
(i + 1)F6

F7
=

(i + 1)(2i2 + 7i + 4)
2i3 + 9i2 + 9i + 1

=1 +
2i + 3

2i3 + 9i2 + 9i + 1
<1 +

1
i(i + 3)

.

Thus, it suffices to show that
2

2i2 + 7i + 4
<

2
2i + 3

− 1
i + 3

=
3

2i2 + 9i + 9
. This certainly holds for

all i ≥ 2. �
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(5.17)Lemma. 1/i − γω > G1/G3.

Proof. Observe that the assertion is equivalent to

(5.18) γ < (i + 1)(1 + ω)/(i + 2).

By (3.2) and (3.3), this becomes
i(i + 4)(2i + 3)((i + 1)ω − 1)

2(i + 1) + 3iω
<

i + 1
i + 2

(1 + ω). That is

i(i + 2)(i + 4)(2i + 3)((i + 1)ω − 1) < (i + 1)(1 + ω)(2(i + 1) + 3iω) = (i + 1)(2i + 5 + 2(i + 1)ω).

Or

ω <
(i + 1)(2i + 5) + i(i + 2)(i + 4)(2i + 3)

(i + 1)
(
i(i + 2)(i + 4)(2i + 3) − 2(i + 1)

) =
2i4 + 15i3 + 36i2 + 31i + 5

2i5 + 17i4 + 49i3 + 56i2 + 20i − 2
.

Note that the right hand side is greater than 1/(i + 1 − 1/i) and ω = (
√

1 + 4/i − 1)/2. Now, it
should be easy to obtain the required assertion. �
(5.19)Lemma. ω3G4 < (i + 1)/γ.

Proof. It follows from (5.16) that

G4ω
3 = i2(i2 + 3i + 1)ω3 = i(i2 + 3i + 1)((i + 1)ω − 1) < (i2 + 3i + 1)/(i + 3).

Thus, it suffices to show that γ < (i+1)(i+3)
i2+3i+1 = 1 + i+2

i2+3i+1 . But this follows from (5.18) and (5.16):

γ <
(
1 − 1/(i + 2)

)
(1 + ω) = 1 +

(
(i + 1)ω − 1

)
/(i + 2) < 1 + 1/(i + 1). �

(5.20)Lemma. 1/i − ω/γ < F2/F4.

Proof. The assertion is the same as follows: γ < i(2i + 3)ω/(2i + 1). By (5.18), it is enough to show

that
i + 1
i + 2

(1 + ω) <
i(2i + 3)
2i + 1

ω. Equivalently, ω >
2i2 + 3i + 1

2i3 + 5i2 + 3i − 1
. Note that the right hand side

is less than 1/(i + 1 − 1/(2i − 1)), it is now easy to complete the proof. �
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