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Introduction

This article presents a survey of our investigations in the past eleven years with the emphasis
falling on the two espects expressed by the title and their interactions. However, the survey may be
incomplete.

The theory of jump processes, especially Markov chains has a long history of development in
the world and some achievements have been obtained in this field in China. Some of our works on
Markov chains are alrealy included in this volume. Hence we consider only some special topics here.
The uniqueness problem for jump processes is quite classical, we introduce a very general criterion
and some practical sufficient conditions. Then, we go to some more fashinable topics: couplings,
monotonicity and large deviations. Clearly, these topics are stimulated by the study of particle
systems. As usual, the state spaces ZZZd and RRRd are enough in practice. But we prefer to use the
general state space (E,E ) without topology. One reason to do so is to simplify our representation
and, for another reason, such type of processes does not depend on the topology closely. It is believed
that the results of Part I should have wide applications. For instance, they have been used to study
the controlled Markov processes which are not involved in the article.

Ten years ago, we peered into a window of the large building, Interacting Particle Systems,
by studying the reversibility for some particle systems. We found some very simple criteria for the
reversibility, which is due to our experiences on the study of reversible Markov chains and consists
of the first two sections of Part II. The idea was then used to study some more general or particular
models, quasi-nearest particle systems, for example. The last model, even irreducible, does eshibit
an interesting phase transition phenomenon. The last half of Part II reflects the strong influences
our colleaques from the probabitists in the United States.

One of our main motive powers to study the particle system comes from the non-equilibrium
statistical physics. There are a lot of models, attractive enough but quite difficult to handle. They
are now named reaction diffusion processes. The essential progress was not made until 1983 even
though we were interested in this area much earlier. A glance at the content of Part III will tell one
what we have done. However, many important problems are still unsolved. This is quite natural for
a developing subject.

Most of the authors mentioned in the article have worked with us in our unirersity for a period,
even for years. In the process of writting the article, we constantly recalled the nice time we had
spent together. We do appreciate very much their cooperations.
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Notations

NNN = {1, 2, · · · } E+ = {f ∈ E : f ≥ 0}
ZZZ+ =NNN ∪ {0} bE = {f ∈ E : ∥f∥ = supx∈E |f(x)| < ∞}
ZZZ = ZZZ+ ∪ (−ZZZ+), δ(·, A) = IA = the indicator function of A,
RRR = the real line S, a finite or countable set

(E,E ), a measurable space S = the non-empty finite subsets of S
P(E) = the set of probabilities on (E,E ) |S| = the cardinate of S
E = the set of real E -measurable functions

Part I. Jump Processes

(1) Definitions
Let (E,E ) be a measurable space such that {(x, x) : x ∈ E} ∈ E ×E and {x} ∈ E for all x ∈ E.

It is well-known that for a given sub-Markovian transition function P (t, x, A)(t ≥ 0, x ∈ E,A ∈ E ),
if it does satisfy the jump condition

(1.1) lim
t→0

P (t, x, {x}) = 1, x ∈ E

then the limits

(1.2) q(x) ≡ lim
t→0

[1− P (t, x, {x})]/t

and

(1.3) q(x,A) ≡ lim
t→0

P (t, x, A \ {x})/t

exist for all x ∈ E and A ∈ R, where

R = {A ∈ E : lim
t→0

sup
x∈A

(
1− P (t, x, {x})

)
= 0}.

Moreover, q(·) ∈ E and q(x,A) is a kernel on (E,E ) and 0 ≤ q(x,A) ≤ q(x) ≤ ∞ for all x ∈ E
and A ∈ R. The pair (q(x), q(x,A))(x ∈ E,A ∈ R) is called a q-pair. Throughout this paper,
we restrict ourselves to the totally stable case which means that q(x) < ∞ for all x ∈ E. Then
q(x, ·) can be uniquely extended to the whole space E as a finite measure. Thus, in what follows,
we assume that q(x,A) is a kernel on (E,E ). Next, the q-pair

(
q(x), q(x,A)

)
is called conservative if

q(x,E) = q(x) for all x ∈ E. Because of the above facts, we often call the sub-Markovian transition
P (t, x,A) satisfying (1.1) a jump process or a q-process.

A typical case is that E is countable. In this case, conventionally we use the matrices Q = (qij :
i, j ∈ E) and P (t) = (pij(t) : i, j ∈ E) instead of the q-pair and the jump process respectirely. Here
qij = −qi, i ∈ E. We also call P (t) = (pij(t)) a Markov chain or a Q-process.

(2) Existence
According to the last section, we have obtained a q-pair from a jump process. However, the

study of jump processes is mainly in the converse direction. That is, what can we say about P (t, x, A)
from a given q-pair

(
q(x), q(x,A)

)
? Certainly, the starting point is only that

(2.1) lim
t→0

P (t, x, A)− δ(x,A)

t
= q(x,A)− q(x)δ(x,A), x ∈ E,A ∈ R.
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Along this direction, the first result is due to W.Feller
(2.2) Theorem (Feller (1940)). For a given q-pair

(
q(x), q(x,A)

)
(x ∈ E,A ∈ E ), there exists a

minimal jump process Pmin(t, x, A). More precisely, set
*

P (0)(t, x, A) = 0,

P (n+1)(t, x, A) =

∫ t

0

e−q(x)(t−s)ds

∫
q(x, dy)P (n)(s, y, A) + δ(x,A)e−q(x)t,

t ≥ 0, x ∈ E,A ∈ E , n ≥ 0.

Then for each t, x and A,

P (n)(t, x, A) ↑ Pmin(t, x,A) as n → ∞

Furthermore, Pmin(t, x, A) is a jump process and satisfies (2.1). Finally, for every jump process
P (t, x,A) satisfying (2.1) we have

P (t, x, A) ≥ Pmin(t, x,A)

for all t, x and A.
Since there is one-to-one correspondence between a jump process P(t, x, A) and its Laplace

transform (cf. Hu (1966))

P (λ, x,A) =

∫ ∞

0

e−λtP (t, x, A)dt, λ > 0, x ∈ E, A ∈ E ,

we also call P (λ, x,A) a jump process without any confusion. By using the Laplace transform, the
minimal (or Feller’s) jump process has an alternative construction:

P (0)(λ, x,A) = 0,

P (n+1)(λ, x,A) =

∫
q(x, dy)

λ+ q(x)
P (n)(λ, y,A) +

δ(x,A)

λ+ q(x)
, λ > 0, x ∈ E, A ∈ E , n ≥ 0,

P (n)(λ, x,A) ↑ Pmin(λ, x,A) =

∫ ∞

0

e−λtPmin(t, x, A)dt, as n → ∞, λ > 0, x ∈ E,A ∈ E .

(3) Uniqueness

Now, we turn to the uniqueness problem for jump processes. Set Ė = {x ∈ E : q(x,E) < q(x)},
which is the set of all non-conservative points. Put

Uλ = {f : (λ+ q(x))f(x) =
∫
q(x, dy)f(y) for all x ∈ E},

Vλ = {ν : ν is a non-negative σ−finite measure on E such that
ν(A) =

∫
ν(dx)

∫
A
q(x, dy)/(λ+ q(y)) for all A ∈ E }.

(3.1) Theorem (Chen and Zheng (1983)). For a given q-pair (q(x), q(x, A)), there exists precisely
one jump process iff the following conditions all hold for some (equivalently, for
all ) λ > 0 :

i) infx∈Ė Pmin(λ, x,E) > 0,
ii) Uλ = {0},
iii) the q-pair (q(x), q(x, A)) is conservative, or although it is not conservative still

Vλ = {0}.
As a simple consequence, we have

(3.2) Corollary. If supx∈E q(x) < ∞, then the jump process is unique.
Let us consider a particular case. Take E = ZZZ+. A Q-matrix Q = (qij) is called a conservative

single birth Q-matrix if qij = 0 unless j ≤ i+ 1, qi,i+1 > 0 and −qii = qi =
∑

j ̸=i qij for all i ∈ ZZZ+.
Let
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q
(i)
k =

i∑
j=0

qij , 0 ≤ i < k, k ∈ ZZZ+

F
(k)
k = 1, F

(i)
k =

k−1∑
j=i

q
(i)
k F

(i)
j /qk,k+1, 0 ≤ i < k, h ∈ ZZZ+

and

mk =
k∑

i=0

F
(i)
k /qi,i+1, k ∈ ZZZ+.

(3.3) Corollary (Yan and Chen (1986)). For a given conservative single birth Q-matrix Q = (qij),
the Q-process is unique iff

∑∞
k=0 mk = ∞.

The following result is specially useful when E = ZZZd
+(d ≥ 2). In that case we simply take

Ek = {(x1, · · · , xd) ∈ ZZZd
+ : x1 + · · ·+ xd = k} as the partition stated below.

(3.4) Corollary (Yan and Chen (1986)). Let E be a countable set and Q = (q(x, y) : x, y ∈ E)
be a conservative Q-matrix. Suppose that there is a countable partition {Ek}∞0 of E such that
sup {q(x) : x ∈ Ek} < ∞, and that for every x ∈ Ek,

∑
y∈Ek+1

q(x, y) > 0 and q(x, y) > 0 only if

y ∈
∑k+1

l=0 El. Introduce a conservative single birth Q-matrix Q = (qij) as follows:

*

qij =


sup{

∑
y∈Ej

q(x, y) : x ∈ Ei}, if j = i+ 1

inf{
∑

y∈Ej
q(x, y) : x ∈ Ei}, if j < i

0, if j ≥ i+ 2.

If the (qij)−process is unique then so is the (q(x, y))−process.

In the paper quoted above, the Corollary (3.4) is applied to the following models.

(3.5) Autocalalytic reaction model.

The state space is E = ZZZS
+, where S is a finite set. The Q-matrix is as follows:

q(x, y) =


λ1x(u), if y = x+ eu

λ2

(
x(u)
2

)
= λ2x(u)(x(u)− 1)/2, if y = x− 2eu

x(u)p(u, v), if y = x− eu + ev and u ̸= v

0 the other cases of y ̸= x, x, y ∈ E, u, v ∈ S

q(x) =
∑
y ̸=x

q(x, y), x ∈ E,

where eu ∈ E has eu(u) = 1 and eu(v) = 0 for v ̸= u, λ1 and λ2 are positive constant and
(p(u, v) : u, v ∈ S) is a transition probability matrix on S. The similar notations will be used below.

(3.6) Schlőgl’s second model.

E = ZZZS
+, x = (x(u) : u ∈ S) ∈ E.

q(x, y) =


λ1

(
x(u)
2

)
+ λ4, if y = x+ eu

λ2

(
x(u)
3

)
+ λ3x(u), if y = x− eu

x(u)p(u, v), if y = x− eu + ev and u ̸= v

0 the other cases of y ̸= x,

q(x) =
∑
y ̸=x

q(x, y)

(3.7) Lotka-Volterra model.
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E = (ZZZ2
+)

S . x = ((x1(u), x2(u)) : u ∈ S) ∈ E.

q(x, y) =



λ1x1(u), if y = x+ eu1

λ3x2(u), if y = x− eu2

λ2x1(u)x2(u), ify = x− eu1 + eu2

xi(u)pi(u, v), if y = x− eui + evi, i = 1, 2, u ̸= v

0, the other cases of y ̸= x

q(x) =
∑
y ̸=x

q(x, y)

where eui(v, j) = 1 if v=u and j=i, =0 otherwise.
(3.8) Brusseltor model.

E = (ZZZ2
+)

S , x = ((x1(u), x2(u)) : u ∈ S).

q(x, y) =



λ1, if y = x+ eu1

λ4x1(u), if y = x− eu1

λ2x1(u), if y = x− eu1 + eu2

λ3

(
x1(u)

2

)
x2(u), if y = x− eu2 + eu1

xi(u)pi(u, v), if y = x− eui + evi, i = 1, 2, u ̸= v

0, the other cases of y ̸= x

q(x) =
∑
y ̸=x

q(x, y)

All the above Q-matrices are conservative. In this case, it is obvious that the criterion (3.1)
is reduced to Uλ = {0}. However, if | S |≥ 2, then it is hard to check directly the condition that
Uλ = {0}. The key point of Corollary (3.4) is to reduce our problem to the single birth case for
which we have had a complete solution. (Corollary (3.3)).

Though we have just seen that the Corollary (3.4) is effective, yet it has no use in the case that
E = RRRd. This leads us to search some more general and still practical conditions.
(3.9) Theorem (Chen (1986a)). Let (q(x), q(x,A)) be a conservative q-pair. Suppose that there
exist a sequence {En}∞1 ⊂ E and a φ ∈ E+ such that

En ↑ E, sup
x∈En

q(x) < ∞, lim
n→∞

inf
x/∈En

φ(x) = ∞

and

(3.10)

∫
q(x, dy)φ(y) ≤ (c+ q(x))φ(x), x ∈ E

for a constant c ∈ RRR. Then the jump process is unique. Moreover, if E = ZZZ+ and the given q-pair
(i.e., Q-matrix ) is a conservative single birth Q-matrix, then the above condition is also necessary
for the uniqueness of jump processes.
(3.11) Corollary. Let (q(x), q(x,A)) be a conservative q-pair. Suppose that there exist a φ ∈ E+ :
φ(x) ≥ (x), x ∈ E and a constant c ∈ RRR such that (3.10) holds. Then the jump process is unique.

Of course, these results are applicable to the above models. To see this, let us consider example
(3.6) for instance. To use Theorem (3.9), we take φ(x) = c[1 +

∑
u∈S x(u)]. for some c > 0. But to

apply Corollary (3.11), we take φ(x) = c[1 + (
∑

u∈S x(u))3].

(4) Stationary distributions.
In this section, we suppose that (E, ρ,E ) is a complete separable metric space with metric ρ

and topological σ−field E .

dell
文本框
q(x)

dell
线条
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(4.1) Definition. A function h ∈ E+ is called compact if for each 0 ≤ c < ∞, the set {x ∈ E :
h(x) ≤ c} is compact.
(4.2) Definition. A q-pair is said to be reqular if it is conservative and it determines uniquely a
jump process.
(4.3) Theorem (Chen (1986b)). Let (q(x), q(x,A)) be a regular q-pair. Denote by P (t, x, A)
the corresponding jump process. Suppose that for every bounded Lipschitz continuous function
f, x → P (t)f(x) =

∫
P (t, x, dy)f(y) is continous and that there exists a compact function h and

constants K ∈ [0,∞), η ∈ (0,∞) such that

ρ(x, θ) ≤ h(x), x ∈ E∫
q(x, dy)(h(y)− h(x)) ≤ K − ηh(x), x ∈ E

where θ is an arbitrary reference point in E. Then there exists at least one stationary distribution
π for the process:

π = πP (t).

Moreover, for each stationary distribution π of P (t, x, A), we have *∫
π(dx)h(x) ≤ K/η.

Applying the above result to the model (3.6), we take

ρ(x, y) =
∑
u∈S

|x(u)− y(u)| and h(x) = ρ(x, θ),

where θ = (θu : θu = 0 for all u ∈ S).
For Markov chains, the above problems are also discussed in * Chen (1991).

(5) Couplings
Suppose that we are given two jump processes Pk(t, xk, Ak) with regular q-pair

(qk(x), qk(xk, Ak)) on state space (Ek,Ek), k = 1, 2 respectively. We want to find some coupling

jump process P̃ (t;x1, x2; dy1, dy2) with q-pair (q(x1, x2), q(x1, x2; dy1, dy2)) on the product state
space (E1 × E2,E1 × E2) having the marginality:

P̃ (t;x1, x2;A1 × E2) = P1(t, x1, A1)

P̃ (t;x1, x2;E1 ×A2) = P2(t, x2, A2), t ≥ 0, xk ∈ Ek, Ak ∈ Ek, k = 1, 2.

Define

Ω1f(x1) =

∫
q1(x1, dy1)(f(y1)− f(x1)), f ∈ bE1

Similarly, we can define Ω2 and Ω̃. Regarding f ∈ bE1 ( resp. f ∈ bE2) as a function in b(E1 × E2), it
is not difficult to prove that the condition (5.1) implies

(5.2)
Ω̃f(x1, x2) = Ω1f(x1), f ∈ bE1

Ω̃f(x1, x2) = Ω2f(x2), f ∈ bE2, xk ∈ Ek, k = 1, 2.

Conversely, if Ω̃ is regular, then (5.2) implies (5.1). Any Ω̃ satisfying (5.2) is called a coupling
operator.

Before going further, let us give some examples of coupling operators. *
(5.3) Independent coupling
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Ω̃0f = Ω1f +Ω2f, f ∈ b(E1 × E2)

This trivial example already shows that a coupling operator always exists.
In the following examples, we assume that E1 = E2 = E,E1 = E2 = E and write (E2,E 2) =

(E × E,E × E ).
(5.4) Classical coupling. Let the two marginal q-pairs be the same (q(x), q(x,A)). Set

Ω̃cf(x1, x2) = I△c(x1, x2)Ω̃0f(x1, x2) + I△(x1, x2)Ωg(x1),

x1, x2 ∈ E, f ∈ bE 2,

where △ = {(x1, x2) ∈ E2 : x1 = x2}, g(x) = f(x, x) and

Ωg(x) =

∫
q(x, dy)(g(y)− g(x))

as defined above.
(5.5) Basic coupling.

Ω̃bf(x1, x2) =

∫
(q1(x1, ·)− q2(x2, ·))+(dy)(f(y, x2)− f(x1, x2))

+

∫
(q2(x2, ·)− q1(x1, ·))+(dy)(f(x1, y)− f(x1, x2))

+

∫
(q1(x1, ·) ∧ q2(x2, ·))(dy)(f(y, y)− f(x1, x2)), x1, x2 ∈ E, f ∈ bE

2,

where for two measures µ1 and µ2, (µ1 − µ2)
± are the Jordan-Hahn decomposition of µ1 − µ2 and

µ1 ∧ µ2 = µ1 − (µ1 − µ2)
+.

(5.6) March coupling. Let E be an additive group. Define

Ω̃mf(x1, x2) =

∫
(q1(x1, x1 + ·)− q2(x2, x2 + ·))+(dy)(f(x1 + y, x2)− f(x1, x2))

+

∫
(q2(x2, x2 + ·)− q1(x1, x1 + ·))+(dy)(f(x1, x2 + y)− f(x1, x2))

+

∫
(q1(x1, x1 + ·) ∧ q2(x2, x2 + ·))(dy)(f(x1 + y, x2 + y)− f(x1, x2)),

x1, x2 ∈ E, f ∈ bE
2.

This coupling is also meaningful even E is only a subset of an additive group. * Let us now
consider a birth-death process with regular Q-matrix:

qi,i+1 = bi, i ≥ 0
qi,i−1 = ai, i ≥ 1.

Then for the two copies of the process starting from different points, we have
(5.7) Inner reflection coupling. For i1 ≤ i2, we take

Ω̃rf(i1, i2) = I{i2−i1≤1}Ω̃cf(i1, i2)

+ I{i2−i1≥2}

[
(bi1 ∧ ai2)(f(i1 + 1, i2 − 1)− f(i1, i2))

+ (bi1 − ai2)
+(f(i1 + 1, i2)− f(i1, i2))

+ (bi2 − ai1)
+(f(i1, i2 − 1)− f(i1, i2))

+ ai1(f(i1 − 1, i2)− f(i1, i2)) + bi2(f(i1, i2 + 1)− f(i1, i2))
]

By exchanging i1 and i2, we can get the expression of Ω̃r for the case that i1 ≥ i2.
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* One* reason* we* introduce so many* examples* of* coupling * operator is for the later use.

For the other reason, we have shown that there are many choices of the coupling operator Ω̃. Indeed,
there are infinite many choices! For instance, for every Γ ∈ E 2,

Ω̃f(x1, x2) = IΓ(x1, x2)Ω̃cf(x1, x2) + IΓc(x1, x2)Ω̃bf(x1, x2)

is a coupling operator. Now, in order to use the coupling technique, we should study the regularity
of coupling operators.
(5.8) Theorem (Chen (1986a)). If the given two marginal q-pairs are regular, then any coupling
q-pair (resp. operator) is regular. Conversely, if a coupling q-pair is regular then so are its two
marginals.

In what follows, we will meet several times the applications of coupling method. Let us now

mention a typical application here. Let X̃t = (X1
t , X

2
t ) (t ≥ 0) be the path of a coupling jump

process, set

T = inf{t ≥ 0 : X1
t = X2

t }.

A coupling is called successful if

PPP x1,x2 [T < ∞] = 1, x1 ̸= x2

and

PPP x1,x2 [X1
t = X2

t for all t ≥ T ] = 1, x1 ̸= x2.

Suppose that a successful coupling does exist, then

∥P (t, x1, ·)− P (t, x2, ·)∥V ar ≤ 2PPP x1,x2 [T > t] −→ 0.

Furthermore,* if the process has a stationary distribution π * , then

∥P (t, x, ·∗)− π ∗ ∥V ar = ∥P (t, x, ·)−
∫

π ∗ (dy)P (t, y, ·)∥V ar

≤
∫

π(dy)∥P (t, x, ·)− P (t, y, ·)∥V ar

≤ ∗2
∫

∗π ∗ (dy)P x,y[T∗ > ∗t]∗ −→ ∗o, ∗t → ∞.

and so the process is ergodic. For more details, refer to Chen and Li (1989) and Chen (1987a).

(6) Monotonicity.
Suppose that our state space E is endowed with a measurable semi-order“ ≺ ”.

(6.1) Definition. An f ∈ E is called monotone if

x1 ≺ x2 =⇒ f(x1) ≤ f(x2).

A set A ∈ E is called monotone, if so is the function IA. We say that P1(t) ≺ P2(t) if for every
monotone function f,

x1 ≺ x2 =⇒ P1(t)f(x1) ≤ P2(t)f(x2), t ≥ 0

where Pk(t) is the sub-Markovian semifroup induced by Pk(t, x,A) (x ∈ E,A ∈ E ), k = 1, 2. If
P1(t) = P2(t), we call P1(t) itself monotone.

One way to prove the monotonicity is by using the coupling method. For example, applying the
basic coupling to a Markov chain with regular Q-matrix Q = (qij) on ZZZ+, we find that the conditions:

qi1k ≤ qi2k for i1 ≤ i2 < k
and * qi1k ≥ qi2k for k < i1 ≤ i2
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are sufficient for the monotonicity of P (t). However, the above conditions are not necessary. The
complete answer is as follows:
(6.2) Theorem (Chen (199?a)). Let E = RRRd, ZZZd, RRRd

+ or ZZZd
+ with the ordinary semi-order. Suppose

that (qk(x), qk(x,A))(k = 1, 2) are regular q-pairs and locally bounded (i.e., qk(x)(k = 1, 2) are locally
bounded). Then P1(t) ≺ P2(t) iff for every monotone set A,

x1 ≺ x2, x1, x2 /∈ A =⇒ q1(x1, A) ≤ q2(x2, A).

and

x1 ≺ x2, x1, x2 ∈ A =⇒ q1(x1, A
c) ≥ q2(x2, A

c).

Bearing these results in mind, it is not difficult to check that the Schlőgl’s second model is
monotone and ergodic (an alternative proof was presented in Yan and Chen (1986)) and the Lotka-
Volterra model is not monotone. Howoever, it remains open whether the latter model is positive
recurrent or not.

(7) Reversibility.
An important subclass of jump processes is the reversible ones.

(7.1) Definition. A jump process P (t, x, A) is called reversible (resp. symmetrizable ) if there exists
a probability (resp. σ−finite) measure π such that

(7.2)

∫
A

π(dx)P (t, x,B) =

∫
B

π(dx)P (t, x, A), t ≥ 0, A,B ∈ E .

Similarly, we can define reversible (resp. symmetrizable) q-pair:

(7.3)

∫
A

π(dx)q(x,B) =

∫
B

π(dx)q(x,A), A,B ∈ E .

Certainly, (7.2) implies (7.3). But the inverse is not necessarily true. In general, we have
(7.4) Theorem (Chen (1980)). The minimal jump process is reversible (resp. symmetrizable )
with respect to π iff so is its q-pair.
(7.5) Theorem (Chen (1986b)) with respect to a probability measure π, the reversible jump process
is unique iff * i) Its q-pair is reversible with respect to π,

ii)
∫
π(dx)[q(x)− q(x,E)] < ∞,

iii) Uλ = {0}
all hold. Furthermore, if i) holds but not one of ii) and iii), then there exist infinite many reversible
jump processes with respect to π.

For a σ−finite measure π, we only have the following result.
(7.6) Theorem (Chen (199?b)). With respect to the measure π, there exists precisely one sym-
metrizable jump process of the following three conditions all hold:

i) Its q-pair (q(x), q(x,A)) is symmetrizable with respect to π,
ii)

∫
π(dx)[q(x)− q(x,E)] < ∞ or infx∈Ė Pmin(λ, x,E) > 0

iii) Uλ ∩ L1(π) = {0}.
Moreover, if the symmetrizable process is unique, then the corresponding Dirichlet form is as follows:

D(f, g) =
1

2

∫
π(dx)

∫
q(x, dy)

(
f(y)− f(x)

)(
g(y)− g(x)

)
+

∫
π(dx)[q(x)− q(x,E)]f(x)g(x)

with domain D(D) = {f ∈ L2(π) : D(f, f) < ∞}.
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We have known that the condition ii) is still stronger than to be necessary. Thus, a complete
criterion for the uniqueness of symmetrizable jump processes is still open. Besides, the next problem
seems quite hard.
(7.7) Open problem. What is the uniqueness criterion for honest reversible (resp. symmetrizable
) jump processes? Here, “honest” means that

P (t, x, E) = 1, t ≥ 0, x ∈ E.

There are quite a number of papers on symmetrizable jump processes. Most of them are collected
in Qian,* Hou et al.* (1979),* Chen (1986b) * and (199?b).

(8) Large deviations for Markov chains.
For simplicily, we restrict ourselves to the Markov chain P (t) = (Pij(t)) on E = ZZZ+ with regular

Q-marix Q = (qij). * In the Donsker-Varadhan’s large deviation theory, we are interested in the
entropy (rate function):

I(µ) = − inf
f∈D+(L)

∫
E

Lf

f
dµ

and
upper estimate: limt→∞

1
tQt,i(C) ≤ − infµ∈C I(µ), C is closed

lower estimate: limt→∞
1
tQt,i(G) ≥ − infµ∈G I(µ), G is open.

We should explain the notations used here. Let {Xt}t≥0 be the Markov chain with transition
probability P(t) and Pi be the probability that the chain starts from i ∈ E.P(E) is endowed with
the weak topology. Set

Lt(·, A) =
1

t

∫ t

0

IA(Xs)ds

and Qt,i = Pi ◦ L−1
t . Consider bE as a Banach space with the uniform norm. L is the infinitesmal

generator of the process (resp. semigroup) on bE ,D(L) is the domain of L and

D+(L) = {f ∈ D(L) : f ≥ ϵ > 0 for some ϵ > 0}.

What we are interested in is to find some explicit expression for the entropy and sufficient
conditions for the estimates in the present context. We certainly need some work since, for example,
D(L) is quite poor, even I{i} (i ∈ E) is usually not in D(L). However, the lower estimate is usually
satisfied, we need only to consider the upper estimate.
(8.1) Theorem (Chen and Lu (1989,* 1990),* Chen * (199?b)).

Suppose that Q = (qij) is a regular Q-matrix on E = ZZZ+.
i) If µ ∈ P(E) satisfies

∑
i µiqi < ∞, then

I(µ) =
1

2

∑
i,j

(
√
µiqij −

√
µjqji)

2

− 1

2
inf
f∈C

∑
i,j

(
√
µiqijfj/fi −

√
µjqjifi/fj)

2 < ∞,

where C = D+(L) or one of the following set:

E + = {f ∈ E : f ≥ ϵ > 0 for some ϵ > 0}
E 0 = {f ∈ E : 0 < f < ∞}

bE
+ = bE ∩ E +, bE

0 = bE ∩ E 0.

Moreover, if (qij) is reversible with respect to some π ∈ P(E), then for every µ ∈ P(E), we have
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I(µ) =
1

2

∑
i,j

(
√
µiqij −

√
µjqji)

2.

ii) The upper estimate holds in the following cases:
a) There exists an α > 1 such that

∑
j<i qij ≥ αqi,i+1 > 0, i ∈ E,max{i : qi = 0} < ∞ and∑

j<i qij −→ ∞ as i −→ ∞.

In the following three cases, we assume that there are no absorbing states (i.e., qi > 0 for all
i ∈ E).

b) There is an n ∈ NNN such that qij = 0, j > n + i, i ∈ E : there also exists an α > n and an
N ∈ E such that

∑
j<i qij ≥ α

∑
j>i qij for all i ≥ N ;

∑
j<i qij −→ ∞ as i −→ ∞.

c) There exist {ci} ⊂ (0,∞) and {di} ⊂ [0,∞) such that qij ≤ cidj for all large enough
i and all j > i. Moreover,

∑
j cjdj < ∞ and

∑
j<i(1 − cj/ci)qij −→ ∞ as i −→ ∞, where

ci = max{ck : k ≤ i}.
d) There exists an α ∈ (0,∞) and an α ∈ (0, α) such that

∑
j<i qij ≥ α

∑
j>i qij for all large

enough i and ( α
1+α )

i
∑

j<i qij −→ ∞ as i −→ ∞.

(8.2) Remark. Consider the linear birth-death matrix : qi,i+1 = β0 + β1i, qi,i−1 = δ1i, β0 ≥
0, β1, δ1 > 0. If β0 = 0, then the conditions in a) hold in the case that β1 < δ1. On the other hand,
the process is ergodic iff β1 ≤ δ1. If β0 > 0, then we can use b) whenever β1 < δ1 which is exactly
the same case that the process* being ergodic.

Part II. Interacting Particle Systems with Compact State Spaces
Throughout this part, we assume that S is a countable set. For each u ∈ S, suppose that

Eu is a finite set with the discrete topology and Bord field Eu. For ∧ ⊂ S, define E(∧) = Πu∈∧Eu

and E (∧) = Πu∈∧Eu as the usual product space. Set (E,E ) = (E(S),E (S)). Finally, let F (∧) =
E (∧)× E(S \ ∧) and let C (E) be the set of all continuous function on E.
(1) Spin-flip processes

Take Eu = {0, 1}, u ∈ S. Suppose that we are given a rate function c(u, x)(u ∈ S, x ∈ E)
satisfying

(1.1) c(u, x) > 0, u ∈ S, x ∈ E

(1.2) c(u, ·) ∈ C (E), u ∈ S.

Define

Ωf(x) =
∑
u∈S

c(u, x)(f(ux)− f(x))

where

ux(v) =

{
1− x(u) if v = u

x(v) if v ̸= u.

Assume that c(u, x) satisfies the Liggett’s uniqueness conditions (see Liggett (1985)) and hence
generates a unique Feller’s process. This process is called a spin-flip process.

Now we are interesting to know when the process is reversible (with respect to some probability
measure). For this, the following condition is essential:

(1.3)
c(u, x)c(v, ux)c(u, u(vx))c(v, vx)

= c(v, x)c(u, vx)c(v, v(ux))c(u, ux) u, v ∈ S, x ∈ E.
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Next, define an equivalent relation ∼ on E as follows: x ∼ y iff x=y or there are some ui, i = 0, · · · , k,
such that x(i+1) = uix

(i), i = 0, · · · , k, where x(k+1) = y, x(0) = x. According to this relation, E
is devided into some equivalent classes {El : l ∈ D}. For each l ∈ D, choose an arbitrary reference
point △l, then for each x ∈ El, x ̸= △l, choose an arbitrary reference path: *

L(△l, x) = (△l, x
(1), · · · , x(k), x)

where x(i+1) = uix
(i) for some ui ∈ S, i = 0, · · · , k, x(0) = △l, x(k+1) = x. Define

V (x) =
k∑

i=0

[log c(ui, x
(i+1))− log c(ui, x

(i))].

Of course, the definition of function ∨ depends on the choices of the reference point △l and path
L(△l, x). However, the condition (1.3) guarantees that the functions

f∧(x) = exp[V (x)]/
∑

y∈E(∧)

exp[V (y × xS\∧)], ∧ ∈ S , x ∈ E

do not depend on these choices, where x∧ denotes the restriction of x on E(∧).
(1.4) Definition. We say that µ ∈ P(E) is a Gibbs state if for every ∧ ∈ S and y ∈ E(∧),

µ
(
{y} × E(S \ ∧) | F (S \ ∧)

)
= f∧(y × (·)S\∧), µ− a.s.

(1.5) Theorem (Ding and Chen (1981), Tang (1982)).
Given a spin-flip process with generator Ω defined as above. Suppose that (1.1) and (1.2) hold.

Then the process is reversible iff (1.3) holds. If so, the set of all reversible probability measures for
the process is non-empty and coincides with the set of all Gibbs states.

(2) Exclusion processes.
Again, we take Eu = {0, 1}, u ∈ S. Given a speed function c(u, v, x) :

(2.1) c(u, v, x) > 0, u, v ∈ S, u ̸= v; x ∈ E, x(u) ̸= x(v)

(2.2) c(u, v, ·) ∈ C (E), u, v ∈ S,

we define

Ωf(x) =
∑

u,v∈S

c(u, v, x)
(
f((u,v)x)− f(x)

)
, x ∈ E

where

((u,v)x
)
(w) =


x(w), if w ̸= u, v

x(v), if w = u

x(u), if w = v.

Now, our essential condition becomes

(2.3)
c(u, v, x)c(v, w, (u,v)x)c(w, u, (w,u)x))

= c(u,w, x)c(w, u, (w,u)x)c(v, u, (v,u)x) u, v, w ∈ S, x ∈ E.

By a similar provedure as given in the last section, me may introduce a potential function V on E.
Next, for every ∧ ∈ S , k ∈ ZZZ+, k ≤ |∧| and y ∈ E(∧), define
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f∧
k (y × z) = IEk(∧)(y) exp[V (y × z)]/

∑
y′∈Ek(∧)

exp[V (y′ × z)],

where

Ek(∧) = {y ∈ E(∧) :| y |≡
∑
u∈∧

y(u) = k}.

(2.4) Definition. We say that µ ∈ P(E) is a canonical Gibbs state if for every ∧ ∈ S and y ∈ E(∧),

µ({y} × E(S \ ∧) | A (S \ ∧)) = f∧
|(·)∧|(y × (·)S\∧), µ− a.s.

(2.5)Theorem (Yan, Chen and Ding (1982a,b)).
Given an exclusion process with generator Ω defined above. Suppose that the continuous

condition (2.2) holds, then the process is always reversible. Next, suppose that (2.1), (2.2) and (2.3)
all hold, then the set of reversible measures coincides with the set of canonical Gibbs states for the
process. Finally, if (2.1) and (2.2) hold and there exists a reversible measure π which is positive in
the sense:

*
π({y} × E(S \ ∧)) > 0 for all y ∈ E(∧) and ∧ ∈ S ,

then (2.3) holds and the set of positive reversible measures coincides with the set of positive Gibbs
states.

In the last quoted paper, a proof of Theorem (1.5) is also included. One of the key points
in proving the above results goes back to Hou and Chen (1980). Along this direction, some more
general models have been studied by Dai (1986), Li(1983), Ren(1983) and Zeng (1983).

(3) Generalized simple exclusion processes.
Take Eu = {0, 1, · · · ,m}, u ∈ S, where m ∈ NNN = {1, 2, · · · } is fixed. Suppose that (p(u, v) :

u, v ∈ S) is an irreducible transition probability having the properties:

sup
v

∑
u

p(u, v) < ∞

and
π(u)p(u, v) = π(v)p(v, u), u, v ∈ S

for some (π(u) : u ∈ S). Let g : {0, 1, · · · ,m} −→ [0,∞) be a strictly increasing function with
g(0) = 0. For u, v ∈ S and x ∈ E, define (u,v)x ∈ E as follows: if x(u) = 0 or x(v) = m, then

(u,v)x = x; otherwise

(u,v)x(w) =


x(w), if w ̸= u, v

x(u)− 1, if w = u

x(v) + 1, if w = v

Consider the Markov process generated by

Ωf(x) =
∑

u,v∈S

g(x(u))p(u, v)[f((u,v)x)− f(x)].

We want to describe the set Ie of the extremal invariant probability measures of the process.
To do this, let ν∞ denote the point mass at {xu : xu = m, u ∈ S} and let νρπ(0 < ρ < ∞) denote
the product measure with the marginal distributions:

νρπ(x(u) = k) =
(ρπ(u))k

Πk
j=1g(j)

/
m∑
i=0

(ρπ(u))i

Πi
j=1g(j)

, 0 ≤ k ≤ m.∗
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Here we have used a convertion : Πk
j=1g(j) = 1 if k = 0. In particular, we can define νπ = νρπ

with ρ = 1 and νρ = νρπ if π(u) = 1 for all u ∈ S.
(3.1) Theorem (Zheng and Zeng (1986, 1987)). Under the above hypotheses,

i) if
∑

u π(u) < ∞, equivalently, (p(u, v)) is positive recurrent, then

Ie = {νn : 0 ≤ n ≤ ∞}

where
νn = νπ( · | {x ∈ E :

∑
u∈S

x(u) = n}).

Moreover, for each x ∈ E with
∑

u∈S x(u) = ∞,

lim
t→∞

PPP x[Xt(u) = m] = 1, u ∈ S.

ii) if S = ZZZd and (p(u, v)) is translation invariant, then

Ie = {νρ : 0 < ρ ≤ ∞}.

For a generalized long-range exclusion model, see Zheng (1988).

(4) Quasi-nearest particle systems.
Take Eu = {0, 1}, u ∈ S = ZZZ. Set

E0 = {x ∈ E :
∑
u>0

(1− x(u)) < ∞ and
∑
u<0

(1− x(u)) < ∞},

∗∗∗∗N∗ =NNN ∪ ∗{∞∗}, ∗ ∗ ∗∗∗N ′ =NNN \ {1}, NNN ′ =NNN ′ ∪ {∞}.

For x ∈ E and u ∈ ZZZ, define

l(u, x) = u−max{v < u : x(v) = 1} ∈NNN,

r(u, x) = min{v > u : x(v) = 1} − u ∈NNN,

m(u, x) = x− l(u, x)−max{v < u− l(u, x) : x(v) = 0}+ 1 ∈NNN ′

n(u, x) = min{v > u+ r(u, x) : x(v) = 0} − u− r(u, x) + 1 ∈NNN ′

and set m = ∞ if l = ∞ and n = ∞ if r = ∞. Given a function β(m, l, r, n) :NNN ′ ×∗∗∗N ∗× ∗ ∗∗∗∗N ∗
× ∗ ∗∗∗∗N ′ −→ [0,∞), we define

c(u, x) =

{
β(m(u, x), l(u, x), r(u, x), n(u, x)), if x(u) = 0

1, if x(u) = 1

and study the spin-flip process corresponding to the above rate function. This process is called a
quasi-nearest particle system.
(4.1) Theorem (Dai and Liu (1986)).

Let β(∞,∞,∞,∞) = 0 and β be positive on NNN ′ × ∗∗∗N∗ ∗ × ∗NNN ∗ × ∗ ∗∗∗∗N ′ \ {(∞,∞,∞,∞)}.
1) In order for the process to be reversible, it is necessary that there exist f, g :NNN ′ −→ (0,∞)

such that f(2)g(2) = 1 and

β(m, l, r, n) =



f(l)f(r)
f(l+r) , if l, r ≥ 2

g(m)g(n)
g(m+n) , if l = r = 1

g(n)f(l)
g(n+1)f(l+1) , if l ≥ 2, r = 1

g(m)f(r)
f(m+1)f(r+1) , if l = 1, r ≥ 2

ii) Suppose in addition that the limits
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lim
r→∞

f(r)

f(r + 1)
= c1, lim

n→∞

g(n)

g(n+ 1)
= c2,

lim
r→∞

f(r)cr1 = c3, lim
n→∞

g(n)cn2 = c4

all exist in (0,∞), then the process is reversible and the set of the reversible measures coincides with
the set of Gibbs states.

iii) Furthermore, if

f(r)

f(r + 1)
↓, g(n)

g(n+ 1)
↑ and g(2)c2 ≤ c1,

then the process is monotone (attractive).
iv) Under the above hypotheses, take f(2) = g(2) = 1 and c1 = 1. Let

ck(u, x) =

{
β(k ∧m(u, x), l(u, x), r(u, x), k ∧ n(u, x)), if x(u) = 0

1, if x(u) = 1

and suppose that

sup
x∈E

| c(0, x)− ck(0, x) |= O(e−δk), as k −→ ∞

for some δ > 0. Replacing β by βλ = λβ (λ > 0), then δ1Pλ(t) =⇒ νλ as t −→ ∞ and there exists
a critical value λc such that

νλ = δ0 (dies out ) , for λ < λc

νλ ̸= δ0 (survives ) , for λ < λc,

where δ0 and δ1 denote the probabilifies with point mass at {xu = 0 : u ∈ S} and {xu = 1 : u ∈ S}
respectively. Moreover, if

∑∞
r=2 f(r) < ∞, then λc is the unique positive root (< c−1

2 ) of the
equation

∞∑
r=2

f(r)

∞∑
n=2

λn−1g(n)−1 = 1,

and νλc = δ0 or ̸= δ0 according to
∑∞

r=1 rf(r + 1) = ∞ or < ∞ respectively.
Next, we consider the finite quasi-nearest particle systems. That is, the state space is replaced

by

{x ∈ E :
∑
u∈ZZZ

x(u) < ∞}.

We use the notations in front of (4.1).
(4.2) Theorem (Liu (1987)). Suppose that * i) β(m, l, r, n) = β(n, r, l,m)

ii) β(m, 1,∞,∞) = β(∞,∞, 1,m) > 0
iii) β(∞,∞,∞,∞) = 0
iv)

∑
l+r=k+1 β(m, l, r, n) = b(m+ n)/2 is independent of k ∈NNN and

∞∑
l=1

β(m, l,∞,∞) +
∞∑
r=1

β(∞,∞, r, n) =
b

2
(m+ n) + α

for some constants b, α > 0. Then the process (Markov chain ) dies out in the case either b < 1 or
b = 1 still α ≤ 1. In the other cases, the process surrives.

It is worth to point out that the last model is irreversible. For the reversible finite systems,
some more general results are included in Dai and Liu (1985).
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Part III. Interacting Particle Systems with Non-Compact State Spaces

Throughout this part, we again suppose that S is a countable set. For each u ∈ S, let (Eu, ρu,Eu)
be a complete separable metric space, where Eu is the σ−algebra generated by the metric ρu. Let
(E,E ) be the usual product space of (Eu,Eu), u ∈ S. Choose an arbitrary reference point θ = (θu :
u ∈ S) and suppose that we are given a positive summable sequerce (αu : u ∈ S).

For x = (xu : u ∈ S), y = (yu : u ∈ S) and ∧ ⊂ S, define

p∧(x, y) =
∑
u∈∧

ρu(xu, yu)αu.

For simplicity, we also use the notations :

ρu(x) = ρu(xu, θu), p∧(x) = p∧(x, θ).

Set E∧ = {x ∈ E : pS\∧(x, θ) = 0}. The *σ−algebra E ∧ is induced on E∧ by the σ−algebra E .
Finally, let x∧ to denote the projection of x on E∧ :

p∧(x
∧, x) + pS\∧(x

∧, θ) = 0.

(1) Constructions of the processes. Analytic Approach.
Suppose that there is fixed a sequence {∧n}∞1 ⊂ S such that ∧n ↑ S. For each n ≥ 1, there

is also fixed a regular q-pair (qn(x), qn(x, ·)) on (E∧n ,E ∧n) ( cf. Part I). The problem we are
interested in is to find a limit process of those jump processes Pn(t, x, ·) determined by the q-pair
(qn(x), qn(x, ·))(n ≥ 1). To this end, let p be an E−measurable function
( may be valued +∞) satisfying:

10 0 ≤ p(x) < +∞ for each x ∈ E∧n and n ≥ 1,
20 For each 0 ≤ d < +∞ and n ≥ 1, the set {x ∈ E : p(x∧n) > d} is an open set in E,
30 For each x ∈ E, p(x∧n) ↑ p(x) as n ↑ ∞.

Put E0 = {x ∈ E : p(x) < ∞} the σ−algebra E0 is also induced on E0 by E .
One of our main tools in the study is the Kantorovich distance of probability measures:

R∧(P,Q) = inf
µ

∫
E∧×E∧

p∧(x, y)µ(dx, dy), ∧ ∈ S

where the greatest lower bound is computed over all measures µ on E ∧ × E ∧ satisfying

µ(A× E∧) = P (A), µ(E∧ ×A) = Q(A), A ∈ E ∧.

The measure µ having the above marginality in called a coupling measure of P and Q.
Recall that every conservatiove q-pair (qn(x), qn(x, ·)) corresponds an operator

Ωnf(x) =

∫
qn(x, dy)(f(y)− f(x)), n ≥ 1

and vice versa.
Now, we are at the position to state our first construction for the limit process.

(1.1) Theorem ( Chen (1986b) or (1987)). Suppose that the following conditions hold:
1) There exists a constant c ∈ RRR such that Ωnp(x) ≤ c(1 + p(x)), x ∈ E0, n ≥ 1.
2) For all m ≥ n ≥ 1 there exists a coupling operator Ωn,m of Ωn and Ωm such that

Ωn,mpw(x1, x2) ≤
∑
u∈∧n

cuwpu(x1, x2) + cw(n,m)(1 + p(x1) + p(x2)),

w ∈ ∧n, x1, x2 ∈ E0
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where the non-diagonal elements of (cuw : u, w ∈ S) and the elements of cw(n,m)(w ∈ ∧n, m ≥
n ≥ 1) are non-negative and satisfying

cw(t, n,m) ≡
∞∑
k=0

tk+1

(k + 1)!

[
(B∗

n)
kc.(n,m)

]
(w) −→ 0 as m ≥ n −→ ∞, t ≥ 0

where Bn is the matrix (cuv : u, v ∈ ∧n) and B∗
n is the transpose of Bn.

Then there exists a Markov process with transition probability function P (t, x, ·) on state space
(E0,E0) such that for each ∧ ∈ S ,

lim
n→∞

R∧(Pn(t, x, ·), P (t, x, ·)) = 0, x ∈ E0, t ≥ 0.

Moreover, the convergence is uniform in x ∈ EN
0 ≡ {x ∈ E0 : p(x) ≤ N}. Finally, for fixed

t, P (t, x, ·) is continuous in the following sense : if x, xn ∈ E0, n ≥ 1, supn p(xn) < ∞ and
limn→∞ ρu(xn, x) = 0 for every u ∈ S, then

lim
n→∞

R∧(P (t, xn, ·), P (t, x, ·)) = 0

for every ∧ ∈ S .
(1.3) Remak. If

lim
m≥n→∞

cu(n,m) = 0, u ∈ S

sup
m≥n,u∈∧n

cu(n,m) + sup
u

∑
v

| cuv |< ∞

then the condition (1.2) holds.
The condition (1.2) means that the interactions are rapidly decreasing when the distance between

the components increases. The next theorem relaxes the restriction for the special p defined by

(1.4) p(x) =
∑
u∈S

ρu(x, θ)αu, x ∈ E.

Let L denote the set of all Lipschitz continuous functions with respect to the above metric p .
For f ∈ L , let L(f) denote the Lipschitz constant of f .
(1.5) Theorem (Chen (1986b, 1987)). Let p be the function given by (1.4). Suppose that the
following conditions hold:

1) There exist c1 ∈ RRR and a non-negative matrix (b(u, v) : u, v ∈ S) such that

Ωnρv(x) ≤ βv + c1ρv(x) +
∑
u∈∧n

ρu(x)b(u, v), v ∈ ∧n, x ∈ E0, n ≥ 1

where ρv = ρv(·, θ), βu ≥ 0(u ∈ S),
∑

u βuαu < ∞ and∑
v

b(u, v)αv ≤ Mαu, u ∈ S

for some M > 0.
2) For m ≥ n ≥ 1 there exists a coupling operator Ωn,m of Ωn and Ωm such that

Ωn,mpw(x1, x2) ≤
∑
u∈∧n

cuwpu(x1, x2) +
∑

u∈∧m\∧n

pu(x2)guw + pw(x2)cw(n,m),

w ∈ ∧n, x1, x2 ∈ E0,

where (cuv), (guv) and (cw(n,m)) are all non-negative, they satisfy the conditions in (1.3) and
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cw(n, n) = 0, w ∈ ∧n, n ≥ 1; sup
u

∑
v

guv < ∞.

Then there exists a Markov process with transition probability function P (t, x, ·) and state space
(E0,E0) such that

*

R∧n(Pn(t, x, ·), P (t, x, ·)) −→ 0, as n −→ ∞, x ∈ E0.

Moreover, the convergence is uniform in t in finite intervals. Finally, the semigroup {P (t)}t≥0 on
L induced by P (t, x, ·) has properties: P (0) = I, P (t) is contractive in the uniform norm, there is
a constant c2 ∈ RRR such that

|P (t)f(x)− P (t)f(y)| ≤ L(f)p(x, y) exp[c2t].

Before going to the descrete spin spaces, let us mention two models for which the above results
are suitable. The first model is a Gaussian system: S = ZZZd, Eu = RRR (u ∈ S). qn(x, ·) is given by∑

u∈∧n
qn,u(x, ·), where qn,u(x, ·)(u ∈ ∧n) is a probability measure on (E∧n ,E ∧n) the projection of

which on (Eu,Eu) is a Gaussian measure. This model was studied by Basis (1980). The second
moded is the generalized Potlatch process. For which, S = ZZZd, Eu = RRR+ (u ∈ S) and

Ωnf(x) =
∑
u∈∧n

∫ ∞

0

[f(x− euxu + ξ
∑
v∈∧n

xup(u, v)ev)− f(x)]dF (ξ)

where (p(u, v)) is a random walk on ZZZd, and ξ is a non-negative random variable with distribution
F (ξ) and mean value one. This model was studied by Holley and Liggett (1981).

Now, we start to discuss the reaction diffusion processes. Imagining each u ∈ S as a small ressel
in which there is a reaction. The rates of reaction are given by a Q-matrix Qu = (qu(i, j) : i, j ∈ Eu).
If there are d(≥ 1) different reactors, then the numbers of the reactors consist of the spin space
Eu = ZZZd

+. For d ≥ 2, some models are covered by the above results and we will also come back to
this situation in the next section. Thus, in the remainder of this section, we may assume that d = 1
and so Eu = ZZZ+ (u ∈ S). We further allow some diffusions between the vessels. We use a transition
probability matrix P = (p(u, v) : u, v ∈ S) to describe the diffusions. Thus if there are k particles
in a vessel u, then the rate function of the diffusion from u to v is given by Cu(k)p(u, v), where

Cu ≥ 0, Cu(0) = 0.

Suppose that (αu : u ∈ S) is summable and∑
v

p(u, v)αv ≤ Mαu, u ∈ S

for some M > 0. Set

E0 = {x ∈ E : ∥x∥ =
∑
u∈S

xuαu < ∞}.∗

Finally, we may write the formal generator of the reaction diffusion process as follows:

Ωf(x) =
∑
u∈S

∑
k ̸=0

qu(xu, xu + k)[f(x+ keu)− f(x)]

+
∑
u∈S

Cu(xu)
∑
v∈S

p(u, v)[f(x− eu + ev)− f(x)], x ∈ E0.

Here and hereafter, we use the convention:

qu(i, j) = 0, i /∈ ZZZ+, u ∈ S.
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In the present case, we can find more explicit conditions than those given above for the con-
struction of the process. To do this, for simplicity, suppose that Qu = Q = (qij) is independent of
u ∈ S. Next suppose that

K = sup
u,k

|Cu(k)− Cu(k + 1)| < ∞

∥β∥ ≡
∑
u

βuαu =
∑
u

(
∞∑
k=1

q(0, k)k)αu < ∞∑
k ̸=0

q(i, i+ k) | k |< ∞, i ∈ ZZZ+.

Put

g(j1, j2) =
∑
k ̸=0

(q(j2, j2 + k)− q(j1, j1 + k))k(j2 − j1)
−1

h(j1, j2) = 2
∞∑
k=1

[(q(j2, j1 − k)− q(j1, 2j1 − j2 − k))+

+ (q(j1, j2 + k)− q(j2, 2j2 − j1 + k))+]k(j2 − j1)
−1, j2 > j1 ≥ 0.

Now, we can introduce our main condition

K2′ = sup{g(j1, j2) + h(j1, j2) : j2 > j1 ≥ 0} < ∞.

This is due to the fact that at each u ∈ S, we use the coupling Ω̃m ( cf. Part I, Section 5) for the
reactions. Finally, set

K2′′ = sup{(Cu(j1)− Cu(j2))(j2 − j1)
−1 : j2 > j1 ≥ 0}

K2 = K2′+K2′′

and

K1 = sup{g(0, j) : j ≥ 1}.

Obviously,

K1∗ ≤ K2′ < ∞ and ∗ ∗K2′ ∗ ′ ≤ K < ∞.

(1.6) Theorem (Chen (1985))
Under the above hypotheses, there exists a semigroup P (t) of operators on L ( the set of

Lipschitz continuous functions with respect to ∥·∥ ), such that P (0) = I and P (t) is a strongly
constraction on the uniform closure L of L . Moreover, for every f ∈ L , the semigroup P (t)
possesses the following properties:

| P (t)f(x)− P (t)f(y) |≤ L(f) ∥x− y∥ exp[t(K2 +K(M + 1)] x, y ∈ E0

lim
t→0

P (t)f(x)− f(x)

t
= Ωf(x), x ∈ D

where

D = {x ∈ E0 : ∥| x |∥ =
∑
u∈S

x(u) ̸=0

∑
k ̸=0

q(xu, xu + k) | k | αu < ∞}.

Finally, there exists a Markov process ({Xt}t≥0, PPP
x) evaluated in E0 such that

P (t)f(x) = EEExf(Xt) =

∫
f(ξ)PPP x[Xt ∈ dξ], f ∈ L , x ∈ E0.
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Let us now consider some special cases of the reaction diffusion processes.
(1.7) Zero range processes. It is the case that the reaction vanishes. That is, Q = (qij) is zero.
These processes are well-studied. See Liggett (1985) in the references. Some generalized models are
treated by Wu (1983) and Wang (1987).

In the following cases, we take

Cu(k) = k, k ∈ ZZZ+

and suppose that Q = (qij) is a birth−death Q-matrix with birth rate b(k) and death rate a(k).
(1.8) Linear growth model. Take *

b(k) = β0 + β1k, k ≥ 0 and a(k) = δ1k, k ≥ 1.

where β1, δ1 > 0 and β0 ≥ 0. We will return to this model in Section 5.
(1.9) Polynomial reaction model.

b(k) =

m∑
j=0

βjk
(j), a(k) =

m+1∑
j=1

δjk
(j)

where* ∗k(j) = k(k− 1) · · · (k− j+1), ∗ the coefficients* ∗βj ′s and δj ′s one non-negative, m ≥ 1 and
β0, δ1, δm+1 > 0. If m = 2 and β1 = δ2 = 0, then it is just the Schlőgl’s second model, If m = 1, it
is called the Schlőgl’s first model.

At the first, one may think (1.8) is a special case of (1.9). However, these two models are quite
different and have to be treated separately. For example, the latter one has finite mements of all
orders but not the former one.
(1.10) Theorem (Chen (199? b)). The Markov provesses corresponding to (1.7), (1.8) and (1.9)
constructed above are unique.

(2) Construction of the processes. Martingale approach.
The semigroup constructed in the last section is Lipschitz. Neverthless, the Lotka-Velterra

model (Part I, (3.7)) and the Brusseltor model (Part I, (3.8)) may not have this property since the
reactions between the different reactors are too strong (non-linear). Hence, we need a different
approach to construct the processes.

Take Eu = ZZZd
+(d ≥ 1). Suppose that (pi(u, v) : u, v ∈ S), i = 1, 2, · · · , d are given transition

probability matrices and (αu : u ∈ S) is a summable sequence such that

∑
v∈S

d∑
i=1

pi(u, v)αv ≤ Mdαu, u ∈ S

for some constant M > 0. The state space is

E0 = {x ∈ E :
∑
u∈S

d∑
i=1

xuiαu < ∞}.

Next, suppose that the reaction Q-matrix Q = (q(i, j) : i, j ∈ ZZZd) satisfies

(2.1)
∑
k ̸=0

q(i, i+ k)
d∑

j=1

kj ≤ A
d∑

j=1

ij + βu, u ∈ S, i ∈ ZZZd
+, k ∈ ZZZd

where A is a constant and βu ≥ 0, ∥β∥ =
∑

u βuαu < ∞. Suppose that the diffusion coefficients
satisfy

Cui(k) ≥ 0, k ∈ ZZZd
+, Cui(0) = 0, i = 1, · · · , d, u ∈ S
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and

(2.2) sup{| Cui(k + ei)− Cui(k) |: k ∈ ZZZd
+, u ∈ S, 1 ≤ i ≤ d} < ∞,

where ei is the i-th unit vector in ZZZd
+. Let

D0 = {I{x∧} : ∧ ∈ S and x∧ ∈ (ZZZd
+)

∧}

and define

Ωf(x) =
∑
u∈S

∑
k∈ZZZd

+\{0}

q(xu, xu + k)
[
f(x+ keu)− f(x)

]

+
∑
u∈S

d∑
i=1

Cui(xu)
∑
v∈S

pi(u, v)
[
f(x− eui + evi)− f(x)

]
, f ∈ D0, x ∈ E0

where eui is the unit vector in (ZZZd
+)

S = E :

eui(v, j) =

{
1, if v = u and j = i

0, otherwise.

and keu =
∑d

i=1 kieui ∈ E0, k ∈ ZZZd. Set

∥x− y∥ =
∑
u∈S

(

d∑
i=1

| xui − yui |)αu, x, y ∈ E0

and let (DDD,B(DDD)) be the Skorohod space of the paths from [0,∞) to the complete separable metric
space (E0, ∥·∥). As usual, we have the flow of σ−algebras {Mt}t≥0.
(2.3)Definition. Let x ∈ E0. A probability P x on (DDD,B(DDD)) is called a solution to the martingale
problem for Ω starting from x if

i) PPP x[w ∈DDD : X(0, w) = x] = 1,
ii) For each f ∈ D0,

f(X(t))−
∫ t

0
Ωf(X(s))ds

is a (DDD, {Mt}t≥0,B(DDD),PPP x)−martingale.
(2.4) Theorem (Han (1989))

Under (2.1) and (2.2), the martingale problem for Ω is well-posed. Moreover, the resulting
solution is a Feller’s process.

This theorem covers all the models of reaction diffusion processes mentioned above.

(3) Existence and uniqueness of stationary distributions
In this section, we study the existence and uniqueness of stationary distributions for the pro-

cesses constructed in the Section 1.
(3.1) Theorem (Chen (1986b) (1989a)). Under the assumptions of Theorem (1.1) with p(x) =∑

u ρu(x)αu, if for each u ∈ S there is a compact function hu (see Part I, (4.1)) such that

ρu(x) ≤ hu(xu), xu ∈ Eu; sup
u

hu(θu)αu < ∞

and there are constants K ∈ [0,∞) and η ∈ (0,∞) such that

Ωnhn(x) ≤ K − ηhn(x), x ∈ E0

where hn(x) =
∑

u∈∧n
hu(xu)αu. Then

i) for each n ≥ 1, the jump process Pn(t, x, ·) has at least one stationary distribution πn

satisfying
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∫
πn(dx)hn(x) ≤ K/η;

ii) the limit process P (t, x, ·) constructed in Theorem (1.1) has at least one stationary distri-
bution π, which can be obtained as a weak limit of a subsequence of πn′s and satisfies∫

π(dx)h(x) ≤ K/η

where h(x) =
∑

u∈S hu(xu)αu.
(3.2) Theorem (Huang (1987), Chen(1989)). Under the assumptions of Theorem (1.5), if

c1 +M < 0

then the conclusions of Theorem (3.1) hold for the jump process Pn(t, x, ·) and the limit process
P (t, x, ·) constructed in Theorem (1.5).
(3.3) Theorem (Chen (1986b) (1989 a)). Under the assumptions of Theorem (1.1) (resp. Theorem
(1.5)) with p(x) =

∑
u∈S ρu(x)αu, if the coefficients (cuv) given there also satisfy∑

u∈S

cuw ≤ −η < 0∑
u∈S

| cuw |≤ K < ∞

Then
i) the process limit P (t, x, ·) constructed in Theorem (1.1) (resp. Theorem (1.5)) has at most

one stationary distribution π satisfuing ∫
E0

π(dx)p(x) < ∞.

If π is such a distribution, then

Rα(P (t, x, ·), π) ≤ K(α, x)e−ηt, x ∈ E0, α ∈ S

where K(α, x) is a constant independent of t;
ii) for a fixed n ≥ 1, if in addition the coefficents cw(n, n) given in Theorem (1.1) (resp. (1.5))

vanish, then stationary distribution πn satisfying∫
E∧n

p∧n(x)πn(dx) < ∞.

If πn is such a distribution, then

R∧n(Pn(t, x, ·), πn) ≤ Kn(x)e
−ηt, x ∈ E∧n

where Kn(x) is a constant independent of t.
Now we apply the above results to the polynamial reaction model (1.9). It is not difficult to

check that a stationary distribution always exists even for the general Cu(k) satisfying supu,k |
Cu(k)−Cu(k+1) |< ∞. In the special case that Cu(k) = k, this result can be also obtained by using
the monotonicity. To discuss the uniqueness of the distributions, we use the following coupling : for
the reaction part, in each vessel we take the march coupling (Part I, (5.6)); for the diffusion part, we
take

Ω̃df(x1, x2) =
∑
u,v

{
(x1(u) ∧ x2(u))p(u, v)[f(x1 − eu + ev, x2 − eu + ev)− f(x1, x2)]

+ (x1(u)− x2(u))
+[f(x1 − eu + ev, x2)− f(x1, x2)]

+ (x2(u)− x1(u))
+[f(x1, x2 − eu + ev)− f(x1, x2)]

}
.



JUMP PROCESSES AND PARTICLE SYSTEMS 25

Then the condition in Theorem (3.3) becomes

c+M − 1 < 0

where

c = sup
k≥0,l≥1

[
b(k + l)− b(k)− a(k + l) + a(k)

]
/l.

If in addition, (p(u, v)) is transtation invariant in ZZZd = S, then the constant M can be choosen as
clese to one as required. Hence the condition c < 1 is indeed enough for the uniqueness. Thus, for
the first Schlőgl model, we require that β1 < δ1; for the second one,

δ1 > β2 +
3

4
δ3 +

β2
2

3δ3
(≥ 2β2)

is sufficient for the uniqueness of the distributions.

(4) Ergodic theorem for the reaction diffusion processes.
In this section, we improve the ergodic result obtained above for the polynomial reaction model

(1.9). We suppose, in addition, that
(4.1) (p(u, v)) is translation invariant in ZZZd = S and p(u, u) = 0, u ∈ ZZZd.
The main different point is that we replace the march coupling with the inner reflection coupling
(Part I, (5.7)), which is optimal in some sense. Define

u0(ϵ) = 1,

u1(ϵ) =
(
inf
k≥0

b(k) + a(k + 1)− ϵ

a(k) + b(k + 1) + ϵ

)
∨ 0,

ul(ϵ) =
(
inf
k≥0

[b(k) ∨ a(k + l) + l]ul−1(ϵ) + (b(k) ∧ a(k + l))ul−1(ϵ)− l − ϵ
∑l−1

j=0 uj(ϵ)

a(k) + b(k + 1) + ϵ

)
∨ 0

l ≥ 2.

(4.2) Theorem (Chen (1990 b)). Under the above hypotheses, if there exists an ϵ > 0 such that
ul(ϵ) > 0 for all l ≥ 1, then the process is ergodic. In particular, for fixed β1, · · · , βm, δ1, · · · , δm+1

and large enough β0, we have ul(ϵ) ≥ (1 + αl)−1 for some ϵ, α > 0 and all l ≥ 0, and so the process
is ergodic whenever β0 is large enough.

This result also improves a recent theorem due to C. Neuhauser (198? ).
(4.3) Corrollary. For the first Schlőgl model, suppose that

δ1 + δ2 ·
δ1 + β0

1 + δ1
> β1

and one of the following conditions holds:

3
[
(

δ1δ2
2(1 + δ1)

)2β0

]1/3
+

δ1(δ1 + 1 + δ2)

2(1 + δ1)
> β1

or

δ1 +
2δ1δ2

2(1 + δ1)
≥ β1.

Then the process is ergodic.
For the model discussed in this section, a completely known case is only the reversible one :

δj = αβj−1, 1 ≤ j ≤ m+ 1 for some α > 0.
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(4.4) Theorem (Ding, Durrett and Liggett (198?)).
Under the above hypotheses, suppose further that (p(u, v)) is symmetric and∑

u p(o, u) | u |< ∞. Then, the reversible reaction diffusion process is ergodic. Furthermore,
the unique stationary distribution is the product measure in which each coordinate has Poisson
distribution with mean α.

(5) Linear growth model.
Starting from this section, we show some models of reaction diffusion processes or related models

which exhibit phase transition. Firstly, we return to the linear growth model (1.8). Recall that

b(k) = β0 + β1k, β0, β1 > 0,

a(k) = δ1k, δ1 > 0,

Cu(k) = k, u ∈ S, k ∈ ZZZ+.

*
(5.1) Theorem (Ding and Zheng (1989)). Suppose that

K ≡ sup
v

∑
u

p(u, v) < ∞

and let p(t, u, v) denote the Markov chain generated by the Q-matrix Q = P −I, where P = (p(u, v) :
u, v ∈ S) and I is the unit matrix on S.

i) If β1 − δ1 +K − 1 < 0, then the process is ergodic in the sense : there exists a µ ∈ P(E)
such that for every ν ∈ P(E) and every bounded cylinder function f ,

lim
t→∞

νP (t)f =

∫
fdµ.

ii) If β0 = 0, β1 > δ1 and inft>0

∑
u p(t, u, v) > 0 for some v ∈ S, then the process is not

ergodic.
iii) If β0 > 0, β1 ≥ δ1 and

0 < inf
t>0

∑
u

p(t, u, v) ≤ sup
t>0

∑
u

p(t, u, v) < ∞

for some v ∈ S, then the process is non-ergodic.
In particular, if P is doubly stochastic and β0 = 0, then β1 = δ1 is the critical line of the ergodic

and non-ergodic regions. Furthermore, for S = ZZZd, P being translation invariant and P = 1
2 (P +P ∗)

being transient, on the critical line, the above authors also presented a construction of the translation
invariant stationary distributions with finite moment of the first order.

(6) Reaction diffusion processes with an absorbing state.
Take S = ZZZd and suppose that the reaction Q-matrix Q = (qij) satisfies the assumptions in

front of Theorem (1.6). In addition, suppose that q(0, j) = 0 for all j ∈NNN, q(2, 0) = 0 and q(i, j) = 0
for all i > 2 and j < 2.
(6.1) Theorem ( Li and Zheng (1988))

Under the above hypotheses, consider the reaction diffusion process generated by

Ωf(x) =
∑
u∈ZZZd

{∑
k ̸=0

q(xu, xu + k)[f(x+ keu)− f(x)]

+
∑
v∈ZZZd

|v−u|=1

xu

2d
[f(x− eu + δ(xv, 2)ev)− f(x)]

}

If

q(1, 2) > 219(c+ 3)(2c+ 5)(2c+ 11)
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where c = q(1, 0) ∨ q(2, 1), then the process is not ergodic. In particular, there exist at least two
stationary distributions.

(6.2) Corollary. If

β1 > 219(2δ1 + 4δ2 + 3)(4δ1 + 8δ2 + 5)(4δ1 + 8δ2 + 11),

then the process generated by

Ωf(x) =
∑
u∈ZZZd

{
β1xu[f(x+ eu)− f(x)] + (δ1xu + δ2x

2
u)[f(x− eu)− f(x)]

+
∑

v∈ZZZd,
|v−u|=1

xu

2d
[f(x− eu + ev)− f(x)]

}

is not ergodic and so there exist at least two stationary distributions.
The last result and Theorem (4.2) are the two extremal cases of reaction diffusion processes.

Here we claim that the process exhbits a phase transition when β0 = 0 and what we claimed there
is the ergodicity for a large enough β0. From this point of view, we may conjecture that there exists
a phase transition for the processes when β0 > 0. However, as we have seen before, the reversible
case does not support this conjecture. Then, what can you say?

To conclude this paper, we mention a related model which may be considred as the mean field
approximation of the reaction diffusion processes. For this model, there does exist a phase transition
!

(7) Non-linear Master equations.
Here is a one-dimensional process. The state space is E = ZZZ+. For simplicity, we consider

only the Q-matrix q(i, j) given in (1.9). We define the Skorohod space DDD =DDD([0,∞), E),B(DDD) and
{Mt}t≥0 as usual. Let

P1(E) = {µ ∈ P(E) :
∞∑
i=0

iµ(i) < ∞}.

(7.1) Definition. Given µ ∈ P1(E). We say that Pµ ∈ P(DDD) is a solution to the martingale
problem for the Q-matrix q(i, j) if

i) Pµ ◦X−1
0 = µ,

ii) µ(t) ≡ Pµ ◦X−1
t ∈ P1(E), t > 0,

iii) for every j ∈ E,

Ij(Xt)−
∫ t

0

Ωµ(s)Ij(Xs)ds

is a (DDD,Mt, Pµ)− martingale, where

Ωµ(t)f(i) =
∑
k=±1

q(i, i+ k)[f(i+ k)− f(i)] + (EµXt)(f(i+ 1)− f(i)),

i ∈ E, t ≥ 0.

(7.2) Theorem (Feng and Zheng (1988)).
i) The solution to the martingale problem for (q(i, j)) is well-posed. The unique solution is

Markovian ( may be time-inhomogeneous).
ii) If the constant K2′ defined just before (1.6) is negative, then the stationary distribution of

the process in unique.
iii). For the second Schlőgl model, if

(1 + δ1)
2 ≤ 1

2
+

1 + 2β2

3(1 + δ1 + 2δ3)
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then there is a constant c > 0 such that for each β0 ∈ [0, c), there exist at least three stationary
distributions for the process.
(7.3) Remark By Chen (1990), it follows that the above assertion ii) can be improved as follows: if
the sequence {ul(ϵ)}l≥0 defined in Section 4 is positive for some ϵ > 0, then the stationary distribution
is unique.
(7.4) Remark. For the reversible second Schlőgl model, it happens that the coefficients β′s and
δ′s satisfy the condition given in the above iii). Hence the mean field approximation of an infinte
dimensional reaction diffusion process is usually not the same as the original one.

References
*

Basis, V. Ya (1980). Multicomponent Random Systems, edited by R.L. Dobrushin and Ya, G.
Sinai, Marcel Dekker, Inc. 37-58.
Chen, M. F. (1980). Chin. Ann. Math. 1, 437-451.

(1985). Acta Math. Sinica 1, 261-273.
(1986a). Acta Math. Sinica 2, 123-136.
(1986b). Jump Processes and Particle Systems, Beijing Normal Univ. Press.(1987). Sci.     
         Sinica 30, 148-156.
(1989a). Acta Math. Sci.  9:1, 7-19.
(1989b). Quart. J. Math. 4,
(1990). J. Statis. Phys. 58, 58:5/6, 939-966.
(1991). J. Applied Probab.  28, 305-320.
(1991a). On Coupling of Jump Processes (II), Chin, Ann. Math.., 1991, 12(B): 4, 385-399. 
(1991b). Uniqueness of reaction diffusion processes, Kexue Tongbao 36:12, 969-973. 

Chen, M. F. and Li, S. F. (1989). Ann. Probab. 17, 151-177.
Chen, M. F. and Lu, Y. G.

(1989) Large deviations for Markov chains, Acta Math. Sci.
(1990) On evaluating the rate function of large deviations for jump processes, Acta 
            Math. Sinica.

Chen, M. F. and Zheng, X. G.(1983). Sci. Sinica 1, 11-24.
Dai, Y. L. (1986). Acta Math. Sinica 29, 103-111.
Dai, Y. L. and Liu, X. J. (1985). Chin, J. Appl. Probab. and Statis. 1, 31-42.
Dai, Y. L. and Liu, X. J. (1986). Acta Math. Sinica 2, 92-104.
Ding, W. D. and Chen, M. F. (1981). Chin. Ann. Math. 2, 47-51.
Ding, W. D., Durrett, R. and Liggett, T. M. (1990). Ergodicity of reversible reaction diffusion 
processes. 《Probability Theory & Related Fields》 85 (1) :13-26 .
Ding,* W.* D.* and Zheng,* X.* G. (1989). Chin. Ann. of * Math. 10B(3), 386-402.
Feller, W. (1940). Trans. Amer. Math. Soc. 48, 488-515.
Feng, S. and Zheng, X. G. (1988). Carleton Univ. Dreprint No. 115.
Han, D. (1989). Ph. D. Thesis at Beijing Normal Univ.
Holley, R. and Liggett, T.M. (1981). Z.Wahrs. 55, 165-195.
Hou, Z. T. and Chen, M. F. (1980). Kexue Tongbao 25, 807-811.
Hu, D. H. (1966). Acta Math. Sinica 16, 150-165.
Huang, L. P. (1987). Chin. J. Appl. Probab. and Statis. 3, 152-158.
Li, S. Q. (1983). Chin. Ann. Math. 4, 773-780.
Li, Y. and Zheng, X. G. (1988). Non-ergodicity for a class of reaction diffusion processes, Master 
thesis at Beijing Normal Univ.
Liggett, T. M. (1985). T. M. (1985). Interacting Particle Systems, Springer-Verlag.
Liu, X. J. (1987). Chin. J. Appl. Probab. and Statis. 3, 38-45.
Ren, K. L. (1983). Acta Math. Sci. 3, 300-320.
Tang, S. Z. (1982). Acta Math. Sinica 25, 306-314.



JUMP PROCESSES AND PARTICLE SYSTEMS 29

Wang, H. X. (1987). Acta Math. Sci. 7, 55-69.
Wu, Y. D. (1983). Acta Math. Sci. 3, 180-196.
Yan, S. J. and Chen, M. F. (1986). Chin. Ann. Math. 7, 90-110.
Yan, S. J., Chen, M. F. and Ding, W. D. (1982 a). Chin. Ann. Math. 3, 572-586.

(1982 b). Chin. Ann. Math. 3, 705-720.
Zeng, W. Q. (1983). Chin. Ann. Math. 4, 763-772.
Zheng, X. G. (1988). Acta Math. Sinica 4, 193-209.
Zheng, X. G. and Zeng, W. Q. (1986). Chin. J. Appl. Probab. and Statis. 2, 334-340.

(1987). Acta Math. Sci. 7, 169-175.




