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Summary. As a continuation of the study by Herbst  and Pitt (1991), this note 
presents two criteria. The first one is on the order-preservation for two (may be 
different) multidimensional diffusion processes. The second one is on the preserva- 
tion of positive correlations for a diffusion process. 
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1 Introduction 

For  the background of the study, the related references and applications, the 
readers are urged to refer to Herbst  and Pitt (1991). 

Definition 1.1 Let " _< " denote the usual semi-order in IR". 
(1) A measurable function f i s  called monotone if 

f(x)<=f(y) for a l l x < = y .  

Denote by d/r the set of all bounded continuous monotone functions. 
(2) For  two Markov semigroups {Pt } and {fit }, we write P, > fit if for a l l f e  Jg, all 
x = > y and t = > 0, 

Ptf(x) ~ F t f ( y ) .  

If in addition Pt = 16, we call {Pt} monotone. 
(3) A probability measure # is said to have positive correlations if 

#(fg) > #(f)#(g) for all f, g~M//,  
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where I~(f)  = f fdp .  Denote by ~+ the set of all such probability measures. 
(4) A Markov semigroup {P,} is said to preserve positive correlations if 

Let 

/~Pt ~ ~+ for all # e ~+ and t > 0 .  

= a i j - -  + bl ~ . A ~ ,~xiOxj 
i , j = l  i = l  i 

Throughout this paper, assume that (aij) is nonnegative definite everywhere, air, 
bi~C(]R") and the martingale problem for A is well posed. Let {P~} be the 
semigroup generated by A. One of the main result of Herbst and Pitt (1991) can be 
summarized as follows: 

Theorem 1.2 (1) I f  

(a) for all i and j, aij(x ) depends only on xi and xj and 
(b) for all i :4 = k, bi(x) is an increasing function Of Xk, 

then { Pt } is monotone. The conditions (a) and (b) are necessary in the case that aij and 
bi are all bounded and having bounded continuous derivatives of all orders. 
(2) I f  { P,} is monotone and the following condition holds: 

(1.1) alj > O for all i and j ,  

then { Pt } preserves positive correlations. Moreover, the condition (1.1) is necessary in 
the same case mentioned in (1). 

Our first criterion is a generalization to part (1) of Theorem 1.2. Here, we allow the 
two semigroups to be different. This is meaningful since it enables us to compare 
a given diffusion process with a simpler one. Let 

1 " c32 ~ 3 ~ a i j - -  + /~--, 
Y* = 2 i, "= l & i &  r i= ~ ~ Oxi 

and let { t5} be the semigroup generated by A. 

Theorem 1.3 P, >/5, if and only if  the following two conditions hold: 

(1.2) for all i and j, air =- alj and air(x) depends only on xi and x r. 

(1.3) for all i, bi(x) > Oi(y) whenever x > y with xl = Yl. 

As for the preservation of positive correlations, we claim that the monotonicity is 
also necessary in the context of diffusion processes. 

Theorem 1.4 {P,} preserves positive correlations if and only if it is monotone and 
(1.1) holds. 

The proofs of Theorem 1.3 and Theorem 1.4 are given in the following two sections 
respectively. It is worth to mention that the monotonicity is not necessarily needed 
for the preservation of positive correlations for other type of Markov processes. 
For instance, every Markov process on real line (and actually, every probability 
measure on totally ordered space) has positive correlations but some one-dimen- 
sional jump processes are not monotone. A general criterion for order-preservation 
(in particular, for monotonicity) of jump processes was presented in [1] (also in 
[2]), from which some idea of this paper follows. 
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2 Proof of Theorem 1.3 

Let 

423 

C~ = { feC~(IR"): f i s  constant out of a compact set} 

C ~ = { f e  C ~ (IR"): f has bounded continuous derivatives of all orders } . 

Since C~ c { f~  C~: Af  is bounded} and the martingale problem for A is well 
posed, we have 

(2.1) lim 1 ,_~oTEPtf(x) - f ( x ) ]  = Af(x), x ~ R  n, f ~ C ~  . 

Because JCL c~ C~ is dense in Jg under pointwise convergence, we can replace Jr 
~/~ c~ C~ in Definition 1.1. 

To prove Theorem 1.3, we need some preparations. 

Lemma 2.1 I f  Pt > fit, then Af(x)  > Af(y) for all x > y and f s J / [ ~  C~ with 
f ( x )  = f ( y ) .  

Proof Without loss of generality, assume that f >  0. Choose m > 0 such that 
{z: [zl < m} contains x and y and take h~C~ such that 

Set 

{'0i0 if ]zl __< m 

if IzI__>m+ 1 

otherwise . 

~ = h f + a ( 1 - h ) ,  f 2 = h f ,  

where a is a cons tant la rger than  the upper bound o f f  T b e n ~ , f 2 s C ~ , ~  ~ f ~ f 2  
a n d ~  = f 2 = f o n  the set {z:lzl < m}. Since 

Pt f (x )  ~F t f ( y ) ,  f ( x ) = f ( y ) ,  

we have 

[P,A(x) - A ( x ) ]  _-> t [P ,A(y )  -A(y) ] ,  t > o. 

The assertion now follows from (2.1) by letting t $ 0. [] 

Lemma 2.2 I f  Pt > fit, then (1.3) holds. 

Proof For given i, let u =< v with ui = vi. Choose f s  JL c~ C~ such that in a neigh- 
borhood of { u, v }, 

f ( x )  = xl. 

Then by Lemma 2.1 we get bi(v) > bi(u). [] 
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Lemma 2.3 I f  Pt > -fit, then (1.2) holds. 

Proof  The proof consists of three steps. 
(a) For given i, let u N v with ui = v~. Choose f ,~e~  c~ C ~ ( m e N )  such that in 

a neighborhood of {u, v}, 

fro(x) = ( x i -  ui + 1) 2m+l 

By Lemma 2.1, we have 

ai i (v  ) - -  a i i (u  ) ~ 2 [ / ~ ( u )  - -  b i ( v ) ]  , 
m 

and so au(v )>  ghi(u) since m is arbitrary. Replacing fm with ( x l -  u i -  1) 2m+1 
in the neighborhood of {u, v}, we obtain the inverse inequality. Therefore 
a u ( v  ) "= {lu(U). 

(b) For given i ~ j  and u < v: ui = vi, u~ = vj, choose fro e d{ c~ C~~ such 
that in a neighborhood of {u, v}, 

fro(X) = (Xi  q- X j  - -  Ul - -  Uj q- 1) 2m+l  

By (a) and Lemma 2.1, we get 

aij(v) - {tij(u) > ~1~ [bi(u) + ~(u)  - bi(v) - bj(v)] , 
~ m  

and so ai j (v )>  gtq(u). Similarly we have the inverse inequality and hence 
aij(v) = dij(u). 

(c) By (a) and (b) we get (1.2) immediately. [] 

Lemma 2.4 Suppose that (1.2) and (1.3)hold and alj, bi, ~ are all bounded. I f  one of  
{P~} and {/~t} is monotone, then Pt > Pt. 

Proof  (a) Without loss of generality, assume that { 172} is monotone. We can also 
assume that aij, bi and bi are smooth. Otherwise, choose (p~C~(IR),cp > 0 ,  
facp = 1 and define 

~om(x) = m" (-I ~o(mxk) , 
k = l  

a.Tj= aq*qom + 6ij/m, bT'= bi*cpm, ffT'=/;z*~0,,. 

Note that 
b'f(x)  = > b' f(x)  = > b.'l'(y) 

for all x > y with xi 4 = yi. For the last inequality_, we have used the monotonicity of 
fit and Lemma 2.2_Thus, (1.3) holds for b~r and bT'. Clearly, every (a~) satisfies (1.2). 
Since a~], b m and b}" converge uniformly to aij, b~ and bi respectively, by a conver- 
gence theorem ([4, Theorem 5.3] or [6, Theorem 11.1.41), the proof of the lemma is 
reduced to the smooth case. 

(b) By (1.2) and (1.3), we have 

Af(x)  > Y,f(x), x~n'," 
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for all f s J g  c~ C~. On the other hand, since the coefficients of the operators are 
assumed by (a) to be bounded and smooth, we have the integration by parts formula 

P , f ( x )  - f f t f ( x )  = f P~(A - A ) P t _ ~ f ( x ) d s  . 
0 

From this and the monotonicity of {fit}, it follows that 

P t f ( x )  > t i f f ( x ) ,  x~IR" . 

Hence 
n t f ( x )  > f i t f ( x )  > -fitf(Y) 

for a l l f ~ c ~ C ~  ~ [] 

Lemma 2.5 Suppose that (1.2) and (1.3) hold and ai~, bi, b~ are all bounded. I f  in 
addition, ( aij ) is uniformly positive definite and b~ is uniformly continuous for each i. 
Then Pt > Pt. 

Proof Set 

ff/(x) = sup ~(y), x E IR  n . 

+ bl . 
i=1 

y:y~x, yi=xi 
1 " 0 2 

= ~j= aij ~z~ 2 i , '=1  (~xi~xj 

By (1.3) we have 

(2.2) bi(x) > ~ ( x )  > ffi(x), x~]R" . 

By the assumption, ffi is still uniformly continuous, the martingale problem for A is 
well posed (see [5]). On the other hand, it is easy to check that, for all i 4= k, hi(x) is 
an increasing function of Xk. A generates the semigroup { Pt }, which is monotone 
by part (1) of Theorem 1.2. Furthermore, by (2.2) and Lemma 2.4 we have 

Pt>>=Pt and / ~ t > / ~ .  

The proof is completed. [] 

Proof of  Theorem 1.3 By Lemmas 2.2 and 2.3, we need only to prove the sufficiency. 
For each m~N,  take t/m: IR" ~ IR" such that 

xi, if Ixil < m 

(rlm(X))i = ~ - m ,  if xi < - m  

( m, if xi > m , 

and choose h~C(IR): h(r) = (1 - [r[) +. Set 

a t ( x )  = h (x i /m)h (xJm)a i j ( x )  + 6 i j m  , 

bin(x) = bi(~l,,,(x)), 6~'(x) = ~(t/m(X)), 

1 ~  0 2 ~ 0  

i , j = l  ~xi~xj i=1 Oxi 

a t - - +  i. j= 1 c3xlc~xj i=1 axl 
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Then 

,im { + + 
m~oo i , j=l  i = 1  

locally_uniformly in x. Since A,,, ,4,, satisfy the conditions of Lemma 2.5, we have 
P t  > P~'. Finally, the assertion follows from a convergence theorem mentioned in 
the proof (a) of Lemma 2.4. [] 

3 Proof of Theorem 1.4 

Because of part (2) of Theorem 1.2, we need only to study the necessity of the 
monotonicity for preservation of positive correlations. The intuitive idea of the 
proof is as follows: Due to the fact that the operator consists of two parts: diffusion 
and drift, by using some probability measure supported at two points, we are able 
to compare these two parts respectively. 

Lemma 3.1 For x < y, let #e~:p t ({x})  = #({y}) = �89 Then # ~ + .  

Proof Simply note that {x, y} is a totally ordered space. [] 

Lemma 3.2 Suppose that { P t }  preserves  positive correlations and let # be the same as 
in the previous lemma. Then for all f g e dg n C ~ ~ with 

# ( fg )  = #( f ) /~(g) ,  

where 

F a ( f  g)(x)  = A ( f g ) ( x  ) - f ( x ) A g ( x )  - g ( x ) A f ( x )  

i,j o x  i o x j  

Proof A simple computation shows the equivalence of the two inequalities given 
above. Thus, to prove the first assertion, it suffices to considerf  g > 0 only. Since 
{ Pt} preserves positive correlations, we have 

(3.1) #(Pt( fg))  >= # ( P t f ) # ( P , g ) ,  t >= O. 

Define ft andfz as in the proof of Lemma 2.1. The only difference from there is that 
in the present situation, the constant a is chosen to be larger than the upper bound 

we have 

2 [ A ( f g ) ( x )  + A( fg ) ( y ) ]  

> ( f ( x )  + f ( y ) ) [ A g ( x  ) + Ag(y)]  + (g(x) + g ( y ) ) [ A f ( x )  + A f (y ) ]  . 

Equivalently, 

2[r l ( f ,  a)(x) + r l ( f ,  g)(y)] 

> ( f ( x )  - f ( y ) ) [ A g ( y )  - Ag(x)]  + (g(x) -- g ( y ) ) [ A f ( y )  - A f ( x ) ]  , 
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o f f v  g. Replacing f w i t h  g, we can define gl and g2. Because fl,f2, gl,  g2~C~ ,  
fl >f_->f2 and 91 > g > g2, by (3.1), we have 

#(Pt(f~g~)) >= #(Ptf2)#(Ptg2) ,  t >= O . 

On the other hand, f1 = f = f 2 ,  gl = g = g2 on the set {Izl < m}. Hence 

2_ {Pt( fagl ) (X)  + P t ( f lg t ) (Y )  - ( fg ) (x )  - ( fg ) (y )}  
t 

=> ~ {(P, f2(x) + P, f2(y))(P,  g2(x) + n,g2(Y)) 

-- ( f ( x )  + f ( y ) ) ( g ( x )  + g(y))}, t > 0 .  

Now, the required assertion follows from (2.1) by setting t $ 0. [] 

Lemma 3.3 I f  {Pt}  preserves positive correlations, then aij >= 0 for all i , j  and 
moreover for all k # i, bi(x) is an increasing function Of Xk. 

Proof (a) Let x = y, then Lemma 2.1 gives us 

F l ( f , g ) ( x ) > O ,  f , g ~ J Z m C ~  ~  

Hence, for given i and j, we get a,j > 0 by choosing f, g e J///c~ C~ such that in 
a neighborhood of x, 

f ( z )  = &, g(z) = z i . 

(b) For given i and k # i, let u < v~]R",uk < vk, uj = v j for j  ~ k a n d # ~  such 
that #({u}) = #({v}) = �89 Choose an increasing function h~C~( IR)  such that 

0, if r < Uk + (Vk-- Ug)/3 
h ( r )=  1, if r > Uk + (Vk-- Ug)/2 . 

T a k e r  gEJ~ c~ C~ such that in a neighborhood of{u, v}, 

f ( x )  = xi, g(x) = h(Xk) . 

As an application of Lemma 3.2, we obtain 

2bi(v) > b,(u) + bi(v) �9 

Hence bi(v) > bi(u). [] 

Lemma 3.4 I f {  P,} preserves positive correlations, then for all i and j, aij ( x) depends 
only on x~ and xj.  

Proof (a) For given i :t: k, let u <= v, Uk < Vk, U~ = V~ and let # be the same as above. 
Choose fro, g~Jr C~~ such that in a neighborhood of {u, v}, 

f , , ( x ) = ( x l - u i +  1) 2m+1, g(x)=(Xk--Uk) 3. 

By Lemma 3.2 we have 

I 6aik(V) l 
au(v) - au(u) >-- ml bi(u) bi(v) (v k _ _  Uk ) 
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Lett ing m Toe ,  we get 

aii(v) - ai i(u)  > O . 

Similarly, replacing fm with ( x i -  u i -  1) am§ near  u and v, we obtain  the inverse 
inequality. Therefore a u ( x )  depends only on x~. 

(b) Fo r  given i ~ j ,  k + i , j ,  let U < V, Uk < Vk, Ui = V~, Uj = Vj, take 
/~({u}) = p({v})  = �89 Choose  fro, g e J g  c~ C ~ ~  such that  in a ne ighborhood  
of {u, v}, 

f , ~ ( x )  = (x~ + x i - ui  - u j  + 1) 2 ~ + 1 ,  g ( x )  = (xk  - uk) 3 �9 

By L e m m a  3.2 and (a) we have 

ai~(v) - a i j (u )  > 2ram bi (u)  + b j ( u )  - b i (v)  - b j ( v )  - 6(aik(V)-+--aik(V)) . 
V k - -  U k 

Lett ing m ~ ~ ,  we get 

ai j (v )  >= a i j (u )  . 

Similarly, we can prove  the inverse inequality. Therefore  a~i(u ) = ai;(v).  [] 

P r o o f  o f  T h e o r e m  1.4 The sufficiency is given by par t  (2) of Theorem 1.2. The 
necessity follows f rom Lemmas  3.3, 3.4 and Theorem 1.3. [] 
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