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Hermitizable, Isospectral Matrices
or Differential Operators

Mu-Fa Chen

Abstract This paper reports the study on Hermitizable problem for complex matrix
or second order differential operator. That is the existence and construction of a
positive measure such that the operator becomes Hermitian on the space of complex
square-integrable functions with respect to the measure. In which case, the spectrum
are real, and the corresponding isospectral matrix/differntial operators are described.
The problems have a deep connection to computational mathematics, stochastics,
and quantum mechanics.

Keywords Hermitizable · Matrix · Differential operators · Isospectrum
Mathematics Subject Classification 15A18 · 34L05 · 35P05 · 37A30 · 60J27

According to the different objects: matrix and differential operator, the report is
divided into two sections, with emphasis on the first one.

1 Hermitizable, Isospectral Matrices

Let us start at the countable state space E = {k ∈ Z+ : 0 ≤ k < N + 1} (N ≤ ∞).
Consider the tridiagonal matrix T or Q as follows:
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T
Q

=

⎛
⎜⎜⎜⎜⎜⎝

−c0 b0 0
a1 −c1 b1

a2 −c2 b2
. . .

. . . bN−1

0 aN −cN

⎞
⎟⎟⎟⎟⎟⎠

,

where for matrix T : the three sequences (ak), (bk), (ck) are complex; and for (birth-
death, abbrev. BD-) matrix Q: the subdiagonal sequences (ak) and (bk) are positive,
and the diagonal one satisfies ck = ak + bk for each k < N , except cN ≥ aN if N <

∞. For short, we often write T (or Q) ∼ (ak,−ck, bk) to denote the tridiagonal
matrix. It is well known that the matrix Q possesses the following property:

μnan = μn−1bn−1, 1 ≤ n < N + 1 (1)

for a positive sequence (μk)k∈E . Actually, property (1) is equivalent to

μn = μn−1
bn−1

an
, 1 ≤ n < N + 1 with initial μ0 = 1. (2)

In other words, at the present simple situation, one can write down (μk) quite easily:
starting from μ0 = 1, and then compute {μk}Nk=1 step by step (one-step iteration)
along the path

0 → 1 → 2 → · · · .

At the moment, it is somehow strange to write T and Q together, since they are
rather different. For T , three complex sequences are determined by 6 real sequences
and Q is mainly determined by two positive sequences, or equivalently, only one
real sequence. However, it will be clear later, these two sequences have some special
“blood kinship”, a fact discovered only three years ago [6, Sect. 3].

Clearly, for Q, property (1) is equivalent to

μi ai j = μ j a ji , i, j ∈ E, (3)

provided we re-express the matrix Q as (ai j : i, j ∈ E) since except the symmetric
pair (an, bn−1) given in (1), for the other i, j , the equality (3) is trivial. However, for
general real A = (ai j : i, j ∈ E), property (3) is certainly not trivial.

Definition 1 A real matrix A = (ai j : i, j ∈ E) is called symmetrizable if there
exists a positive measure (μk : k ∈ E) such that (3) holds.

The meaning of (3) is as follows. Even though A itself is not symmetric, but
once it is evoked by a suitable measure (μk), the new matrix (μi ai j : i, j ∈ E)

becomes symmetric. Every one knows that the symmetry is very important not only
in nature, but also in mathematics. Now how far away is it from symmetric matrix to
the symmetrizable one? Consider N = ∞ in particular. Then symmetry means that
μk ≡ a nonzero positive constant, and so as a measure, μk can not be normalized as
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a probability one. Hence, there is no equilibrium statistical physics since for which,
the equilibrium measure should be a Gibbs measure (a probability measure). Next,
in this case, the most part of stochastics is not useful since the system should die out.

A systemic symmetrizable theory was presented by Hou and Chen in [13] in
Chinese (note that it was too hard to obtain necessary references and so the paper
was done without knowingwhat happened earlier out of China). The English abstract
appeared in [14]. Having this tool at hand, our research group was able to go to the
equilibrium statistical physics, as shown in [2, Chaps. 7, 11 and Sect. 14.5].

One of the advantage of the symmetricmatrix is that it possesses the real spectrum.
This is kept for the symmetrizable one.Whenwego to complexmatrix, the symmetric
matrix should be replaced by the Hermitian one for keeping the real spectrum. This
leads to the following definition.

Definition 2 A complex matrix A = (ai j : i, j ∈ E) is called Hermitizable if there
exists a positive measure (μk : k ∈ E) such that

μi ai j = μ j ā j i , i, j ∈ E, (4)

where ā is the conjugate of a.

Clearly, in parallel to the real case, even though A itself is not Hermitian, but once
it is evoked by a suitable measure (μk), the new matrix (μi ai j : i, j ∈ E) becomes
Hermitian. Both A and (μi ai j : i, j ∈ E) have real spectrum.

From (4), we obtain the following simple result.

Lemma 3 In order the complex A = (ai j ) to be Hermitizable, the following condi-
tions are necessary.

• The diagonal elements {aii } must be real.
• Co-zero property: ai j = 0 iff a ji = 0 for all i, j .

• Positive ratio:
āi j
a ji

= ai j
ā j i

> 0 or equivalently, positive product: ai j a ji > 0.

Proof The last assertion of the lemma comes from the following identity:

α

β̄
= αβ

|β|2 , β 	= 0. �

Combining the lemma with the result on BD-matrix, we obtain the following con-
clusion.

Theorem 4 (Chen [6, Corollary 6]) The complex T is Hermitizable iff the following
two conditions hold simultaneously.

• (ck) is real.
• Either ak+1 = 0 = bk or ak+1bk > 0 for each k: 0 ≤ k < N.
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Then, we have

μ0 = 1, μn = μn−1
bn−1

ān
= μ0

n∏
k=1

bk−1

āk
.

In practice, we often ignore the part “ak+1 = 0 = bk” since otherwise, the matrix
T can be separated into two independent blocks.

We now come to the general setup. First, we write i → j once ai j 	= 0. Next, a
given path i0 → i1 → · · · → in is said to be closed if in = i0. A closed one is said
to be smallest if it contains no-cross or no round-way closed path. A round-way path
means i0 → i1 → i2 → i1 → i0 for example. In particular, each closed path for T
must be round-way.

Theorem 5 (Chen [6, Theorem 5]) The complex A = (ai j ) is Hermitizable iff the
following two conditions hold simultaneously.

• Co-zero property. For each pair i, j , either ai j = 0 = a ji or ai j a ji > 0 (which
implies that (akk) is real).

• Circle condition. For each smallest (no-cross-) closed path i0 → i1 → · · · → in=
i0, the circle condition holds

ai0i1ai1i2 · · · ain−1in = āin in−1 · · · āi2i1 āi1i0 .

In words, the product of aik ik+1 along the path equals to the one of product of āik+1ik
along the inversive direction of the path.

Proof One may check that our Hermitizability is equivalent to A being Hermitian
on the space L2(μ) of square-integrable complex function with the standard inner
product

( f, g) =
∫

f ḡdμ.

Hence the Hermitizability seems not new for us. However, the author does not know
up to now any book tells us how to find out the measureμ. Hence, our main task is to
find such ameasure if possible. Here we introduce a very natural proof of Theorem 5,
which is published here for the first time.

Next, in view of the construction of μ for BD-matrix Q or T , one can find out the
measure step by step along a path. We now fix a path as follows.

i0 → i1 → · · · → in−1 → in, aik ik+1 	= 0.

Comparing the jumps and their rates for BD-matrix and the present A:

k−1→k : bk−1, ik−1→ ik : aik−1ik ,

k→k−1 : āk, ik → ik−1 : āik ik−1 .
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From the iteration for BD-matrix

μn =μn−1
bn−1

ān
,

it follows that for the matrix A along the fixed path above, we should have

μin =μin−1

ain−1in

āin in−1

.

Therefore, we obtain
n∏

k=1

aik−1ik

āik ik−1

= μin

μi0

. (5)

Thus, ifwefixed i0 to be a reference point, thenwe can computeμik (k = 1, 2, · · · , n)

successively by using this formula. The essential point appears now, in the present
general situation, there may exist several paths from the same j0 = i0 to the same
jm = in , as shown in the left figure below. We have to show that along these two
paths, we obtain the same μin = μ jm . That is the so-called path-independence. This
suggests us to use the conservative field theory in analysis. The path-independence is
equivalent to the following conclusion: the work done by the field along each closed
path equals zero. This was the main idea we adopted in [13]. To see it explicitly,
from (5), it follows that

w(L1) :=
n∑

k=1

log
aik−1ik

āik ik−1

= logμin − logμi0 .

The left-hand side is the work done by the conservative field along the path L1:
i0 → · · · → in−1 → in , and the right-hand side is the difference of potential of the
field at positions in and i0. Clearly, once in = i0, the right-hand side equals zero (let
call it the conservativeness for a moment).

L2

L1

L2

L1

L2

L1

�

�

L1

Inverse L2

�

�

L1

Inverse L2�

L1

Inverse L2

Left figure: two paths from i0 to i#:L1 andL2.Right figure: combiningL1 and
inversive L2 together, we get a closed path.

For the reader’s convenience, we check the equivalence of the path-independence

w(L1) = w(L2)
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and the conservativeness of the field in terms of the right figure

w(L1) + w(InverseL2) = 0.

The conclusion is obvious by using the third assertion of Lemma 3:

w(InverseL2) = −w(L2).

The last property is exactly the circle condition given in the theorem, and so the proof
is finished. �

In the special case that A is a transition probability of a finite time-discreteMarkov
chain, the circle condition was obtained by Kolmogorov [15], as a criterion of the
reversibility of the Markov chain. It is also interesting that at the beginning and at
the end of [15], the paper by Schrödinger [17] was cited. Moreover, Kolmogorov
studied the reversible diffusion in 1937 [16]. These two papers [15, 16] begun the
research direction of reversible Markov processes (and also the modern Dirichlet
form theory). It also indicates the tight relation between the real symmetrizable
operators and equilibrium statistical physics. Nevertheless, the interacting subjects
“random fields” and “interacting particle systems” were only born in 1960s. Even
though there are some publications along this line, the “Schrödinger diffusion” for
instance [1], we are not sure how a distance now to the original aim of Schrödinger
whowas looking for an equation derived from classical probability, which is as much
close as possible to his wave equation in quantum mechanics.

It is regretted that the author had a chance to read [15, 16] only a few years ago
when “Selected Works of A. N. Kolmogorov” appeared. Hence, the author did not
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know anything earlier about Kolmogorov’s [15, 16]. There is a Chinese proverb that
says “the ignorant are fearless”. For this reason, we were brave enough to make a
restriction “smallest closed path” instead of “every closed one” in the theorem and
then we had gone for much far away, since the total number of the closed paths may
be infinite, even not countable. To illustrate the idea, let us consider a random chosen
wall above. One sees that there are a lot of closed paths. However, the smallest one
is quadrilateral. Hence, one has to check only the “quadrilateral condition”. To see
this, look at the closed path on the top, and it consists of 7 quadrilaterals. The short
path with dash line on the top separates the whole closed path into two smaller ones.
To prove that it sufficient to check the “quadrilateral condition” for this model, we
use induction. The idea goes as follows. We can make first the union of these two
smaller closed paths (choose the clockwise direction for one of the closed path and
choose anti-clockwise for the other one). Then remove the round-way path with dash
line. Thus, once the work done by the field along each of the smaller closed paths
equals zero, then so is the one along the original closed path since the work done by
the field along the round-way path equals zero.

However, for the second wall below, the smallest closed path, except the quadri-
lateral, there is also triangle, so we have the “triangle condition”. It is interesting, in
[2, Chaps. 7 and 11], we use only these two conditions; and in [2, Sect. 14.5], we use
only the triangle condition. The main reason is that for infinite-dimensional objects,
their local structures are often regular and simple. Besides, in general we have an
algorithm to justify the Hermitizability by computer, refer to [10, Algorithm 1].

We are now arrive at the core part of the paper: describing the spectrum of the
Hermitizable matrix, which is also the core part of the so-called matrix mechanics.
The next result explains the meaning of “blood kinship” mentioned at the beginning
of this section.
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Theorem 6 (Chen [6,Corollary 21]) Upa shift if necessary, each irreducibleHermi-
tizable tridiagonal matrix T is isospectral to a BD-matrix Q̃ which can be expressed
by the known sequences (ck) and (ak+1bk).

The main condition we need for the above result is ck ≥ |ak | + |bk | for every k ∈
E . For finite E , the condition is trivial since one may replace (ck) by a shift (ck + m)

for a large enough constant m. For infinite E , one may require this assumption up to
a shift.

We now state the construction of Q̃ ∼ (
ã, −c̃k, b̃k

)
. The essential point is the

sequence
(
b̃k

)
:

b̃k = ck − uk

b̃k−1

, b̃0 = c0,

where uk := akbk−1 > 0. This is one-step iteration, and we have the explicit expres-
sion

b̃k = ck − uk

ck−1 − uk−1

ck−2 − uk−2

. . .

c2 − u2

c1 − u1
c0

.

Note that here two sequences (ck) and (uk) are explicit known. Having
(
b̃k

)
at hand,

it is easy to write down ãk = c̃k − b̃k with c̃k = ck for k < N , and ãN = uN/b̃N if
N < ∞. The solution of (ãk) and (c̃k) are automatic so that Q̃ becomes a BD-matrix.

The resulting matrix Q̃ looks very simple, but it contains a deep intrinsic feature.
For instance, the reason is not obvious why the sequences

(
b̃k

)
and (ãk) are positive

even though so are (ck) and (uk). With simple description but deep intrinsic feature
is indeed a characteristic of a good mathematical result.

To see the importance of the above theorem, let compare the difference of the
principal eigenvector of these two matrices. First, for BD-matrix with four different
boundaries, the principal eigenvectors are all monotone, except in one case, it is
concave. This enables us to obtain a quite satisfactory theory of the principal eigen-
values (refer to [4]). However, since the Hermitizable T has real spectrum, form the
eigenequation

T g = λg,

one sees immediately, the eigenvector g must be complex, too far away to be mono-
tone. Thus, the principal eigenvectors of these two operators are essentially different.

dell
删划线

dell
文本框
from

dell
线条
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It shows that we now have a new spectral theory for the Hermitizable tridiagonal
matrices.

Because the intuition is not so clear why Theorem 6 should be true, two alternative
proofs are presented in [7].

Theorem 7 (Chen [6, Theorem 24]) The spectrum of a finite Hermitizable matrix
A is equal to the union of the spectrums of m BD-matrices, where m is the largest
multiplicity of eigenvalues of A.

Refer to ([10, Proofs in §4]) for details. The proof is based on Theorem 6 and the
“Householder transformation” which is one of the 10 top algorithms in the twentieth
century. The restriction to the finite matrix is due to the use of the transformation.
The number m is newly added here which comes from the fact that the eigenvalues
of BD-matrices must be distinct and simple, as illustrated by [10, Example 9].

Theorem 7 provides us a new architecture for the study on matrix mechanics (and
then for quantum mechanics) since we have a unified setup (BD-matrix) to describe
its spectrum. This leads clearly to a new spectrum theory, as illustrated by [7] for
tridiagonal matrix and by [11] for one-dimensional diffusions. It also leads to some
new algorithms for computational mathematics, as illustrated by [9, 10].

2 Hermitizable, Isospectral Differential Operators

Two Approaches for Studying the Schrödinger Operator

(1) The most popular approach to study the Schrödinger operator

L = 1

2
� + V

is the Feynman-Kac semigroup {Tt }t≥0:

Tt f (x) = Ex

{
f (wt ) exp

[ t∫

0

V (ws)ds

]}
,

where (wt ) is the standard Brownian motion. This is often an unbounded semi-
group. The Schrödinger operator was born for quantum mechanics, and it is 95
years older this year. In the past hundred years or so, there are a huge number
of publications devoted to the Schrödinger operator. However, for the discrete
spectrumwhich is the most important problem in quantummechanics, the useful
results are still very limited as far as we know. In particular, even in dimension
one, we have not seen the results which are comparable with [5].

(2) As in the first section, this paper introduces a new method to study the spectrum
of Schrödinger operator. That is, replacing the operator L above by
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L̃ = 1

2
� + b̃h∇,

where h is a harmonic function: Lh = 0, h 	= 0 (a.e.). Then, the operator L on
L2(dx) is isospectral to the operator L̃ on L2(μ̃) := L2(|h|2dx).

We now consider a general operator. Let ai j , bi , c : Rd → C, V : Rd → R, and
set a = (ai j )di, j=1, b = (bi )di=1. Define dμ = eV dx and

L = ∇(a∇) + b · ∇ − c.

Here is the result on the Hermitizability. Denote by aH the transpose (a∗) and con-
jugate (ā) of the matrix a.

Theorem 8 (Chen and Li [11]) Under the Dirichlet boundary condition, the oper-
ator L is Hermitizable with respect to μ iff aH = a and

Re b = (Re a)(∇V),

2 Im c=−(
(∇V )∗+∇∗)((Im a)(∇V)+Im b

)
.

Recall that a key point in the isospectral transform of T and Q̃ is that the result-
ing matrix Q̃ obeys the condition c̃k = ãk + b̃k for each k < N , and there is no
killing/potential term at the diagonal (maybe except only one at the endpoint if
N < ∞). In the next result, we also remove the potential term c in L . Since the
isospectal property is described by using the quadratic forms, we do not require
much of the regularity of h and Lh in the next result.

Theorem 9 (Chen and Li [11]) Denote byD(L) the domain of L on L2(μ) and let
h be harmonic: Lh = 0, h 	= 0 (a.e.). Then (L ,D(L)) is isospectral to the operator(
L̃, D(L̃)

)
: {

L̃ = ∇(a∇) + b̃ · ∇,

D(L̃) = {
f̃ ∈ L2(μ̃) : f̃ h ∈ D(L)

};

where

b̃ = b + 2Re(a)1l[h 	=0]
∇h

h
, μ̃ := |h|2μ.

The discrete spectrum for one-dimensional elliptic differential operator is also
illustrated in [11]. Certainly, much of the research work should be done in the near
future. For instance, Hermitizable operator is clearly the Hermitian operator on the
complex space L2(μ). It naturally corresponds to a Dirichlet form. Hence there
should be a complex process corresponding to the operator. It seems that this is still
a quite open area, except a few of papers, Fukushima and Okada [12] for instance.

In conclusion, the paper [13] published 42 years ago opened a door for us to go
to the equilibruim/nonequilibrium statistical physics (cf. [2, 3]); the paper [6] that
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appeared 3 years ago enables us to go to quantum mechanics. The motivation of the
present study from quantum mechanics was presented in details in [8] but omitted
here.
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