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New sufficient conditions are given for the ergodicity of reaction-diffusion 
processes which improve both Neuhauser's recent result and the present 
author's previous result. In the main criterion; contrary to the previous ones, the 
pure birth rate of the reaction plays a critical role. To do this, a new but natural 
coupling is introduced. It is proved that this coupling is the best one in some 
sense. One of the main results says that the reaction-diffusion processes are 
ergodic for all large enough pure birth rates. 

KEY WORDS: Ergodic theorems; reaction-diffusion processes; coupling; 
Kantorovich probability distance. 

1. I N T R O D U C T I O N  

The  reac t ion-d i f fus ion  processes cons ide red  in  this pape r  are c o n t i n u o u s -  

t ime M a r k o v  processes wi th  s tate  space E =  {t/: Z a ~ 7 / +  = {0, 1,2, . . .}}, 
The  processes  evolve in  the fo l lowing  way: 

(i) At  ra te  b(q(x)) a par t ic le  is b o r n  at  x. 

(ii) At  ra te  a(~l(x)) a par t ic le  at  x dies. 

(iii) At  rate q(x)  p(x, y)  a par t ic le  j u m p s  f rom x to y. 

Here  p(x, y) is a t r a n s i t i o n  p r o b a b i l i t y  on  7/a. The  fo rmal  gene ra to r  is 

g2f(~l) = ~ {b(q(x) )[ f (q  + ex) - f ( q ) ]  
x 

+ a(q(x) ) [ f (q  - ex) - f (~ / ) ]  

+ ~ q ( x ) p ( x ,  y ) E f ( q - e x + e y ) - f ( q ) ] }  (1.1) 
Y 
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Here the sums are over all x and y in 7/a, and e x s E  has ex(X )= 1 and 
e x ( y ) = 0  for y e x .  

Three concrete examples are: 
Linear growth model: b(k) = Bo + [11k, a(k) = 61k. 
Schl6gl's first model: b(k) = [to + [1~ k, a(k) = 61k + 62k(k - 1). 
Schl6gl's second model: 

b(k) = flo + f12 k(k - 1 ), a(k) = 61 k + 63 k(k - 1 )(k - 2). 
Here the coefficients are all positive. 
I assume the following hypothesis (H): 

(H) .  p(x, y) is translation invariant in Y a, p(x, x ) =  O, and 

m + l  

b(k )=  fljk (i~, a ( k ) =  ~ 6jk (J) 
j = 0  j = l  

where k ( J ) = k ( k - 1 ) . . . ( k - j + l ) ,  the coefficients fl] and 6j are non- 
negative, m>~ l, and [10, 6~, 6m+1 >0.  

Actually, one can allow [1o=0. But the proof will become much 
simpler, so I will not consider this situation. 

For  these systems, the Markov processes were constructed in ref. 1. 
Since the rates are unbounded, the processes have to be constructed on a 
smaller state space 

Eo = {~ ~ E: ~ tl(x) a(x) < oo } 
x 

where c~(.) is a summable positive sequence such that 

p(x, y) a(y) <~ Ma(x), x c Z a 
Y 

for some M. The uniqueness of the processes was not discussed in ref. 1, 
but, as X.G. Zheng pointed out to me, it is indeed a straightforward 
consequence of the construction plus some estimates of higher order 
moments. I will not discuss the details here. 

As for the stationary distributions of the processes, some general 
existence and uniqueness results were presented in ref. 2 in Chinese. An 
English version with some improvements is given in ref. 5. Applying the 
result given in ref. 2, Chapter 14, to the present case, if the condition 

c + M - l < 0  

holds, where 

c =  sup [ b ( k + l ) - b ( k ) - a ( k + l ) + a ( k ) ] / l  
k>~O,l>~l  
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then the process is ergodic. In the present case, p(x, y) is translation 
invariant, so the constant M can be chosen as close to 1 as desired. Hence 
the condition 

c<O (1.2) 

is sufficient for the ergodicity. For the linear growth model, the condition 
(1.2) becomes /~1<61, which cannot be improved anymore. (8) However, 
this condition is too strong if the reaction is nonlinear. For example, for 
the first Schl6gl model, (1.2) is just 

f i l<61 (1.3) 

For the second Schl6gl model, we have a solution to (1.2) as follows: 

3 +p2 
61>fl2+ 6, (> 2fl2) (1.4) 

Recently, Ding et al. (7) proved the ergodicity of reversible reaction- 
diffusion processes (i.e., 6i=c~Pi_l, 1 <~i<~m+ 1, for some ~ > 0 )  under 
some reasonable hypotheses. By using ideas from that paper, Neuhauser (1~ 
has improved the condition (1.2) in the general case (not necessarily 
reversible). She used a metric 

p(k, I)= ~ uj on S 
o<~j<~ ] k - / I  - l 

where 1 ~> uj ~> e > 0 for some e > 0 and all j E Z +, instead of the ordinary 
metric ]k - l ] .  The latter was used in my original proof of estimating 
the Kantorovich probability distance (in refs. 2, 4, and 5 it was called 
the KRW distance). Since p(k, l) is equivalent to the ordinary metric, 
Neuhauser's theorem is also the ergodicity in the same Kantorovich 
distance (cf. Remark 2.2). 

In this paper, some new suff• conditions for the ergodicity are 
proposed. The main result is Theorem 1.1, in which a metric not necessarily 
equivalent to the above one is used. More precisely, I require uj > 0 for all 
j~> 0, but not uj~> e > 0 as above; the pure birth rate flo appears in the 
formulation of the criterion of Theorem 1.1. This is an essentially new 
point. Actually, I will prove that the reaction-diffusion processes are 
ergodic for all large enough flo (Theorem 4.8). The reason I can do this is 
that I find a new but quite natural coupling and, as is seen in Section 3, it 
is the best choice in some sense. 
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To state the main result, I need some notations. Define 

u o = l ,  U l = U l ( ~ ) = ( i n f [ b ( k ) + a ( k + l ) - s ] / [ a ( k ) + b ( k + l ) + ~ ] ) v O  
k~>0 

u,=u, (e)= ~ inf [(b(k)  v a(k + l) + l)U,_l + (b(k) /x a(k + l) )ut_ 2 
~k>~o k 

" 1/ } - l - e  ~ u i [ a ( k ) + b ( k + l ) + e ]  vO, I>~2, 
j = O  

where a v b = m a x { a ,  b}, a A b = m i n { a ,  b}. 

T h e o r e m  1.1 (u-criterion). Under (H), if there exists an s > 0 such 
that u t (s)> 0 for all l>~ 0, then the process is ergodic. 

This theorem will be proved in the next section. In Section 3, I will 
introduce some other criteria and compare them with the above criterion 
and the original condition (1.2). In the last section, I apply the criteria to 
the Schl6gl models. I study mainly for the first model when the criteria are 
or are not available. Different versions of these criteria and a comparison 
result for different processes are presented. Having the ergodicity of the 
reversible processes in mind, we know that our main criterion is still not 
at the final level. This may be due to the limitation of the coupling 
technique. It is worth mentioning that the ideas of this paper can be used 
directly for the study of successful couplings of other Markov processes. 

2. PROOF OF T H E O R E M  1.1 

I begin this section with a simple result. 

I . e m m a  2.1. Under (H), the sequence {ul} is decreasing and boun- 
ded by 1 from above. 

Proof. Use induction. Since the degree of a(k) is higher than that of 
b(k), we have 

ul~< lim b ( k ) + a ( k + l ) - e _ l = u o  
k ~ ~ a(k).+ b(k + 1 ) + s 

Suppose that 0 ~< uz 1 ~ Ul 2 ~ " ' "  ~ 1; then 

b(k) v a ( k + l ) + l  
ul ~< lira 

k ~ ~ a(k) + b(k + I) + s 
ul_ 1 = ul_ 1 ~< 1 QED 
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k e m m a  2.2 (Estimates of  Moments). Under (H), for every m >/1, 
we have: 

(i) E~01,(x)m)<oO, t~>0, */eE0, x e s  ~. 

(ii) There exists a decreasing function (0m: (0, O0)--* [0, 00) such that 

~_~(th(x)m)~Om(t) forall  t>O  and ~/eE;  

where E" indicates the expected value for the process r h starting from ~/and 

E~ = {~/E E o : q(x) = ~/(0) for all x ~ 7/a} 

Proof. The first assertion comes as no surprise because the degree of 
the death rate is higher than the degree of the birth rate. At least when 
m = 1, it was proved in ref. 1, but the same proof works for the general case 
as well. The second assertion is due to Ding et aL, (7) for which we require 
that the degree of the death rate is at least two. QED 

Now, we split the proof of Theorem (1.1) into five steps. 

(a) First, consider the finite-dimensional case. Let S be a finite 
additive group. Suppose that (p(x, y): x, y~  S) is a translation-invariant 
transition probability: 

p ( x + z , y + z ) = p ( x , y )  for all x , y , z ~ S  

By using S instead of 7/a, one can define a generator as in (1.1). I introduce 
the following coupling for this Markov chain. For  the diffusion part, 
throughout this paper, I couple the process in the following way: 

(th ~) --* (t 1 -ex  + ey, ~--ex + ey) 

--* (q--ex + ey, ~) 

--* (q, ~--ex+ey) 

at rate t/(x)/x ~(x) p(x, y) 

at rate (q (x ) -  ~(x)) + p(x, y) 

at rate ( ~ ( x ) -  t/(x)) + p(x, y) 

Notice that whenever simultaneous jumps at rate A /x B (say) occur, we 
automatically get two individual jumps at rates ( A -  B) + and ( B - A ) + ,  
respectively. Thus, in what follows I will write down only the first rate and 
omit the others for simplicity. 

For  the reaction part, at each x e  Z d, I couple the process in the 
following way: 

(i) If r/(x) = ~(x), the two marginal processes are made to evolve at 
exact the same rates. 
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(ii) 
example,  

and so on. 

(iii) 

Chen 

If  [ r / (x ) -~ (x ) [  = 1, they are made  to j u m p  independently.  Fo r  

(tl, {) --* (tl + ex, ~) at rate b(q(x)) 

--, (I/, ~ + e~) at rate b(~(x)) 

Let q(x) < r If It/(x) - r >~ 2, choose 

(tl, ~)--* (tl + ex, ~-e,:)  

~ ( ~ l - e x , ~ )  

~(r l ,~  +ex) 

at rate b(tl(x)) A a(((x)) 

at rate a(rl(x)) 

at rate b(((x)) 

Finally, I use s~ to denote  this coupling operator .  It  is a genera tor  and 
clearly order-preserving/3)  

(b) Next,  I make  some computa t ions .  Let F(k)=Zo,<j_<k 1 uj. Then 
for ~(x)  = ~(x) - r/(x) t> 0, x e S, we have 

ff2F(~(x)) = { -b(rl(x))u~ixl_2 + a(rl(x))u~(x) 

-If- b ( ~ ( x ) ) U ~ ( x ) -  a(~(x))U~(x)  1} I~(xl=, 

~- { -- [b(/~(x))  A a(~(x) )] (U~(x)  2--{- U~(x)_l) 

- [ b ( ~ ( x ) ) -  a ( ~ ( x ) ) ]  + . ~ ( x ~  1 

- [ a ( ~ ( x ) )  - b ( ~ ( x ) ) ]  + u ~ x ~ _  1 

-I- a(tl(x ) ) Ur -t- b(~(x) ) Ur } Ir 

+ Z r P(Y, x)u~(,) - ~(x) ~ p(x, y)Ur 
y Y 

where Ir 1 is the indicator  of the set [-~ : ~(x) = 1 ]. Collecting terms, we 
obta in  

~F(~(x)) = { [ a ( , ( x ) )  + b(~(x)) ]  Ur 

- [ b ( r / ( x ) )  + a ( ~ ( x ) ) ]  Ur } Ir 1 

+ { Ea(~(x)) + b(~(x))3 U~x~ 

-- [b(rl(X)) v a(~(x))]u~(x)_a 

- [b(r / (x)) /x  a(~(x))]ur I~(x)>~2 

- ~(x)Ur162 1 + ~  ~(Y) P(Y, x)U~(x) 
y 
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Note that we can combine -~(x)U~(x) ~ into the reaction part, so we can 
estimate this by 

~2F(~(x)) <<. -eF(~(x))  - ~(x) + ~ ~(y) p(y, x) 
y 

As mentioned before, the coupling jump process P(t)  with generator O is 
unique, so we have 

d 
dt fi(t) r(~(x)) = P(t) ff2F(~(x)) 

Thus, for any initial q ~< ~, r/, ~ E E ~, 

ES= {tleZs+ �9 t l ( x ) = q ( O ) , x e S  } 

we obtain 

d 
dt ~:("';) F( ~,(x) ) 

y 

= -e~z~"'~-)F(r x ~ S, t >>- 0 

I use attractiveness, r/~< ~ ~ q, ~< ~t, a.s., and where 4, = ~ , -  qt. Here 
translation invariance 

EP(Y ,  x ) = E  p(0, x - - y ) =  1 
y y 

Hence, we arrive at 

~_~"';)F(~,(x)) <~ E~"'r exp[  - ~ ( t  - 1)] t~>l, x e S  

(c) Let A s =  t - N +  1, N]d~7 /d  and regard A N a s  the torus SN= 
2d/(2Nzd), the factor group. On SN, we can introduce a shift operator in 
a natural way and translation invariance is meaningful. Next, for a given 
translation-invariant transition probability p(x, y) on 2~ d, we can introduce 
pN(X, y) on S N with the same property: 

pN(o, x) = p(O, x) /  y~ p(O, z), 
/ z  ~ S N 

Here I have identified x ~ SN as an element in Z a. 

x ~ S  N 
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Applying (a) and (b) to the present case with an obvious change of 
notations, we get 

~:~,~)F(~,(O))<~z(~,C)F(r t>~l (2.1) 

for any initial t/~< ~, t/, ~ e E~v. 

(d) Now, let us go back to AN. Regard the above process PN(t) as 
a process on 7/A+ u. Let ~ denote the infinite-dimensional coupling operator 
constructed in the same way as in (a). It is easy to check that for every 
x e 2~ a, if we put hx(t/, ~) = t/(x) + ~(x), then 

Ohx(t/, ()~< c[1 + hx(t/, ~)] 

for some constant c <  ~ .  Moreover, the interaction between two boxes 
[i.e., t/(x)p(x, y)]  is at most linear. These two facts enable us to find a 
Markov process with generator s An alternative way is to take a weak 
limit P in the usual Skorohod topology, which is a solution to the 
Martingale problem for the operator ~ (see ref. 9 for details). Thus, from 
Lemma 2.2 and (2.1), it follows that 

~(rt,~)F(~t(O)) ~ [~(r]'r exp[ - e ( t -  1)] (2.2) 

Since the original process is unique, it does not depend on the ways of 
different finite-dimensional approximations. Hence each marginal distribu- 
tion of P coincides with the original process. In particular, we have 

(2.3) 

(e) Finally, let t/~' denote the Markov process starting from t/(x)= n, 
x e 7/d. By the attractiveness of the original process, we have ~,r'-<~ ~,r" + 1, a.s. 
Following Ding eta/., (7) we can construct a common probability space 
(s ~-, ~) on which the process (t b, ~,) lives and 

(7 T ~?, P-a.s. 

By Lemma 2.2, 

~ 7 ( 0 )  < ~ (2.4) 

By (2.2)-(2.4) and Fatou's lemma, we get 

E F ( ~  (0) - t/~ 

<~ lim EF(~7(O)--q~ e x p [ - a ( t -  1)] 
n ~ o 9  

~< E(~?(0)-- t/~ exp[--e(t  - 1)], t~> 1 
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Using Fatou's lemma again, we finally obtain 

- -  c o  EF(~ ~(0) - r/~ (0)) 

~< lim ~-F((F(O ) -  q~ 

~< lim ~F(~7(0 ) - r/~ exp[ - e ( t -  1)3 = 0 
t ~ o o  

Since u~ > 0 for all l ~> 0, this proves that 

~(0)- -a  r/~ QED 

Romark 2. I. In view of (b) in the previous proof, what we need is to 
choose a sequence {vt: l~> 0} such that 0 < vt~< uz for all l~> 0. But it is easy 
to see that the largest choice of {v,} is just {u,}. One may ask whether one 
can improve the theorem by setting e = 0 in the formulation of u t=  ut(e). 
The answer is negative. Consider the linear growth model with /~l =61;  
then ut (0)= 1 for all l~> 0. But the translation-invariant stationary distribu- 
tions are not unique. (8) This is the main difference between the finite- 
dimensional case and the infinite-dimensional one. In other words, we can 
take e = 0 in the former case by studying the successful couplings, but we 
cannot do so for the latter case. 

On the other hand, the estimate 

Y Y 

used in (b) may not be sharp, but I have no way to improve it at the 
moment. 

Remark 2.2. By Lemma 2.1, the sequence {ut} is decreasing, hence 
p(k, l)= F( ]k -  l]) is a metric on 7/+. Furthermore, 

p('r ~) = E ~(x) p(~(x), ~(x)) 
x 

defines a metric on Eo, and so we have a Kantorovich distance 

K(P, Q) = i n f f  p(t/, ~) P(dr/, dr 
P 

where P and Q are probabilities on Eo and P varies over all coupling 
probabilities of P and Q. In this notation, we have indeed proved that 
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K(P(t, r/, .), P(t, ~, .)) 

~< ~ co(x) EF( (? (0 )  - r/~ 
x 

] exp - t. ;,o, 
--*0 as t ---, oe 

Remark 2.3. Having the above probability distance K(P, Q) in 
mind, along the lines of refs. 3 and 5, we can prove Theorem 1.1, even more 
simply for the more general case where the degree of the death rate may be 
equal to one and p(x, y) is not necessarily translation invariant. Of course, 
the condition 

s u p ~ p ( x ,  y ) < o e  
Y x 

is needed. The reason I do not adopt  the simpler proof  here is that I want 
to cover some other cases, where some sequence {u~} does not define a 
metric on 7/+. 

3. D I S C U S S I O N  OF O T H E R  C R I T E R I A  

The coupling for the bir th-death processes (i.e., the reaction part) used 
in the last section simply makes the two marginals jump to places that are 
as close as possible. Of course, one can use other couplings. Here are some 
examples. 

Fix xe7/a and let t / ( x ) = k  and ~(x)=~(x)-~l(x)=l>~O. If I = 0 ,  
always make the marginals move simultaneously (in the box x). 

(i) Basic coupling ~b. When l =  2, choose 

(k ,k  + l ) ~ ( k  + l , k  + l) 

- . ( k -  1, k + l )  

~ ( k , k + l + l )  

at rate b(k) A a(k + l) 

at rate a(k) 

at rate b(k + l) 

I repeat here that I omit the two rates ( A -  B) + and ( B - - A )  + whenever 
there is a rate A/x B (say). When l =  1 or />3 one simply makes the two 
marginals move independently. 

(ii) Classical coupling ~2 C. For  I~>1, the marginals move inde- 
pendently. 
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(iii) March coupling ~2 m. For  I~> 1, 

(k ,k+l )~(k+l ,k+l+l )  atrateb(k) Ab(k+l) 

--* (k - 1, k + l -  1 ) at rate a(k) A a(k + l) 

This coupling has been used often in the study of reaction-diffusion 
processes. It has the advantage of being easy to handle and, as mentioned 
before, is good enough for the linear growth model. 

Combining the above couplings, one may produce other couplings. 
For example, by combining (ii) with (iii), we get the following coupling. 

(iv) Coupling E2cm. I f l~<l ,  use ~c; ifl~>2, use (2m" 

For all of these couplings (recall that the coupling for diffusion part is 
kept fixed), there are corresponding criteria for the ergodicity of reaction- 
diffusion processes. To state them, set 

Uob= 

Ulb= 

U2b= 

U~= 

c c m  m 1 
Uo=b/0 = U  0 = 

c c m  
Ul=b /1  = H i  ~- u l ( ~  ) 

.~ = u~(~) 

u~(~) 

inf [b(k)+a(k+l)+I]u~_l-l-e ~ @ 
kk~>o 2= o 

xEa(k)+b(k+l)+s] -~) vO, l>>.2 

with Replacing u~'_ 1 
u~=u~(s) for 1~>3. Next, set 

u7 = uT(~) 

Fc{ ' }  = inf [a(k+l)-a(k)+i]u~_l-l-e ~ uj" 
L\k~>O j=O 

Similarly, replacing uT'_ ~ with u}'m~ in the right-hand 
defines u~ m = u~'m(~) for l~> 2. 

(3.1) 

u~_ 1 in the right-hand side of (3.1), one defines 

(3.2) 

side of (3.2), one 

Among all of these sequences, (u~), (uT'), and (u~ m) are easier for 
computation. Following the proof given in the last section, we obtain the 
following result. 
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Proposi t ion  3.1. Under (H), for each r = b, c, m, or cm, if u~(e) > 0 

for some e > 0 and all l ~> 0, then the process is ergodic. 

I refer to the criterion given by Proposition 3.1 as the ur-criterion 
(r = b, c, m, cm).  Now I compare these criteria with the original result. 

Proposition 3.2. Under (H), if (1.2) holds, then there exists an 
e > 0 such that 

u,(e)  = uT(e) = 1 

for all l ~> 0 and r = b, c, m,  cm. 

Proo f .  Since the proof is the same for different cases, we check only 
that 

uT(~) = 1, t > o  

It suffices to show that 

[ A , a ( k ) - l a ] / [ A , b ( k ) + e ] > ~ l ,  k>~O, l>~1 

where A l a ( k  ) = a ( k  + l)  - a ( k )  and A t b ( k )  = b (k  + l )  - n(k) .  This is nothing 
but the condition (1.2). QED 

In order to compare the above criteria with the u-criterion, I first 
make some remarks. First, we can assume that b ( k ) r  const, since for this 
special case, the condition (1.2) is already good enough. Second, it seems 
hard to handle the general case, and so I restrict myself to the extreme 
case e = 0 .  This is meaningful because if we replace - l - e Z J - l o U ~  with 
- ( 1  + e ) l  in (3.1) and (3.2), the proof given below still works well. Even 
the extreme case is stronger than in the original case, but it is the most 
practical one (see next section). On the other hand, since the coupling for 
the diffusion part is fixed, we are indeed comparing the couplings of one- 
dimensional birth~leath processes. Hence ~ can be allowed to be zero, at 
least in the study of successful coupling3 6) 

Let 

fit = ut(0), ~ = uT(0), r = b , c , m ,  cm, I>~0 

For the successful coupling, one requires that Z tTz = oo (Z  t~7 = oo). 
The following trivial fact will be used in the next section. 

L e m m a  3.3. For any 5 > 0  and l>~0, we have 

uz/> ul(~), ~ />  u~(e), r = b, c, m, cm 

(3.3) 
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Proposition 3.4. Under (H), if b(k) is not a constant, then for 
every l ~> O, we have 

ti, ~> ~ ~ ~ and ~" '  ~ ~" 

As for the gap between fi~ and ff~m, we have the following conclusions: 

(i) If there exists an lo ~> 1 such that tic -cm -c Zo>~Ulo and {ul}z>~z o is strictly 
decreasing, then so is {u t-cm }~>~zo and ut-C>.,~ ut-C,, for all l>~lo. 

(ii) If there exists an lo ~> 0 such that Ulo-C ~-> ut 0-cm and uz-C = ut 0-c for all 
- r  l>~lo, t h e n E ~ u l  4 E ~ - ~ -  Ul--OO. 

In the above cases, we certainly have ~Tm > 0 (VI~> 0) =~ ~ > 0 (Vl ~> 0). 
Moreover, if the degree of the death rates equals two or three, then either 
(i) or (ii) will happen. In general: 

- c m  ~ c m  = - c m  - c m  (l ~> 1), then t~ ~>/~m for all (iii) If we replaceu l b y u  l u l Au l_ 
l>~0. 

In the above sense, the coupling used for the u-criterion is the best 
one. 

ProoL (a) As in the proof of Lemma 2.1, ( ~ )  and (~)  are decreasing 
and bounded by 1 from above. Hence, it should be clear that Ot ~> u} >I ~ 
for all 1 ~> O 

(b) For ~ m > ~ , ,  I~>0, we need only to check that t i{"~>~. Recall 
that Aa(k)= A l a (k )=  a(k + 1 ) -a (k )  and so on. We have 

g~'~' .*> Aa(k) >>. db(k), gk i> 0 

. ~b (k )+a(k+l )>~a(k )+b(k+l ) ,  Vk>~0 

~a~m=l 

Thus, we may assume that 

= {k>~0: zta(k)-Ab(k)<O} r  

which is a finite subset of 7/+. Then 

1 > ~m = min [b(k) + a(k + 1)]/[a(k) + b(k + 1)] 
k~>0 

i / 3a(k) - Ab(k) + 1'] min 
\a(k) + b(k + 1) J Ic ~ 3 U  1 

>min(Aa(k-~)A~((~--~b(k)+l)>~u 1 - m  

k e ,Z-{" 1 

For the strict inequality I have used a(k ) + b(k + 1) > b(k ) > O. 



952 Chen 

(c) In the case (i), we have 

x;={ a(kt+ <"11-C } 
= {k~>0: [ A , a ( k ) - A l b ( k ) + l ] ( t y _ t - l < O  } 

r  /~>/o+1 

By assumption,  5fo >~ ~t~ m. Now, suppose that  this holds for some l 1>/o; then 

1-I } l > f f y =  min F-ffY_l v O  
t k ~ t  a ( k ) + b ( k + l )  

~> ~min [ A ' a ( k ) - d ' b ( k ) + l ] f t ~ - l - I  } 
( k ~ z  dlb(k) +u~-1 v 0 

= ~min [ A l a ( k ) + l ] f t ; - 1 - l }  v O  
~k~x~t Alb(k) 

>~ / min [Ata(k) + l] ffCTm_ 1 - -  l} v 0 
(k~x~ Alb(k) 
- c m  >Jut 

By induction, we have ~ / >  I,l~ m for all l ~> lo. 
Next,  suppose that ~ ' m ~  ~rn I for some l>~ lo + 1. Then  by definition 

we would not  only have that 

min [A~a(k) - Alb(k)]/l+ 1 > 0 (3.4) 
~>o 

but  also that  

o;m_~ ~> max { [A,a(k) - A,b(k)]l+ 1 } -1 (3.5) 
k>~O 

Since we know from (c) that  ~ 1/> ~m_ 1, replacing ~i~ ~ - 1 by ~ 1, (3.4) and 
(3.5) would still hold. This implies that  ~ + 1 = ~ ,  which contradicts our  
assumption.  We have thus complete the proof  of case (i) as well as that  for 
case (iii). 

(d) Consider  case (ii). The special situation that l o = 0 was treated in 
Proposi t ion  3.2. Hence,  we assume that  lo >/1. If for all 1/> lo, / ~ m ~  ~ ,  then 
the assertion is trivial. Assume that there exists some I~> lo + 1 for which 
~m > ~o' Let  11 be the first one after lo having this property.  The condit ion 
ut o-C _- ul 0-c + 1 = . . .  simply means that  

inf {min [Ata(k ) - Alb(k)]/l + 1 } = r > 0 
l~>/0+ 1 k~>O 
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and that ut0-' >~ r 1. Thus, if ut l-cm > fi,lo, if follows from the last paragraph  that 
we should have u~+-cm 1)Ul-cm for all l>~ ll. Hence 52 ut-C__ 52 u l - c '=  oo. 

(e) Finally, consider the situation where the degree of the death rate 
equals two or three. These contain the first and the second Schl6gl models. 
In bo th  situations, if {u~}t~o is strictly decreasing, then we just have case 
(i). Otherwise, let lo be t he  first integer so that 

-c and ~7 c -c ~; > u~ > "'" > Uto 10+ ~ = u~0 

Then the proof  in (c) indicates that 

- c r n  - c m  - c m  - c  - c m  for l<~l o (3.6) ///0 > //1 ~ "''/A10 , b/l ~b / l  

Now, ! claim that  

u l -~- - ' -  Uzo for all l>~lo (3.7) 

If this holds, then (3.6) and (3.7) imply that  we are in case (ii). To  prove 
(3.7), recall that  for l>~ 1, fly = fly_ 1 if and only if (3.4) and (3.5) hold with 
~m 1 replaced by ~ 1. These modified condit ions are denoted by (3.4') and 
(3.5') respectively. Let us now study the case of degree m = l  or 2, 
respectively. 

F o r  m = 1, we have 

min[d~a(k)-  Atb(k)]/l + 1 = 61 - - f l l  "~- 1 + ~2(l-- 1) 
k~>O 

which is increasing in /. Hence, (3.4') and (3.5') are satisfied for all 
l > / o +  1. 

For  m = 2, the situation is more  complicated. In that case, 

h(k, l)= [Aza(k)-  A,b(k)]/l+ l 

= ( 6 1 - f i 1 ) +  ( 6 2 - f l z ) ( / + 2 k -  1 ) + 6 3 [ l  z +  3 ( k -  1)l 

+ 3 k 2 -  6 k +  2] + 1 

+ (1~1--/~1) -~- (~2 - -  /~2)(/--  l )  AC" (~3( l -  1 ) ( / - -  2)  + 1 

For  fixed l~>1, if l /2-1+(62-fl2)/363=_~>0, then h ( - , l )  achieves its 
minimum at k = 0 and 

h(l) = min h(k, l) 
k > ~ O  

~-'~" ~51--ill  -}- (a2 -- 1~2)(1-- 1) -}- a 3 ( / - -  ~-)(l-- 2)  -}- 1 

8 2 2 / ' 5 8 / 5 - 6 - 1 1  
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It is easy to check (since e > 0 )  that in the present situation, h(1) is 
increasing in l for l >  2 1 1 -  (62-f l2)/363].  If c~ <0,  then h(., l) achieves its 
minimum at ko = ko(1), the nonnegative integer closest to -~ .  Moreover, 

h(l) = min h(k, l) 
k>~O 

=363 k o + ~ - l + - ~ 3  ) - 3 6 3  - 1 + - - ~ 3  ) 

-[- (61 - -  fll ) Av (62 - -  f12)( / - -  1 ) -[- 63(l  - -  1 )(I - 2) + 1 

l 6 2 - 3 2 )  2 1 
= 3 6 3  k 0 + ~ - i  + ~ ]  + ~ 6 3 / 2 - 6 3  

(62- /32)  2 
+ (61 - ill) + 1 + ( 6 2 -  f12) (3.8) 

363 

Since the first term on the right-hand side of (3.8) is less than 333, it 
follows that the function h(1) is increasing in l not only on the interval 
1 ~< I<  211 - ( 6  2 -fl2)/363],  but also for all l>~ 1. This again shows that the 
above two conditions (3.4') and (3.5') are satisfied. QED 

Remark 3. 1. The idea in Remarks 2.2 and 2.3 can also be applied to 
the (ub) - and (uT)-sequences but not to the (u~m) - and (uT')-sequences. The 
reason is that, for instance, 

E u; m 
0 <~j~< Ik-  II - 1 

is in general no longer a metric on 7/+. 

4. APPLICATIONS 

In this section, I finally prove that the systems are ergodic if flo is 
sufficient large (Theorem4.8). But first, let us study SchlSgl's first and 
second models more carefully. For the first one, we have 

A f l ( k ) = l [ 6 1 + 6 2 ( l + 2 k - 1 ) ] ,  A,b(k)=f l l l  

and for the second one, 

A , a ( k ) = l { 6 1 + 6 3 [ l  2+ 3 ( k -  1 ) l + 3 k  2 - 6 k + 2 ] }  

Alb(k)  = lfl2(l + 2k - 1) 
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Lemma 4.1. For the first Schl6gl model, we have 

{ 1_71 if 61>fl l  

ul(e)= 61+flo-8 if 61~<131, 

+/~o+8 
8 small enough 

For the second one, we have 

where 

I 1 if (363 § 2fl2)2 < 126163 

u1(8) = b(k)+a(k+ 1 ) - e  
rain if 

kk~.o a(k) + b(k + 1)+ 8 
(303 § 2fl2) 2/> 126163 

and 8 small enough 

Xo = {k/>0: [663k- (363 + 2fl2)1 ~< [(363 + 2fl2) 2 - 1 2 6 , 6 3 3 1 / 2  } 

In particular, if 61 ~< 2fi2, then U1(8 ) ~ (261 + riO-- e)/(61 + 2fl2 + riO + 8) for 
small enough 8 > 0. 

From Lemma 3.3, we easily get the following results. 

Proposition 4.2. In order for the u~'~-criterion to be applicable, it 
is necessary that 

(tfm>max{A,a(k)/l+ 1} -1=  {a(l)/l+ 1} -1, l>~ 1 
k~>0 

For the first and second Schl6gl models, this becomes 

and 

~f~> {1 + 61 +6~t(r  1)} 1, t > l  

respectively. In particular, for the first model, if fl~ > 61, then 

61 + (61 + 62)(61 +/~o) >/~1 
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is a necessary condition; for the second model, if 61 ~< 2/~2, then 

61( 1 + 261 +/~o) > 2/~: 

is necessary. 

Proposit ion 4.3. 
necessary that 

Chen 

In order for the u-criterion to be applicable, it is 

ft, 2>max{[b(k)+a(k+l)] / l+ 1} -1 
k~>O 

= { [ t ~ o + a ( I ) ] / l + l }  -1, l>>.2 

For the Schl6gl models, this becomes 

ffl/_2> {flo/l-~61+62(l--1)-t-1} I 

and 

t~l_2 > {flo/l+61 +63(I--  1 ) ( l - -2 )+  1} -1 

respectively. In particular, for the first model, if/~1 > 61, then 

61(61 + 262) -t- flo(/~o -q- 461 + 602)/3 > fll 

is a necessary condition; for the second model, if 61 ~< 2/~2, then 

61 -I- (61 + 263 -k-/~o/3)(/?o + 261) > 2/3z 

is necessary. 
To obtain some precise ergodic conditions by using the u-criterion 

(ur-criterion), one should study both the upper and the lower bounds of 
the uz. For simplicity, I consider only the latter lower one. I first introduce 
more practical versions of the present criteria. Put 

fo = Uo, ~1 = ~l(e) = uj(e) 

~t = fit(e) = ( inf { [b(k) v a(k + l) + l -  e] f t -  1 
k>~O 

+ [b(k)/~ a ( k + l ) - e ] f , _ 2 - l - e ( l - 2 ) }  

x [ a ( k ) + b ( k + l ) + e ]  1) vO, l>~2 

Clearly, 

fits< uz, l~>O 
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The criterion corresponding to the (fi~)-sequence is called the fi-criterion for 
now, 

For the fi-criterion, we have a comparison theorem for two processes 
with different rates (b i, d), i= 1, 2. Here, I consider only the following 
cases: 

(i)  h i ( k )  = bZ(k) = b(k) and a'(k) >1 aZ(k), k ~> 0. 

(ii) al(k) = aZ(k) = a(k), hi(k) >>- bZ(k), k ~> 0, but only the pure birth 
rates of bl(k) and bZ(k) can be different. 

In both cases, I use the same notation (~i) for the sequence defined 
above corresponding to the rates (b i, d) ,  i-- 1, 2. 

Proposition 4.4. For the above two cases (i) and (ii), we have 

~]>~fi2 for all l~>0 

The proof is very much similar to that of Proposition 3.4 and hence is 
omitted here. Note that the above two cases are not symmetric. This means 
that a special role is played by the pure birth rate/~o. 

Similarly, one can introduce the corresponding versions of (u~) and 
their criteria. However, in what follows I will not mention the fir-criteria 
any further. More precisely, I look for estimates of the type fi~(e)..-> 
7(1 +cd) ~ for some a > 0  and all l~> 1. Then, one certainly has ut(~)~> 
~;(1 +a l )  ~ for the same e > 0  and all l~> 1. Moreover, I only discuss the 
first Schl6gl model. 

For the uCm-criterion, one has the following result. 

Corollary 4.5. For the first Schl6gl model, if 

(1+flo/81)[1+2(61+82) ] "~ 
81 1 q- 82 (1 _t_ 81 q_ 82)(1 + 81 q_ flo) 4_ 82j >/~1 (4.1) 

then 

u~'m(e))7(l+~l) -1 for some e > 0  and all/~> 1 

where 7 = 1 and c~ = 0 if 81 > fll ; otherwise, ~ = 82/(1 + 8 ~) and 

1 [  ,-ol ] <7 < (1+81+62) (81+3o)  
1+81 1 -t- 1-t- 81T ~82--fl~ (1 + 81)(fl, +fl0 ) 

(4.2) 

In particular, (4.2) holds for the specific case 7' = 1 if 

81 I1 +82 1 + 1 A_(flo/8~)]>fll 
1+51 J 

(4.3) 
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The proof is omitted here since it is similar to the next one. Indeed, we 
have 

'• t cm= 61+62( l__1)+1]Ul_  1 u t  cm __ 1 - -  e U j " / I  

j = O  Y 

x ( r  I ~ - ~ / 1 ) 1 ) V  O]A1, l~>2 
which does not involve the variable k. 

Remark 4. I. Comparing the new sufficient condition (4.3) with (1.3), 
we see that the new one is much better. Next, in view of Proposition 4.2, 
the estimate of (u~ m) given here is nearly necessary. Finally, for large 
enough ro, (4.1) reduces to 

( ~ + 3 2 )  1 + 1 + ~ + 6 2  > r l  (4.4) 

To study the u-criterion, we need the following simple observation. 

I_emma 4.6. For the first Schl6gl model, we have 

12l=Ul_ 1 if [ a ( l ) + l - f l l l - e ] u t  l 
l 1 

+ [rio A a(l)](ul_2--ut 1)>//-1-8 E Uj 
j = o  

l--1Uj} 
, 1  [ r o v  a(1)+l] Ul_I-~ i - to A a(l)]ul_ 2 - - e - - e  E Ul= 
\ (  j = 0  

1) v 0, l>/2, otherwise X [ b ( l ) + e ]  

Proof. For every l~> 2, ut= uz i if and only if 

[b(k) v a ( k + l ) + l ] u z  l +[b(k) l 'a(k+l)]u~-2 

- [a(k)+b(k+l)+e]u~_l  

l 1 
~>l+e ~ uj, Vk~>O 

j = 0  

That is, 

[ A z a ( k ) - A l b ( k ) + l - ~ ] u l  l +[b(k) Aa(k+l)] (u t  2 - u t - 1 )  
1--1 

>~/+~ ~ uj, Vk>~O (4.5) 
j = o  
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Since the left-hand side of (4.5) is increasing in k, it follows that  (4.5) is 
equivalent to 

l 1 

[a(l)+l--//ll--e]ut_l + [-rio A a(I)](uz 2--uz_l)>/l+e ~ uj 
j = O  

This proves the first part  of the lemma. Conversely, if (4.5) does not hold, 
then we have 

[b(k) v a(k+l)+l]uz_l+ Eb(k)/x a(k+l)]ut 2 

, ,  
- l - e j ~ o U  a(k)+b(k+l)+e] 

f 
= ~ [Ata(k) - Atb(k) + l -  e] I t  l _ 1 

,1} 
+ [b(k)/~ a(k+l ) ] (Uz_ l -u t_a) - l -~  ~ uj 

j = O  

x [ a ( k ) + b ( k + l ) + e ]  -~ u + l - i  

( 
>/~ Ea(l) + l -/11 l -  e] ut_l  + E//o A a(l)]  (ut_ 2 -- ul_ 1 ) 

" }/  - l - e  ~ uj [a(k)+b(k+l)+e]+u~ 1 
j = O  

>~{[a( l )+l- / / l l -e]ut  1+ [-rio/xa(l)](ut 2-u1_1) 

- l - e  ~ uj b(l)+e]+Ul_x 
j = O  { ,_1} 

= [//o v a(l)+l]Uz_l+ [-//o A a( l ) ]u t_2- l - e  ~ uj 
j = O  

x [ b ( / ) + e ]  ~ QED 

Now, I turn to the main discussion. For  ut(e)>1 ?;(1 + c~l) -a, l =  1, 2, it 
suffices that  

~/t > 7(1 + :~/) 1, / = 1 , 2  (4.6) 
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where ~, = [ ( 6 1  -}- f lo ) / ( /~ l  + / ~ o ) ]  A 1 and 

~2=~, if (61 - -  /~1 -1- 62 -1- 1 )/~1 -}- [ l f l o  /\ (61 -}- 6 2 ) ] ( 1  - -  /all) > 1, 

= ( {  [�89 V (6,- I-  62) -~- l l / d  , + [-�89 A (61 + 6 2 )  ] -- I }  

X (lflo-~-fll) ') V 0 otherwise 

For l~> 3, by Lemma 4.6, we require that 

~flo v a(l)  + l -  e + fl(O) A a(l)  - e 
7 1 +c~(/- 1) 1 + c~(/-2) 

> (1 + e ) l - 2 ~  

Let 

1+~I J 

lo = (the first integer so that a(1) >1 rio) v 3 

Then, for l>~l o, (4.7) becomes 

7(61  - -  3 ,  - -  6 2 )  "}- [ 7 6 2  - -  ( l n t- 4;) 0~] l -~- ~ - -  1 

~o~[a(l ) l l+ 1] 2~fio/l 

+71. 1+~7}--- i )  + 1 + ~ ( I - 2 ) J  

k 1 > ~  1 +c~(l-- 1) 

Hence, we require that 

2 ] 
+ 1 + ~ ( l - 2 )  + e + l  (37- 2~) -  2e~ 

7(61-/L) + (~62- ~)l+ 7 -  1 

6,)- 62 ]>0, 
+7[_ 1+~(/--- i)  ~ -1+~( / -2)  

Similarly, for 3 ~< l ~< lo, we require that 

y(61-fix) + ( 7 6 2 - ~ ) l + 7 -  1 

r , (f io/ /+ 1) . 2~(61 + 62)-  262] 
+TLi-+--~-(z-T)+O=+ i+;(-T-25 j>o 

Since 

l f> I o 

a[a(1)/l + 1] 2aflo/l a(flo/l + 1) 2ea(1)/l + >~ ~- 
1 + ~ ( / - 1 )  l + e ( / - 2 )  l + e ( / - 1 )  1 + ~ ( / - 2 )  

(4.7) 

(4.8) 

(4.9) 
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holds if and only if rio >~ a(l). So does 

~(1 + 5 1 ) - 6 2  2Oq6o/l  o~(flo/l+ 1) 2c~(6~ +62)-262 
+ ~> ~-62+ 1 + e ( l - -  1) 1 + ~ ( l - 2 )  1 + ~ ( l -  1) 1 + e ( l - 2 )  

Hence, if we set 

961 

[~(1 + 6 , ) - 6 2  2~fio/l ] 
~(fl, 5, l ) =  k 1-+-~7l--1) ~- 1 + ~ - l - - 2 ) J  

[- ~(/~o/t+ 1) 2~(a, + 62)-262] 
A L~+-7~_i-l+a2+ i+;(T--~5 j (4.10) 

then (4.8) and (4.9) can be unified into 

y(6, - fl,) + (y62-  ~ ) /+  7 -  1+ 7q~(fl, 5, l) > 0, 1>~3 (4.11) 

Combining (4.11) with (4.6), we need that 

[1 + 61-/~1 + 62l + ~(p, 6, t)]/(1 + at) 

>U~>{[(1+~)~1]/ ,  [(1+2~)~21} ~, l>3 (4.12) 

In view of the left-hand side, it is necessary that ~ ~< 62. This fact plus (4.8) 
suggests the choice 

~ = 6 2 / ( 1 + 6 1 ) < 6 2  

From now on we fix this ~. Then, (4.12) becomes 

1 

> (1 + (~)(([(1 +61 + 62)/dl]/[(! +61 + 262)52] } ~ -  1) 

- # ,  l~>3 (4.13) 

On the other hand, for l>>. lo, AH(fi, 6,.)(l)>~ 0 if and only if 

~ ( p ,  6, .)(l) >_. , ~  I-~(/~, 6, t ) - /L ]  
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That is, 

1 + ~ l  
fll > ~(/~, (5,/) - A~(/~, 6,. )(/) 

I l + a / (  q,(fl,(5, l+l!)] = ~(/~, (5, l) 1+ 1 
~(/~, (5,/) 

[ )] = ~(/~, &/)  1 +  1 
( /+  1 ) [ 1 + ~ ( / -  1)] 

2~flo [ 1 + ~ /  / (1+~ l )  ] 
= l [ 1 + ~ ( l - 2 ) ]  1 §  t - ( l + l ) [ l + ~ ( l - 1 ) ]  

1 2 ~I ] 2~flo 1 -~ F- + (4.14) 
= / [ l + a ( l - 2 ) ]  ~ ( /+1)  ~ ( l + l ) [ l + ~ ( / - 1 ) ]  

Because the right-hand side is decreasing in l, if we let ll be the first integer 
starting from l 0 so that (4.14) holds, then 

inf H(fl, (5, l )= H(fl, (5, 11) 
l>~lo 

Thus, (4.13) reduces to 

min H(fl,&]) A H(fl,&[1)># 
3~<l~</0-- 1 

(4.15) 

Even though one can evaluate the above minimum by using the same 
argument in the case that 62 ~> 1, I will not do so, since only small flo (i.e., 
small lo) has to be considered, as we will see soon. 

Next, I seek some more explicit conditions. The reason I started from 
I = 3 is to leave Uo free and so V can be greater than one. Otherwise, Uo(e) t> 
7(1 + ~. 0) -1 is trivial and so we do not need to consider u2 as one of our 
initial points. More precisely, let 7 = 1. Then the condition (4.6) for I=  1 
becomes 

(51 +rio 
(51 -~- (52 - - >  /~1 (4.16) 

1+(51 

As for (4.8), note that 

2~(62 -- 1 ) 
1 + ~ ( l -  1) + 6 2 + -  1 + ~ ( / - 2 )  

62(i + ~l) 
1 + ~ ( / - - 2 )  

E 1 2 ] 
+ ~  1 + ~ ( / - - 1 )  1+~(-/--2)  
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and 

!- [6 1 - l + ~ ( l - 2 ) L  2 1+~(l-1) 

62(1 + cd) 61 +62(l- 1) 
- 1 + e ( l -  2) 1461 402(l-- 1) 

~(1 4 cU) 
[3t + 62(l-- 1)] 

- [1 + c~(l- 2) ]  [1 + c~(l- 1)] 

~flo[ 2 1 ]  
l 1 +~( / -2 )  1 +~(/-- 1) 

c~(1 4 ~l) /7o 
m 

I-1 4 =(/-  2)] [1 4 c~(/- 1)] l 

Hence 

r 6, l ) -  

> 

~3o ~(1 + ~l) + 
/[1 + ~ ( / -  1)] [1 + ~(l-  2)] El+ cr 1)] 

x { (@)A [614 32(/-- 1)]} 

..-0 
/El 4 or 1)l 

(4.17) 

On the other hand, 

flO 61[4 
/El 4 ~ ( l -  1)] 

61 61 ]~0 
= ~ - + ~  [1 +c~(l- l )]+l[1 +~(l-  1)] 

~>3 4 ~ ( . - 1 )  

Therefore, (4.8) follows from 

~( 6162 ~2R ~1/3 
3Lt,2(-(i-7-7,)) "~ 4 

61(624 1 461) 
2(1 461) 

61 + ~ ( ~ - 1 )  

(4.18) 
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Clearly, (4.16) and (4.18) hold for large enough rio- Certainly, instead of 
(4.18), we can use 

eflo 
61 + 61 c~No + >/31 (4.19) 

No[1 + e ( N o -  1)] 

where No is the first integer starting from 2, so that 

61 >_ 1 + 2~l 

/3o "1 l ( l+  1)[1 + ~(1-  1)](1 + ~I) 

Now, I summarize the above discussions as follows. 

C o r o l l a r y  4.7. For the first Schl6gl model, take ~ = 0 if 61 > fll and 
62/(1 + 61) otherwise. If (4.15) holds, then we can choose some 7 > 0 and 
e > 0  such that ul(e)>>.?(l+~l) 1 for all l~>l (in the case that 61>/31, 
simply take 7 = 1). In particular, the same assertion is true if (4.16) and one 
of (4.18) and (4.19) holds. Furthermore, for fixed/31, 61, and 62, the same 
assertion holds for all large enough/3o. 

Example.  Take 61 ~--- 1, 62 = 2, /31 = 9, and c~ = 1. If we take 7 = 1, then 
for (4.16) and (4.18), we require that /30>4x (8/3)2~76. For (4.16) and 
(4.19) it is enough that /3o>75. However, for (4.15), we need only that 
flo>4+(145)1/2~16.0416. To show this, let 15</3o-~< 18. Then we have 
lo = ll = 4, (4~1)/x (6fi2) = 4ul = 4(1 +/30)/(9 +/3o), and 

H(/3, 6, 3 )>  H(/3, 6, 4 ) = ~  

Hence 

1 ~ 9+flo 1] 

gives the solution /30>4+(145)  1/2. Finally, if we set /3;=inf{/3o: the 
u-criterion is available for this example with pure birth rate rio}, then it is 
not difficult to show that/3~e (10.406, 10.4061). However, the uCm-criterion 
is not applicable for any/30- 

I conclude this paper with a general result. 

Theorem 4.8. Under (H), for fixed/31 ..... tim, 61, '" ,  6rn+l  and large 
enough /3o, we have ut(e)>>-(l+cd) -1 for some e, e > 0 ,  and all l>~0. In 
other words, the reaction-diffusion processes are ergodic for all large 
enough/3o. 
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Proof. When m = 1, the assert ion with ~ = 82/(1 + 81) was proved  in 
Corol la ry  4.7. Now,  assume that  m ~> 2 and take :~ = 1. Fo r  l >/2, it suffices 
that  

b(k) v a ( k + l ) + l + b ( k ) A a ( k + l )  a ( k ) + b ( k + l ) > ~ ( l + e ) l  ' k>~O 
l l - 1  / + 1  

Equivalently,  

Ata(k) - Atb(k) + l+ b(k) A a(k + l) + a(k) + b(k + l) >>. (1 + ~)l~ 
/ / ( / -  1) /(/+ 1) 

Set 

s(k,l,J) =lj-'klj-1 E ia+U 2 
k j ~ i l ~ k  k - - j ~ i l < i 2 < . k  

+ l[" + E i l l l ' i j  
k j<~il< "'" < i j ~ k  

Then we have 

s(k, l, j - 1 ) <~ s(k, l, j ) / l  for all j ~< k 

il i2 

and 

[Aza(k ) - A,b(k)]/l  = 
j = l  

Hence 

k>~O 

(4.20) 

[A za(k) - A,b(k) ]/l 

) c  ~ s ( k , l , j - 1 ) + S m + l S ( k , l , m  ) 
j - - 1  

> ~ c s ( k , l , m - 1 ) ( l + l / l +  ... + l / l  m l )+Sm+lS(k , l ,m  ) 

>~ cls(k, l, m - 1 ) / ( / -  1) + 8m+ is(k, l, m) 

>/E6m+l + c / ( l -  1)] s(k, l, m) 

> E S m + ~ + c / ( l - 1 ) ] l  m, k>~m 

where c = m i n { ( 8 ~ - f l j ) A  0: l<<.j<.Nm}. Thus, we can choose an L~>~2 
independent  of k >i 0, so that  

[Ala(k ) - Ar (1 + e)l (4.22) 

(Sj- f ls)  s ( k , l , j - 1 ) + a m + l s ( k , l , m )  (4.21) 
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for all l > / L  1 and k>>,m. On the other hand, for the finite set {k: 
O ~ k ~ r n -  1}, by (4.21), we can choose an L2 so that (4.22) also holds for 
all l>~L2.  Put  L o = L  1 v L 2. Then (4.22) holds for all l>~L  o and k~>0 and 
so does (4.20). 

N o w  consider the case that 2 ~ l < ~ L  o -  1. Again, by (4.21), it follows 
that (4.22) holds for large enough k~> Ko (say!). Hence (4.20) holds for all 
2 ~< l ~< L o -  1 and k ~> Ko. But then we can choose fl0 large enough so that 
(4.20) holds for all 2 ~< l~< L o - 1 and k ~< Ko as well. Therefore, (4.20) holds 
for all l ~> 2 and k/> 0 whenever fi0 is large enough. 

Finally, for the case that  l - -  1, the proof  is similar and simpler. Q E D  
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