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STOCHASTIC MODEL OF ECONOMIC OPTIMIZATION

—–COLLAPSE THEOREM∗

Mu-Fa Chen and Yong Li

(Beijing Normal University)

Abstract. This paper begins with a short survey on the study of some global economic models, including
L. K. Hua’s fundamental results. The main purpose of the paper is to proving a collapse theorem for a
non–controlling stochastic economic system. In the analysis of the system, some recent progress on the
products of random matrices plays a critical role.

0. Introduction

In this section, we first recall some necessary background on the subject, including the well–known
input–output method and L. K. Hua’s fundamental theorem for the stability of economy. Then, we
show that it is necessary to study the stochastic models.

(i) Input–output method. Denote by x =
(
x(1), x(2), . . . , x(d)

)
the quantity of the main products

we are interested. Suppose that the starting vector of products last year is

x0 =
(
x

(1)
0 , x

(2)
0 , . . . , x

(d)
0

)
.

For reproduction, assume that the j–th product distributed amount x
(0)
ij to the i–th product, and

the vector of the products this year becomes

x1 =
(
x

(1)
1 , x

(2)
1 , . . . , x

(d)
1

)
.

Here, we suppose for a moment that all the products are used for the reproduction. Next, set

a
(0)
ij = x

(j)
0 /x

(i)
1 , 1 ≤ i, j ≤ d .

The matrix A0 =
(
a
(0)
ij

)
is called a structure matrix (or matrix of expend coefficient). This matrix is

essential since it describes the efficiency of the current economy. Clearly, x0 = x1A0. Similarly, we
have xn−1 = xnAn−1, n ≥ 1. Suppose that the structure matrices are time–homogeneous: An = A,
n ≥ 0. Then we have a simple expression for the n–th output:

xn = x0A
−n , n ≥ 1. (0.1)

Thus, once we know the structure matrix and the input x0, we may predict the future output. This
method is the well known input-output method.
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(ii) Hua’s theorems. Let us return to the original equation

x1 = x0A
−1 .

We now fix A, then x1 is determined by x0 only. The question is which choice of x0 is the optimal
one. Furthermore, in what sense of optimality are we talking about?

We adopt the minimax principle: finding out a x0 such that min1≤j≤d x
(j)
1

/
x

(j)
0 attains the maxi-

mum below

max
x1>0

x0=x1A

min
1≤j≤d

x
(j)
1

x
(j)
0

.

By using the classical Frobenius theorem, Hua[3,(III)] proved the following result.

Theorem 0.1. Given an irreducible non–negative matrix A, let u be the left characteristic (positive)
vector of A corresponding to the largest characteristic root ρ(A) of A. Then, up to a constant, the
solution to the above problem is x0 = u. In this case, we have

x
(j)
1

x
(j)
0

=
1

ρ(A)
for all j .

In what follows, we call the above technique (i.e., setting x0 = u) the method of characteristic
vector.

Next, we are going further to study the stability of economy. From (0.1), we obtain the simple
expression: xn = x0ρ(A)−n whenever x0 = u. What happen if we take x0 �= u (up to a constant)?
Let us consider a particular case that A = P . That is, A is a transition probability matrix. Then,
from the ergodic theorem, it follows that

Pn → Π as n → ∞ ,

where Π is the matrix having the same row
(
π(1), π(2), . . . , π(d)

)
, which is just the stationary distri-

bution of the corresponding Markov chain. Since the distribution is the only stable solution for the
chain, it should have some meaning in economics even though the later one goes in a converse way:

xn = x0P
−n , n ≥ 1 .

Set
τx = inf

{
n ≥ 1 : x0 = x and there is some j such that x(j)

n ≤ 0
}

which is called the collapse time of the economic system. From the above facts, it is not difficult to
prove that if x0 �= u =

(
π(1), π(2), . . . , π(d)

)
up to a positive constant, then τx0 < ∞. Next, since the

general case can be reduced to the above particular case, we think that this is a very natural way to
understand the following Hau’s theorem (See [2,(I)] and [3,(III),(IX)] for details).

Theorem 0.2. Under some mild conditions, if x0 �= u, then τx0 < ∞.

In L. K. Hua’s eleven reports (1983–1985), he also studied some more general models of economy.
But the above two theorems are the key to his idea. The title of the reports may cost some mis-
understanding since one may think that the theory works only for planned economy. Actually, the
economy of market was also treated in [3, (VII)]. The only difference is that in the later case one needs
to replace the structure matrix A with V −1AV , where V is the diagonal matrix diag(vi/pi): (pi) is
the vector of prices in market and (vi) is the right characteristic vector of A. Note that the charac-
teristic roots of V −1AV are the same as those of A. Corresponding to the largest characteristic root
ρ(V −1AV ) = ρ(A), the left characteristic vector of V −1AV becomes uV . Thus, from mathematical
point of view, the consideration of market makes no essential difference in the Hua’s model.

Before going further, let us look at a numerical example[3, (I)]. Take

A =
1

100

(
25 14
40 12

)
.
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Its left characteristic vector is

u =
(

5
7
(√

2409 + 13
)
, 20

)
� (44.34397483, 20) .

Then we have:

τx =

⎧⎪⎨⎪⎩
3, for x = (44, 20) ,

8, for x = (44.344, 20) ,

13, for x = (44.34397483, 20) .

(iii) Stochastic model without consumption. Let us consider the above example again. We
now allow a small random perturbation:

ãij = aij with probability 2/3,

= aij(1 ± 0.01) with probability 1/6.

Taking (ãij) instead of (aij), we get a random matrix. Next, let {An; n ≥ 1} be a sequence of
independent random matrices with the same distribution as above, then

xn = x0

n∏
k=1

A−1
k

gives us a stochastic model of an economy without consumption.
Our starting point is to observe the influence of such a small random perturbation. But first, we

use a smaller but more practical time Sx instead of τx:

Sx = inf{n ≥ 1 : x0 = x and xn /∈ D} ,

where, for this model, we choose

D =
{

(z(1), z(2)) ∈ RRR2 : 0 < z(2) ≤ z(1) ≤ 3.5z(2)
}

.

The random time Sx is called the dislocation time of the economic system. For the above choice of
D, in the deterministic case, this change makes a little difference comparing with the previous one:

Sx =

⎧⎪⎨⎪⎩
3, for x = (44, 20) ,

8, for x = (44.344, 20) ,

12, for x = (44.34397483, 20) .

Now we would like to know what happen under such a small random perturbation. Starting from
x0 = (44.344, 20), then the dislocation probability is the following

PPP (Sx0 = m) =

⎧⎪⎨⎪⎩
0, for m = 1 ,

0.09, for m = 2 ,

0.65, for m = 3 .

This observation tells us that randomness plays a critical role in the economy.
Now, a natural question arises: what is the analog of Hua’s theorem for the stochastic case? Note

that the limit theory of products of random matrices are quite different from the deterministic case
(cf. [1], [4]–[6]), the problem is non-trivial.

Let Mn = A1A2 · · ·An and denote by ‖A‖ the operator norm of A. Under some hypotheses,
Kesten and Spitzer[5] proved that Mn/‖Mn‖ converges in distribution to a positive matrix M = LR
with rank one, where L and R are positive column vector and row vector respectively.

One of the authors has recently proved the following result[2,(II)]:
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Theorem 0.4. Let R be the same as above. Under some mild conditions, we have

PPP (τx = ∞) ≤ PPP (R∗ = x/‖x‖) for any x > 0 ,

where R∗ is the transpose of R. In particular, if PPP (R∗ = x/‖x‖) = 0, then τx < ∞, a.s.

(iv) Stochastic model with consumption. We now turn to the stochastic model with consump-
tion. Let us allow a part of the productions turning into consumption, not used for reproduction.
Suppose that every year we take the θ(i)-times amount of the increase of the i–th product as con-
sumption. Then in the first year the vector of products which can be used for reproduction is

y1 = x0 + (x1 − x0)(I − Θ) ,

where I is the d × d unit matrix and Θ = diag
(
θ(1), θ(2), . . . , θ(d)

)
, which is called a consumption

matrix. Therefore,
y1 = y0[A−1

0 (I − Θ) + Θ] ,

where y0 = x0. Similarly, in the n–th year, the vector of the products which can be used for
reproduction is

yn = y0

n−1∏
k=0

[A−1
n−k−1(I − Θ) + Θ] .

Let
Bn = [A−1

n−1(I − Θ) + Θ]−1 .

Then

yn = y0

n∏
k=1

B−1
n−k+1 .

We have thus obtained a stochastic model with consumption. In the deterministic case, a collapse
theorem was obtained by Hua and Hua[4]. Now, the question in (iii) arises again: what is the analog
of the theorem for the stochastic model with consumption? This is the main topic studied in this
paper. Roughly speaking, we are looking for the conditions under which τx < ∞, a.s. for all positive
x.

In Section 1, we introduce some necessary notations and definitions. Then we study some proper-
ties of the product of Bn and prove a collapse theorem (Theorem 2.9) in Section 2. Finally, we apply
the collapse theorem to some stochastic models in Section 3.

1. Notations and definitions

We shall write M(d,RRR) for the set of all d × d matrices with real entries, Gl(d,RRR) the set of all
invertible elements in M(d,RRR), and O(d,RRR) the set of all orthogonal matrices in M(d,RRR). Denote
by RRRd the set of all d–dimensional real row vector. The transpose of a matrix M is denoted by M∗.
Given a vector x and a subset V of RRRd, let x∗ be the transpose of x and V∗ = {x∗ : x ∈ V}. Write

S(d) = {x ∈ RRRd : ‖x‖ = 1},

where x = (x(1), x(2), . . . , x(d)), ‖x‖ =
(∑d

i=1(x
(i))2

)1/2

. For any M ∈ M(d,RRR), set

‖M‖ = sup{‖xM‖ : x ∈ S(d)},

which is just the operator norm of M .
A topological semigroup is a topological set G on which an associative product is defined, and the

mapping (M1, M2) → M1M2 from G2 to G being continuous.
In what follows, we assume that {Xn;n ≥ 1} is a sequence of i.i.d. random matrices which are

defined on a probability space (Ω,F ,PPP ) with common distribution μ. Denote by Gμ the smallest
closed semigroup of Gl(d,RRR) which contains the support of μ, supp(μ).
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Definition 1.1. Given a subset G of Gl(d,RRR), we say that

(i) G is irreducible, if there is no proper linear subspace V of RRRd such that (V)M = V for any M in
G.

(ii) G is strongly irreducible, if there does not exist a family of proper linear subspace of RRRd,
V1, V2, . . . ,Vk such that (

k⋃
i=1

Vi

)
M =

k⋃
i=1

Vi

for any M in G.

Definition 1.2. Given a subset G of Gl(d,RRR), we define the index of G to be the least integer p such
that there exists a sequence {Mn; n ≥ 1} in G for which ‖Mn‖−1Mn converges to a matrix with rank p.
We say that G is contractive if its index is equal to one.

Lemma 1.3. Let G ⊂ Gl(d,RRR). Then

(a) G is irreducible, if and only if so is G∗.
(b) G is strongly irreducible, if and only if so is G∗.
(c) The indices of G∗ and G are the same.

Proof. (a) If G∗ were not irreducible, then there would exist a proper linear subspace V of RRRd such
that

(V)M∗ = V
for any M in G. Let W be the subspace orthogonal to V, then

(W)M = W
for any M in G. This is in contradiction with the fact that G is irreducible.

(b) When G is strongly irreducible, there does not exist a finite family of proper linear subspaces
of RRRd, V1,V2, . . . ,Vk such that

M∗
(

k⋃
i=1

V∗
i

)
=

k⋃
i=1

V∗
i

for any M in G. From the proof of [1; Chapter III, Lemma 3.3], we see that there does not exist a
finite family of proper linear subspaces V1,V2, . . . ,Vk of RRRd such that

(M∗)∗
(

k⋃
i=1

V∗
i

)
=

k⋃
i=1

V∗
i

for any M in G. Hence G∗ is strongly irreducible.
The assertion (c) is obvious. �

Remark. By Lemma 1.3, the definition of irreducibility (resp., strongly irreducibility) coincides
with the one given in [1; Chapter III].

Definition 1.4. Given M ∈ Gl(d,RRR), we say that

M = KAU

is a polar decomposition of M , if both K and U are in O(d,RRR) and

A = diag (a1, a2, . . . , ad)

with a1 ≥ a2 ≥ · · · ≥ ad > 0.

Lemma 1.5. Any invertible matrix M has a polar decomposition. Moreover a1 ≥ a2 ≥ · · · ≥ ad > 0
are necessarily the square roots of the eigenvalues of M∗M .

The proof of this Lemma can be found from [1; Chapter III, §1].

Lemma 1.6. Suppose that M = KAU is a polar decomposition of M , then ‖M‖ = ‖M∗‖ = a1.

Proof. The conclusion is clear since the matrices K and U are in O(d,R). �



6 MU-FA CHEN AND YONG LI

2. Proof of the Collapse theorem

Throughout the rest of the paper, we write Sn = XnXn−1 · · ·X1 and let the polar decomposition
of Sn be as follows:

Sn = KnAnUn ,

where An = diag
(
a
(1)
n , a

(2)
n , . . . , a

(d)
n

)
. Denote by U

(i)
n (resp., K

(i)
n ) the row (resp., column) vector

which consists of the i–th row (resp., column) of Un (resp., Kn).
For the reader’s convenience, we copy a result from [1; Chapter III, Proportion 3.2].

Proposition 2.1. Suppose that Gμ is strongly irreducible with index p, then the following assertions
hold.

(a) The subspace spanned by
{
U

(1)
n (ω), U (2)

n (ω), . . . , U
(p)
n (ω)

}
converges a.s. to a p–dimensional

subspace V(ω).
(b) With probability one

lim
n→∞

a
(p+1)
n (ω)
‖Sn(ω)‖ = 0 and inf

n≥1

a
(p)
n (ω)

‖Sn(ω)‖ > 0 .

(c) For any sequence {xn; n ≥ 1} in RRRd which converges to a non–zero vector, we have

sup
n≥1

‖Sn(ω)‖
‖Sn(ω)x∗

n‖
< ∞ a.s. .

Lemma 2.2. Suppose that Gμ is strongly irreducible and contractive. Then there exists a vector R(ω) in

S(d) such that with probability one {R(ω),−R(ω)} is the set of all the cluster points of
{
U

(1)
n (ω) : n ≥ 1

}
and R(ω) has at least one positive component.

Proof. By Proposition 2.1 and the assumption that p = 1, with probability one, the subspace spanned
by {U (1)

n (ω)} converges to a one–dimensional subspace V(ω). Take a unit vector R(ω) in V(ω) such
that it has at least one positive component. Since U

(1)
n (ω) ∈ S(d), it is obvious that {R(ω),−R(ω)}

is the set of all cluster points of
{
U

(1)
n (ω)

}
. �

For RRR � x > 0, which means that x has positive components, write x = x/‖x‖ and define

τx(ω) = inf{n ≥ 1 : xS−1
n (ω) has at least one negative component} .

The next result may be regarded as a preliminary version of our collapse theorem.

Theorem 2.3. Under the conditions of Lemma 2.2, if there exist a subsequence
{
nω(i); i ≥ 1

}
and a

K
(1)
∞ (ω) ∈ (

S(d)
)∗

such that

lim
i→∞

K
(1)
nω(i)(ω) = K(1)

∞ (ω) > 0 , a.s. (H)

then for any x > 0, we have

{τx(ω) = ∞} ⊂ {x = R(ω)} a.s. ,

lim
n→∞U (1)

n (ω)I{τx(ω)=∞} = R(ω)I{τx(ω)=∞} a.s. .

Proof. Without loss of generality, assume that

lim
n→∞K(1)

n (ω) = K(1)
∞ (ω) > 0 , ∀ω ∈ Ω. (2.1)
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Consider the polar decomposition Sn = KnAnUn. Take a null set N such that for every ω ∈ Ω \ N ,
{R(ω),−R(ω)} is the set of all cluster points of {U (1)

n (ω); n ≥ 1} and moreover

lim
n→∞

a
(2)
n (ω)

‖Sn(ω)‖ = 0 and inf
n≥1

a
(1)
n (ω)

‖Sn(ω)‖ > 0 . (2.2)

Fix an ω ∈ (Ω \ N) ∩ {τx = ∞}. For the remainder of the proof, we omit the variable ω in Sn(ω),
Kn(ω), Un(ω), An(ω) and so on. Take a subsequence {n(i); i ≥ 1} of {n; n ≥ 1} such that

lim
i→∞

U
(1)
n(i) =: B , (2.3)

where B ∈ {R,−R}. Since τx = ∞, we have

xS−1
n

‖Sn‖−1
> 0

for every n ≥ 1. Hence, there is some y ∈ [0,∞]d and a subsequence {m(i); i ≥ 1} of {n(i); i ≥ 1}
such that

lim
i→∞

xS−1
m(i)‖Sm(i)‖ = y . (2.4)

Since Kn and Un ∈ O(d,RRR), there exist K∞, U∞ ∈ O(d,RRR), and a subsequence {�(i); i ≥ 1} of
{m(i); i ≥ 1} such that

lim
i→∞

K�(i) = K∞ and lim
i→∞

U�(i) = U∞ .

Noticing that ‖S�(i)‖ = a
(1)
�(i), by (2.2), we have

lim
i→∞

S�(i)

‖S�(i)‖ = lim
i→∞

K�(i)

{
A�(i)

/
a
(1)
�(i)

}
U�(i) = K(1)

∞ B . (2.5)

Put

J1 =

⎛⎜⎜⎝
1

0
. . .

0

⎞⎟⎟⎠ , J2 =

⎛⎜⎜⎝
0

1
. . .

1

⎞⎟⎟⎠ .

By (2.4), (2.1) and (2.3), we obtain

x = x
(
U�(i)

)∗
J1U�(i) + x

(
U�(i)

)∗
J2U�(i)

= x
(
U�(i)

)∗(
A�(i)

)−1(
K�(i)

)∗
K�(i)A�(i)J1U�(i) + x

(
U�(i)

)∗
J2U�(i)

=
(
xS−1

�(i)‖S�(i)‖
)(

K
(1)
�(i)U

(1)
�(i)

)
+ x

(
U�(i)

)∗
J2U�(i)

→ yK(1)
∞ B + x − xB∗B , as i → ∞ .

This shows that y ∈ [0,∞)d. On the other hand, since

x =
(
xS−1

�(i)‖S�(i)‖
)( S�(i)

‖S�(i)‖
)

,

by (2.4) and (2.5), we have

x = lim
i→∞

[
xS−1

�(i)

∥∥S�(i)

∥∥] [ S�(i)

‖S�(i)‖
]

= yK(1)
∞ B .

Hence yK
(1)
∞ = 1 and x = B. Because of x > 0, we have B = R and x = R.
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Now we need only to show that
lim

n→∞U (1)
n = R .

Equivalently, R is the unique cluster point of
{
U

(1)
n ; n ≥ 1

}
since U

(1)
n is contained in the compact

set S(d). In fact, if R were not the unique cluster point of
{
U

(1)
n ; n ≥ 1

}
, then by Lemma 2.2, there

would exist a subsequence {ñ(i); i ≥ 1} of {n; n ≥ 1} such that

lim
i→∞

U
(1)
ñ(i) = −R .

From this, the above proof would imply that x = −R, which is a contradiction. �
The following result is a consequence of Theorem 2.3.

Corollary 2.4. Under the conditions of Theorem 2.3, we have

PPP (τx = ∞) ≤ PPP (x = R)

for any positive x ∈ RRRd.

For a subset G of Gl(d,RRR), we write

G−1 = {M : M−1 ∈ G} .

Lemma 2.5. Given a subset G of Gl(d,RRR), if G is irreducible (resp., strongly irreducible), then so is
G−1.

Proof. Noticing that (
k⋃

i=1

Vi

)
M =

k⋃
i=1

Vi for any M ∈ G ,

if and only if (
k⋃

i=1

Vi

)
M−1 =

k⋃
i=1

Vi for any M ∈ G,

where Vi ⊂ RRRd (1 ≤ i ≤ k). The conclusion follows easily. �
Proposition 2.6. Let Tn(ω) = Sn(ω)/‖Sn(ω)‖. Under the conditions of Lemma 2.2, for every
sequence {xn; n ≥ 1} in RRRd which converges to a non–zero vector, we have

sup
n≥1

‖T−1
n (ω)‖

‖xnT−1
n (ω)‖ < ∞ a.s. .

Proof. It is obvious that
‖T−1

n (ω)‖
‖xnT−1

n (ω)‖ =
‖S−1

n (ω)‖
‖xnS−1

n (ω)‖ .

Let X̃i =
(
X−1

i

)∗
, S̃n = X̃nX̃n−1 · · · X̃1. Then {X̃n; n ≥ 1} is again a sequence of i.i.d. random

matrices. Suppose that their common distribution is μ̃. By Lemma 1.3 and Lemma 2.5, Gμ̃ is also
strongly irreducible. Therefore, by Proposition 2.1 (c), we obtain

sup
n≥1

‖S̃n(ω)‖
‖S̃n(ω)x∗

n‖
< ∞ a.s. .

Hence

sup
n≥1

‖T−1
n (ω)‖

‖xnT−1
n (ω)‖ < ∞ a.s. .
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Lemma 2.7. Suppose that {Mn; n ≥ 1} is a sequence in Gl(d,RRR) which converges to a matrix M
with rank one. Then

lim
n→∞ ‖M−1

n ‖ = ∞ .

Proof. If the conclusion were not true, there would exist a sequence {n(i); i ≥ 1} of {n; n ≥ 1} and
M̃ in M(d,RRR) such that

M̃ = lim
i→∞

M−1
n(i) .

On the other hand,
I = Mn(i)M

−1
n(i) → MM̃ , i → ∞ ,

where I is the d×d unit matrix. This is in contradiction with the fact that the rank of M is one. �

By Lemma 1.6, Proposition 2.1, Proposition 2.6 and Lemma 2.7, we have the following result.

Proposition 2.8. Under the conditions of Lemma 2.2,

lim
n→∞ ‖xnT−1

n (ω)‖ = ∞ , a.s.

for any sequence {xn; n ≥ 1} in RRRd which converges to a non–zero vector.

Now we are ready to prove our main theorem.

Theorem 2.9 (Collapse theorem). Suppose that {Xn; n ≥ 1} is a sequence of i.i.d. random
matrices with common distribution μ. If Gμ is strongly irreducible, contractive and (H) holds, then for
any positive x ∈ RRRd, we have

PPP (τx = ∞) = 0 .

Proof. By Theorem 2.3 and Proposition 2.8, there exists a null set N such that for any ω ∈ Ω \ N ,

lim
n→∞U (1)

n (ω)I{τx(ω)=∞} = R(ω)I{τx(ω)=∞}

and
lim

n→∞ ‖xT−1
n (ω)‖ = ∞ . (2.6)

We now fix ω ∈ Ω \N and prove that τx(ω) < ∞. Again, we drop ω for a moment. If the conclusion
were not true, then there would exist a subsequence {n(i); i ≥ 1} of {n; n ≥ 1}, some y ∈ [0,∞]d

and
(
K

(1)
∞

)∗ ∈ S(d) such that

lim
i→∞

xT−1
n(i) = y and lim

i→∞
(
K

(1)
n(i)

)∗ =
(
K(1)

∞
)∗ ∈ S(d) .

Now
x =

(
xT−1

n(i)

)
Tn(i) and lim

i→∞
Tn(i) = K(1)

∞ R .

So
x = lim

i→∞

(
xT−1

n(i)

)
Tn(i) = y[K(1)

∞ R] .

This is means that y ∈ [0,∞)d and hence

lim
i→∞

‖xT−1
n(I)‖ = ‖y‖ < ∞ ,

which is in contradiction with (2.6). �



10 MU-FA CHEN AND YONG LI

3. Application

To apply the Collapse Theorem to the stochastic models mentioned in the Section 0, we still need
some preparations.

Write
Gl+(d,RRR) =

{
A ∈ Gl(d,RRR) : A is a non-negative matrix

}
.

For any x ∈ RRRd \ {0}, identify −x/‖x‖ with x/‖x‖ and let x̃ denote this equivalent class. Next, set

P (d) =
{
x̃ : x ∈ RRRd \ {0}} ,

and endow P (d) with the induced topology by the equivalent relation. A probability measure ν on
P (d) is said to be proper if for any hyperplane H in RRRd,

ν
(
x̃ : x ∈ RRRd

⋂{
H \ {0}}) = 0 .

Given a probability measure μ on Gl(d,RRR) and a probability measure ν on P (d), we say that ν is
μ-invariant if for any bounded measurable f on P (d),∫

f dν =
∫∫

f(x̃ · g)ν(dx̃)μ(dg) ,

where g ∈ Gl(d,RRR) and x̃ · g = (̃xg).

Lemma 3.1. Suppose that Gμ ⊂ Gl+(d,RRR) is strongly irreducible and contractive, then R(ω) > 0 a.s.

Proof. By Lemma 1.6 and Proposition 2.1, with probability one,

lim
n→∞

a
(i)
n (ω)

‖Sn(ω)‖ = 0, 1 < i ≤ d.

Noticing that the cluster points of Sn(ω) = Kn(ω)An(ω)Un(ω) are non-negative, we have R(ω) ≥ 0
by Lemma 2.2. On the other hand, by [1; Chapter III, Theorem 3.1], there exists a unique μ-invariant
measure ν such that

ν(x̃ : x > 0) = PPP (R > 0) and ν(x̃ : x ≥ 0) = PPP (R ≥ 0).

Furthermore, by [1; Chapter III, Proposition 2.3], ν is proper . Hence

ν(x̃ : x > 0) = ν(x̃ : x ≥ 0).

Combining these facts gives us
PPP (R > 0) = 1. �

Proposition 3.2. Suppose that Gμ ⊂ Gl+(d,RRR) is strongly irreducible and contractive, then (H) holds.

Proof. Consider the polar decomposition

Sn(ω) = Kn(ω)An(ω)Un(ω).

Let
k(n, ω) = min

{|ki| : ki is the i-th component of K(1)
n (ω)

}
.

Obviously, k(n, ω) ≥ 0 for all n ≥ 1 and ω ∈ Ω. Moreover, there exist a subsequence {k(m(i);ω), i ≥
1} and a k(ω) ∈ [0, 1] such that

k(ω) = lim sup
n→∞

k(n, ω) = lim
i→∞

k(m(i), ω).
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On the other hand, there exist a subsequence {n(i); i ≥ 1} of {m(i); i ≥ 1} and a K
(1)
∞ (ω) ∈ (

S(d)
)∗

such that
K(1)

∞ (ω) = lim
i→∞

K
(1)
n(i)(ω).

Hence
k(ω) = min

{|ki| : ki is the i-th component of K(1)
∞ (ω)

}
.

Thus, for any fixed ε > 0,{
K(1)

∞ (ω) has a zero-component
}

=
{
k(ω) = 0

}
⊂{there exists a N(ω) > 0 such that k(n, ω) < ε for all n > N(ω)

}
.

Next, for α ∈ [0, 1], let

A(α) =
{
x̃ : x = (x1, . . . , xd) ∈ RRRd and there exists

an i such that 1 ≤ i ≤ d and |xi| ≤ 2α
}

.

Then
IA(0)

(
ỹ · [R∗(ω)(K(1)

∞ )∗
]) ≤ lim inf

i→∞
IA(α)

(
ỹ · S∗

n(i)(ω)
)
, y > 0.

Denote by μ∗ the distribution of X∗
1 . From the proof of Lemma 3.1, it follows that

ν∗(x̃ : x > 0) = 1,

where ν∗ is a μ∗-invariant measure. So we have

PPP
(
K(1)

∞ has a zero-component
) ≤ ∫∫

lim inf
i→∞

IA(α)

(
x̃ · S∗

n(i)(ω)
)
ν∗(dx̃)PPP (dω)

≤ lim inf
i→∞

∫∫
IA(α)

(
x̃ · S∗

n(i)(ω)
)
ν∗(dx̃)PPP (dω)

= ν∗(x̃ ∈ A(α)).

Letting α ↓ 0, we obtain

PPP
(
K(1)

∞ has a zero-component
) ≤ ν∗(x̃ : x has s zero-component

)
= 0. �

To conclude this paper, let us return to the example given in (iii) of Section 0:

A =
1

100

(
25 14
40 12

)
= (aij), X1 = (aij ± 0.01).

It is easy to see that Gμ ⊂ Gl+(2,RRR) is strongly irreducible and contractive, therefore

PPP (τx = ∞) = 0 for all x > 0.
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