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Abstract.  This is a sequel to our joint paper I41 in which upper bound estimates for large deviations 
for Markov chains are studied. The purpose of  this paper is to characterize the rate function o f  large devia- 
tions for jump processes. In particular, an explicit expression of  the rate function is given in the ease of  the 
process being symmetrizable. 

1. Introduction 

Let ( E ,  d' ) b e  an arbitrary measurable space with the property that all 
the singletons { x } (x  ~ E ) belong to d' .  Denote by b d' the Banach space of  all 
bounded d'-measurable real functions with the uniform norm IIf II = sup I f  ( x ) l ,  and 

x ~ E  

denote by ~ ( E )  the set of  all probability measures on (E ,  d ') .  Let P ( t ,  x ,  dy ) 
(t~> 0, x ~ E ) b e  a transition function on(E ,d ' )and {T, }be the semigroup on bd'deter- 
mined by P (t, x ,  dy). Let L be the generator of  { Tt }and denote its domain  by ~ .  
The rate function ( / ' - f u n c t i o n ) i n  Donsker-Varadhan theory I6'71 is denoted for 
# e . ~ ( E ) b y  

-inff~,~j~ Lff (x) #(dx), I(/~) = 

where ~ consists of  the strictly positive functions in ~ .  Since the domain ~ is general- 
ly not known explicitly, it is interesting to find an explicit expression for the rate func- 
tions of  some special processes.This has been done for some diffusion processes c8" z01 and 
is studied in this note for jump processes. 

Let us recall some definitions. We say q (x)-q (x, dy)is  a q-pair if 

q ( �9 ) and q ( ", A ) are,g- measurable for each A ~ d'  ; 

q (x ,  �9 ) is a nonnegative measure on ,g for each x ~ E ,  

and 
q(x,A)<<, q(x)  for x~E a n d A ~ , r  

Throughout  this paper, we assume that the given q-pair q (x)-q (x, dy) is regular. 
That  i s ,  the q- pair is conservative which means that 

q(x ,E )=q(x ) ,  for all x ~ E ;  

and it determines uniquely the so-called jump process (or q-process) P(t, x, dy)such 
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that 

d I dt P ( t , x , A )  = q ( x , A ) - I a ( x ) q ( x )  
t=O 

for x 6 E ,  and A 6,g 
and 

lim P ( t , x , { x } ) = l  f o r a l l x ~ E .  
t ~0  

For a given q-pair, some general uniqueness criteria were obtained in [6], and 
some more practical sufficient conditions for uniqueness of q-processes were more re- 
cently given in [3]. 

In the context of  diffusion processes TM ~0J, the evaluation of  the rate function is 
restricted to the set of  probability measures with compact  support. In our context,we 
consider a larger set, i. e.,  

.f 
In order to state our results, we need more notations : 

d' = the set of  all real ~ '-measurable functions, 

d" § = { f ~ d': f has a strictly positive lower bound }, 

d '~  { f e d ' :  0 < f <  oo }, 

b d'~ = bd'~de +, b~g~ "~ 

For f ~ bd'. we define 

f2 f (x)= f q(x, dy ) f (y ) -q(x ) f (x ) ,  x ~ E .  

Theorem 1. For every # e aZ~( q ), we have 

I ( # ) =  - i n f  (1) 
s ~  ~ f 

=-inff~b. * ffa( )a , (3) 

=-inff~.0 f f f 2 ( - - ~ ) d #  (4 ,  

,N~- # + 

=-inf .I ~fd#. (6) 
f e & O  '__ f 

The theorem says that for #~.a~(q) ,  we can use ,go instead o f ~ "  to compute the 
rate function I ( # ) .  The former one is much easier to handle since the domain ~ is 
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quite small, and even the indicator Iix01 is usually not in it. To demonstrate this 

point,  we prove the next result which in special cases is already known IgJ. 
Theorem 2. Let ~ e.~a~ ( q ). Then I (#) = 0 if and only if# is a stationary distribu- 

tion of { Tt}. 
Now, we would like to give a clearer expression for I ( # ) .  For  this we need a hy- 

pothesis : 
(H~)There exist a a-finite measure ") 2 and an d 'xd ' -measurable  function q(x, y) 

such that  

q(x, dy)=q(x ,y)2(dy) ,  f o r a l l x , y ~ E .  

Theorem 3. Under (HI) ,  for each I~e~( q )satisfying l~ < < 2 ,  we have 

;;[,/ / 1 i ( # ) =  ~-1 d~d2 ( x ) q ( x , y ) -  d_~d2 (y)q(y ,x)  2(dx)2(dy)  

21inf ff I /  d--a (x)q(x'Y) d2 f ( x )  

~ ( y ) q ( y , x ) f ( x )  322 - d2 f (y )  (dx)2(dy),  (7) 

where~denotes one of ~ § "§ b~r ~ , dr ~ or~r ~ . 
After taking a look at the above expression, the reader may guess that  the second 

term above should vanish in the symmetrizalbe case. This is correct and will be pre- 
sented in the next theorem. 

Recall that a q-Pair is called symmetrizable with respect to a a-finite measure v on 
,g if 

f f q g  d v = f g q f  dv 

for all 0 ~<f ,  g e d ' ,  where 

q f ( x ) =  f q ( x ,  dy)f(y), x ~ E .  

Because of  the uniqueness assumption, it is equivalent to say that the q-process (resp. the 
semigroup {T,}) determined by q (x)- q(x, dy)is symmetrizable with respect to v, that 
i s ,  

f f T ,  g d v = f g T t f  dv, t>>.O, f , g ~ o r  

We also point  out  that i n  the symmetrizable case, the condition 

v(dx) q ( x ) <  

is sufficient for the uniqueness and quite general. Fo r  details of  these facts, see [ 2]. 
Theorem 4. Let (H~) hold. Suppose that (H2) : q (x )-q (x, dy) is symmetrizable 

with respect to v and 

*) All the measures considered in this paper are assumed to be nonnegative and non-trivial. 
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dv 
> 0 ,  a .s .  ( 2 ) .  

d2 
Then for each ~ ~ ~(q ) satisfying # << 2 on E ~ = {x ~ E : q (x)  > 0 }, we have 

1 f~ f e l  / dkt ( x ) q ( x , y ) _ J  d_.~__(y)q(y,x)122(dx)2(dy) (8) I ( # ) =  2 -  o 0 d2 d2 " 

The next result is an alternative of  Theorem 4. Instead o f # ~ ( q ) ,  we consider the 
set ~ '(q) of  # ~ ~ ( E )  satisfying the following conditions : 
(i)  # < <  2 o n E  ~ 
(ii) There exist constants M/> m >  0 such that 

O<m2~ d-~(x) / -~2 (x)<~M2 a . s . ( 2 ) o n E  ~  
d ~  ' ' 

(iii) I r r ,  l d - - 6 u - - ( x , q ( x , y ) M / m - / d ~ ( y ) q ( y , x ) m / M ] 2 2 ( d x , , t ( d y ) < o o  
d eO d eO L .~ d2 d2 " 

Theorem 5. Under(Ht)and (H2), (8 )holds for every #~.~'(q).  
In the case E being countable, we use Q-matrix Q = ( q / j :  i ,j~E)instead of the 

q- pair, and Theorem 4, for example, can be restated as follows : 
Corollary. Let Q= (q~j) be a regular Q-matrix, symmetrizable with respect 

to (rci>O : iE E). Then for each # ~ Q ) = {  vi: ~ viqi< oo }we have 
i 

1 

�9 j # i  

Our  last result is to show how the rate function determines the Q matrix itself. 
Theorem 6. Denote by#~o the set of all probability measures on E with finite sup. 

ports. Let Q= (q~j) and Q = (-q~j) be two regular Q-matrices with symmetric meas" 
ures (Tz ~> 0 ) and (-~ > 0 ) respectively. Then the following assertions are equivalent. 

(i)  I ( p ) = I ( # )  forall #e~o ,  

(ii) I ( # )  = I  (/~) forall # ~ ( Q ) ~ ( - Q ) ,  

(iii) qi=-qi ,qijqji=qijqji  , for all i , j 6E .  

R e m a r k  1 .  For  symmetrizable Markov  processes, some characterization of the 
rate function was obtained by Donsker  and Varadhan [7] and Stroock tg~. In the former 
paper, the square root of L is used, in the second the spectrum representation is used. 
Hence their expressions for the rate function are not as explicit as ours. To get a more 
concrete impression,  let us consider the case of E being countable .  F rom 
[ 9 ; Throem (7 .44)and Lemma (7 .38)] ,  we have 

I ( # ) = l i m  1 ( q ) _ p t q ~  ' (p)/2(~) , # ~ ( E )  �9 
,~0 t 

where ~ o . = ~  ( icE) .  Hence, for each # e ~ ( E ) ,  we have 

I(#)=lim,~o --1 f ~  x~q~-y] rciq~i~ i j 
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i ,j T~ i 7"Cj 

=l im 1 r l _ Z  ~/ #,#jP,j(t) ,[0 t L i.j 

Pij(t) 1 

41ziPij(t)/TzJ I 

=lim l [1-~'~ x/#ilajPq(t)PJ i(t) t i,j 

= l im 1 

=lim,~o -~'1 ~[... ~/#ipu(t ) _41,tjpji(t) 12 
1 

- ~  ~ [ ~ j  -- 4 ['tjqji ] 2  
t,j 

+~jPji(t)] 

A further assertion is that if (p is nice enough(for example, it belongs to the domain of 
the generator L, or its extension ), then the above inequality becomes an equality. But 
our corollary simply says that this happens whenever # e ~ ( Q ) .  

Remark 2. As we have said above, if/.t e~-~{E), we have 

1 
I(la)>~ -~ ~i ~i (x/#iq'j -~ )~ J(#) 

and hence J ( # ) =  oo implies I ( # ) =  oo. A natural question is what happens when 
# s . ~  ( E ) \  ~-~[ Q) but J (#)  < ~ .  Is it still true that I (#) = J (#)? Unfortunately, we 
have nothing to say about it at this moment. 

Remark 3. As we have said before, the second term of ( 7 )  vanishes in the 
symmetrizable case. However,even not in this case, it can happen also.Here is a trivial 
example. Take E =  {0,1,  2, ... }, -q,=qi=qi,i;l=Ai,i>/Oandqij=O i f j 4 = i , i + l .  
For e>O , set fo=  1,f~+l=efi/q~.~+~, i~> 1. Then f s d  "~ and 

hence 

[ 12 2 4mq,jfj/f, -',/ujqJ,./fj �9 j~ i  
=Y'. #,q,.i+, fi+l /f,.=e, 

i 

Since e is arbitrary, we obtain I ( # ) =  J (#).  

2. Proof o f  the Results 
In this part ,  we will prove the results successively. 
Proof of Theorem 1. 
By the definitions, we immediately get the equalities ( I ) ,  ( 3 ) a n d  (5) .  We now 

prove (2).  
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It is known that the strong generator and the weak generator of  { T, } both coin- 
cide with the operator ~ defined on ~d'. Let . ~  be the domain of  the weak generator. 
From [ 11; p. 162, Lemma 3] and [2 ; Lemma 6.1.1],  it follows that 

~ - . ~ 0 = { f ~  b~: I[T,f-fl[~ 0 as t ~ O }  

c~o={f 6 b~g: Ttf(x) ---"f(x) for x~E as t--,-O } 

= hal'. ( 9 )  
Take an f ~  h d'~ and put 

fo '/" 
f,(x)=n Ttf(x)dt for x6E and n~>l. 

It follows that jr, ~ . ~  ~ 0g + , 0 < 6 ~ inf f (x)  ~<f,~< [if [[, n>~ 1 and f ,  (x)  --~ f (x)  
x ~ E  

for each x E E as n -,- oo.  Since 

5 i f  [ (x)l=lq(x) f,(x------~ q(x,dy)f.(y)l 

<~ 1 + . - - - ~  q(x ), x ~ E,  

/x E ~ t q ) ,  and applying the dominated convergence theorem we get 

!imoof (10) 

Similarly, for each f ~ . ~  0 ~ ~ ' + ,  we can choose a sequence { f . }~  c ~  + such that 
~<f. ~< IIf II and [ I f . - f  II----0 as n ~ .  Again by using the fact that/x ~ ~z~(q) and 

the dominated convergence theorem, we have the same conclusion as given in (10) .  
Hence we have proved that 

f ~ . . ~ O  r~ ~ ~ + 

and 

Combining this with 

~ +  c ~ n  b~  + c,.~oC~ ~ r  + C b d ' + ,  

we get (2).  
In order to prove (4) ,  we fix an f ~  bd '~ Without  loss of  generality we may and 

will assume that 

f f [  f(y) - l lq (x  dY)#(dx)= f f ~  (-~ld#<oo 
f ( x )  ' 

This is equivalent to 
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f(x) +1 q(x, dy)#(dx) < oo. (11) 

Let f ,  = f +  1/n,n~> 1 . Then if. ~ b~ + and 

Hence the condition (11 ) and the dominated convergence theorem give us 

lim f f. fl (-~. )d~= f f f l  (-~ )d#, 
n ~ o o  

which proves the equality (4). 
Similarly, one can prove the last equality (6).  

Proof  of Throrem 2. 
This subsection is independent of the remainder of  

skipped. 
First of  all we assume that I ( # ) =  0. Since # E ~ ( q ) ,  from Theorem l,  it fol- 

lows that 

f ~--~f-f d#~O foreach f~h~' .  

We now fix an f e  b g ' ;  then there exists a 5 > 0  such that l + e f  ~ bg ~ for every 
e ~ [ - 5 , ~ ) ,  a n d s o  

F/(e)= ~ f l ( l + e f )  
J 1+ ef 

for every e E [ - 5, co ). As a function of e ,  F i has a minimum 0 at e = 0 , therefore 

d F:(o)=fnfa#=o. de 
This implies that 

the paper and can be safely 

fq (x)f # = J J q  dy)f(y) la 
(.f. 

(x) (dx) (x, (dx ) 

for each f ~ ~d' ~, and hence for each 0 <~ f e ~r. This conclusion is equivalent to the 
claim that # is a stationary distribution of {T, }(see [2 ; Chapter 12] ). 

Conversely, we assume that # is a stationary distribution of  { T, }. From the last 
part of  the proof  of  [7 ; Lemma 2.5] it follows that 

I,(#)=--- inf flogf- fd#=O. 
f ~ b r  + 

On the other hand,  the proof of [7 ; Lemma 3.1] also works in our case, hence we 
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have 

I ( / x ) = l i m  1 , - 0  7 s, (ix).  

Combining the above two facts, we get the assertion of  the theorem. 
Proof of Theorem 3. 
For  convenience, if a a-finite measure ~ on ( E ,  d') ( resp.,  (E  ~ , E ~ n d ~ ) ) is 

d~ absolutely continuous with respect to 2 ,  we write cc (x)  = ~ (x)  for x E E (resp. E ~ 

Now , let # << 2 and define 

h (IX ; f ; x ,  y)= (~/# (x)q (x,y)fCy)/fCx) -~# (y)q (y, x)fCx)/f(y) )2, 

h ( la ;x , y )=h(#;1;x ,y ) ,  x , y E E .  

Denote by H ( # )  and H(IX , f ) t h e  integrals o f h  (IX ; x , y )  and h (# ; f  ; x ,  y )  with re- 
spect to 2 x 2 respectively. 

Since Ixe. .~tq) ,  we have 

1 H(IX) < 1 I I  -~ -~ [q(x, dy)ix(dx)+q(y, dx)#(dy)] 
J,d 

= f q(x)ixCdx)< , 

and so by Theorem 1, we obtain 

I(ix)=-inff  dix 
f ~,r 

= s u p  f f  ixCx)[1 - fCy) ] f ( x )  q(x,y)2(dx)2(dy) 
f r  

i, +, f(Y) q (y' x)2  (dx)2 (dy) 

1 
= -  sup 

2 i , "  

1 
= -  s u p  

2 f+.  

f f [  - f ( y ) / f ( x  )# )q y) ( 1 ) (x (x, 

+ (1 - f ( x ) / f ( y )  )# (y)q (y, x ) ]2  (dx)2  (dy) 

[ H ( # ) - H ( #  , f ) ]  

1 H ( I X ) -  1 = T -~- inf H(IX ; f  ). 1-] 
fEqr 

To prove Theorem 4, we need some preparations. 
Lemma 1. Under (HI)  and (H2), we have 

v (x)q (x, y) = v (y)q (y, x ) ,  a .  s .  (2 x 2) on E ~ x E ~ 
dv Proof. We first show that v<< 2 on E ~ so that v ( x ) = - ~  ( x ) h a s  a meaning. 
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Let 2 ( A ) = 0 .  Since v is a symmetric measure ofq  (x, dy), it follows that 

O=fv(dx)fq(x,y)X(dy)=fv(dx)q(x,A) 

= fa v(dx)q(x) , 

and so v << 2 on E ~ . N o w ,  by the symmetrizability, we have 

;,4 q(x'B)v(x)2(dx)= fB q(x,A)v(x)2(dx), A,B~E~ "] de, 

hence 

(i) 

(ii) 

(iii) 

Proof. 

and ~ B,= E .  Set 
n=l  

fA[~sv(x)q(x'Y)).(dx)]2(dy) 

=fB[fAv(x)q(x'Y)2(dY)] 2(dx) 

= fBv(x)q(x,A) ~.(dx) 

= fAv (x)q (x, B ) 2  (dx) 

=f~ fsv(y)q(y,x)2(dx)2(dy), A,BeE~ 

Starting from this and using the monotone class theorem, the conclusion follows imme- 
diately. 

Lemma 2. Let 2 be a or-finite measure on (E, de ) and g be a nonnegative 
de-measurable function. Then there exists a # s gi~(E ) such that 

#<< 2;  

d# > 0 , a . s . ( 2 ) ,  
dX 

f g(x)l~ (dx ) < oo . 

Choose a sequence of disjoint sets {B, }1 c de such that 0 < 2  ( B , ) <  c~ 

f ( x ) =  ~ (2(B.)+n2)-2In (x). 
n=l  

x~E. 
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Then f e  b$ ~ and 

Now if we take 

f f(x)2(dx)= ~ (2(B.)+n2)-22(B.) 
n=l 

< (,~. ( B . )  + n 2 ) - I  < oo . 
r /=l  

#(x)=(g(x)+f(x)-') -2, xeE,  
then the measure # defined by 

/f ( x ) ( dx  ) , , 4 e , r  

will have the required properties. Indeed, it is clear that ~ e d'" and 0 < j" ~ ( x ) 2  (dx) 

< o o , a n d s o # 6 ~ ( E ) ,  # < < 2 a n d  d/~ = ~ - / S ~ d 2 > 0 ,  a . s . ( 2 ) .  Finally, 
d2 

Proof of Theorem 4. 
The proof is split int.o five steps. 
Step 1. In the proof of Lemma 1, we have seen that v<<2 on E ~ Hence the 

symmetrizability implies that 

0=f \g0v(dx)q(x)=fev(dx)q(x,E\E~ 
= v ( d x ) q ( x ' E \ E ~  v ( x ) q ( x ' E \ E ~  

dv E o" where v ( x ) =  - - ~  (x) ,  x e  By the assumption (H2), we have 

v ( �9 ) > 0  , a . s . ( 2 ) o n  E ~ 
and so 

q(  �9 , E R E ~  a . s . ( 2 ) o n E  ~ 

Furthermore, for each nonnegative d'-measurable function f ,  we have 

f~r " y)f(y)2(dy)=O,a.s.(2)onE ~ q(  
NE 0 

At last we get 

f f  l.t (dx) {1 -f(y)/f(x)}q (x, dy) 
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=leo#(dx) fE{1-f(Y)/f(x) }q(x, y)2 (dy) 

=re~ #(dx) rE~ {1- f (y) / f (x)  }q(x , y)2 (dy) . (12)  

Step 2. Starting from (12)and using the approach used in the proof  of  Theorem 3, 
we obtain 

f h(#;x,Y)X(dx);t(dY) I ( # ) =  T o 0 

1 inf fe fe h(#; f ;x ,y)2(dx)2(dy) .  2 f~, o o 

Thus the proof  of  Theorem 4 is reduced to the particular case E =  E ~ . From now on, 
we will assume that E =  E ~ 

Step 3. Because of  0 < v< oo, a .  s .  (2) ,  without loss of generality we may and 
will assume that v e d '~ At the moment, we also assume that 0 < # ( x ) <  oo for any 
x e E .  Then # / v  e d  ''~ , and so 

inf H ( p ; f  ) . .<H(#  ; #xFff)v-v ). 
fCgO 

But by Lemma 1, we have 

# (x)q (x, Y)x/# (y)v (x)/# (x)v (y) 

= x f#  (x )  q(y'x)v(Y),ff#(y)/v(x)v(y) 

= #(y)q(y,x)xf#(x)v(y)/#(y)v(x ) , a.s .  (2 x 2 ) .  

This implies that H (# ; ~xf~v  ) = 0, and hence 

1 
I ( # ) =  - ~  H ( # )  

which is exactly what we want. 
Step 4. We now remove the extra assumption in the last step that # > 0 .  By 

Lemma 2, we can choose an ~ e ~ f E )  such that ~ < < 2 ,  c o ( x ) >  0 on E and 
Sq (x)~ ( d x ) <  oo . Hence 

inf H(o~;f ) = 0  
f ~ , r  

and 

Define 

1 ; 
I ( ~ ) = - ~ - H ( ~ ) ~ <  q ( x )o~ ( dx ) < oo . 

1 n - 1  
# . = - - ~ +  ~ # ,  n ~ > l .  

n n 

Then # .  e ~ (E ) ,  # .  << 2 ,  # .  (x)  > 0 on E and S q (x)#. (dx) < ~ for each n i> 1. Al- 
so, as we have proved in the last step 

1 
I ( # " ) =  7 H ( # . ) ,  n / > l  . 
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We now show that the assertion 

lim I(l~.)=I(#) 
n "~00 

implies very quickly the conclusion of Theorem 4. Indeed, noticing that 

h (#.;x, y)<~ (~(x)+ #(x) )q(x, y)+ (~(y)+ l~(y) )q(y,x), 

f f(~ (x) (x, y)2 (dx)2 (dy) ( x ) + ~  )q 

= .}-(~ (x)+ ~ (x))q (x)2 (dx) 

=fq(x)=(dx)+f q(x)u(dx)<oo, 

f  z(y) (dy)< oo 
and using the dominated convergence theorem, we get 

1 ]im o H ( g . )  = 1 !imo I ( # . ) =  ~ . -~- H ( # )  

which plus (13 )gives us the conclusion of Theorem 4. 
Step 5. Let us return to proving (13). By the convexity property o f / ,  we have 

i(g,)~< 1 I ( ~ ) +  n - 1  I(#) 
n n 

(13) 

(14) 

(15) 

and so 
lim I(#.)~I(la). 

On the other hand,  noticing (14)and (15), it follows that 

l i m I ( # , ) = l i m  sup [ - f  L - - f a , ]  
n ~ o o  n~oo f E j  4" 

- f~-~inf f ;  q(x,y)#.(x)f(y)/f(x)~(dx)2(dy)] 

~>lim. ~ f q(x)#.(x)2(dx) 

- l i m  inf ['[" q (x , y )#. (x )f( y ) /f(x )2 ( dx )2 ( dy ) 
n ~  f ~  +" dJ 

>~lim,~ f 
- inf lim f['q(x.y)l~.(x)f(y)/f(x)2(dx)2(dy) 

f c a l +  n "#oo JJ 
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=; 

This finishes the proof  of  ( 13 ). 
Proof  of Theorem 5. 
Pu t  

h(p ; x, y) = [ ~/p (x)q (x, y) m/M 

and denote by /~ (#  ) the 
# e  ..~ ' ( q ) ,  we have 

q ( x ) v  (x )2  (dx) 

inf IIq (x, y) # (x)f(y)/f(x)2 (dx)2  (dy)  
f e J  1" 3.1 

- . ~  (y)q (y, x ) M / m  ] 2 

+ [ x/# (x)q (x, y) M/m - x/It (y)q (y, x) m/M ]2 

integral of  It (/.z ; x ,  y )  with respect to 2 • 2 .  Because 

1 oo  H(#)~<  T 

Hence the proof  of  Theorem 4 also gives us 

I (/~) = -2- o o 

1 inf fe ;e h(l~;f;x,y)2(dx)2(dy). 
2 f ~  ~ 0 0 

For  simplicity, from now on we assume that E =  E ~ . Set 

,8,.,M={fe~: m<~f <~M }. 
For  each f e ~ , . , i ,  we can choose a sequence {f. }1 c ~ such that m~f.<~M and 
f .  (x) -,- f (x) for each x e E as n - "  ~ as we did in the proof  of  Theorem 1. On the 
other hand ,  for each ge'~'.,.M' we have 

h(~;g;x,y)<~h(#;x,y)/ '2,  x , y e E .  
Therefore for each # e ~ '(q), by the dominated convergence theorem, we get 

lim H(# , f , )=H(# , f ) ,  
n ~ o o  

and hence 

inf 
f e ~  + 

But the assumptions of  Theorem 5 give us 

and Lemma 1 gives us 

;x,y)=O, 
thus by ( 16 ) we have 

H(/.t , f  ) =  inf H( /z  , f ) .  
fel$+L~d'm,M 

a . s .  ( 2 ) ,  

a . s .  (2 x 2 ) ;  

(16) 
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inf H ( p , f ) < H ( # , ~  ) = 0 .  
f e ~  ~" 

This completes the proof of Theorem 5. 
Proof of Theorem 6. 
Clearly, (ii)=:, (i). From Corollary, it follows that (iii)=~ (ii). Now we need 

only to show that (i)=~ (iii). 
Without  loss of generality, we may and will assume that E =  {0, 1,2, ... }. Denote 

by 6k the pointmass at k .  Then we have 

= E E (4- k,q,j--46kjqj  )2 
i ~ k j < i  

= ~  qkj+ ~ qki=qk �9 
j < k  i>k  

The same proof  shows that 7 (6k)= qk" Hence qk= qk for every k~  E .  
1 

Next ,  assume that n < m  and take # =  ~-  (6,+ 6m). Then we have 

I ( ] A ) = Z  2 (~[Aiqi j  - - ~  )2 = 1 , j>, T (qm+q") - -~ /q" 'qm"  ' 

l (q.+-4.)- 4 I '( / , t)= S qnmqm, " 

Combining the above facts with the condition ( i ) ,  we get (iii) immediately. 
Additional Note. The answer to the question mentioned in (9)has  been obtained 

and will be presented elsewhere. 
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