
CSIAM Trans. Appl. Math.
doi: 10.4208/csiam-am.2021-0005

Vol. 3, No. 1, pp. 1-25
March 2022

Top Eigenpairs of Large Scale Matrices

Mu-Fa Chen1,2,� and Rong-Rong Chen3

1 RIMS, Jiangsu Normal University, Xuzhou, 221116, China.
2 School of Mathematical Sciences and Key Laboratory of Mathematics, Beijing
Normal University, Beijing 100875, China.
3 Department of Electrical and Computer Engineering, University of Utah, UT 84112,
USA.

Received 28 December 2021; Accepted 16 January 2022

Abstract. This paper is devoted to the study of an extended global algorithm on com-
puting the top eigenpairs of a large class of matrices. Three versions of the algorithm
are presented that includes a preliminary version for real matrices, one for complex
matrices, and one for large scale sparse real matrix. Some examples are illustrated as
powerful applications of the algorithms. The main contributions of the paper are two
localized estimation techniques, plus the use of a machine learning inspired approach
in terms of a modified power iteration. Based on these new tools, the proposed algo-
rithm successfully employs the inverse iteration with varying shifts (a very fast “cubic
algorithm”) to achieve a superior estimation accuracy and computation efficiency to
existing approaches under the general setup considered in this work.
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1 Introduction: Extended global algorithm

The top eigenpairs of matrix play an important role in many fields. In particular, for
the maximal eigenpair for instance, there are well-known algorithms in several differ-
ent fields. For web-search, it is called PageRank. For economic optimization, there is
so called left-positive eigenvector method (cf. [1; Chapter 10]). For statistics, there is
principal component analysis (abbrev. PCA) which is also used in quantum mechanics
computation (quantum chemistry in particular) and AI. In the last case, one needs not
only the maximal one, but also a couple of the subsequent eigenpairs. Certainly, for such
a well-developed field, there are some powerful algorithms in common use, the “singu-
lar value decomposition” (abbrev. SVD) for PCA for example. However, as mentioned at
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the beginning of [9; p.65, §2.6]: “In some cases, SVD will not only diagnose the problem,
it will also solve it, in the sense of giving you a useful numerical answer, although, as we
shall see, not necessarily ‘the’ answer that you thought you should get.” This happens for a
number of known algorithms (see [7; Example 1] for instance) and so more careful study
is valuable.

This paper is motivated by the study on the global algorithms given in [3, 7], where
some effective algorithms were presented for computing the maximal eigenpair of a
rather larger class of matrices. Roughly speaking, two approaches are adopted there: the
power iteration (abbrev. PI) and the inverse power iteration with varying/fixed shifts
(abbrev. IPIv/IPI f ). The PI has only a little restriction on the initial vector and so has
a wide range of applications. It is also economical (having lower computational com-
plexity), but has a quite slow convergence speed, especially near the target eigenvalue.
The fast convergence speed of the algorithms given in [3, 7] is mainly due to the use
of IPIv (having higher computational complexity). It is however quite dangerous if the
initial is not close enough (from above) to the target eigenvalue. The last problem was
avoided in [3, 7] mainly due to the assumption: the off-diagonal elements of the matrix
are all nonnegative. This is essential: it implies the existence of the maximal eigenpair (as
an application of the Perron–Frobenius theorem, by a shift if necessary). Then we have
some important variational formulas for the upper/lower bounds of the maximal eigen-
value, i.e., the Collatz–Wielandt (abbrev. C-W) formula (cf. [2; §1 and Corollary 12]). For
nonnegative matrix, the formula takes the following form:

sup
x¡0

min
k

pAxqpkq

xpkq
�λ� inf

x¡0
max

k

pAxqpkq

xpkq
,

where λ is the maximal eigenvalue of the matrix A and xpkq is the kth component of the
vector x. The upper bound in the formula is very important in using IPIv for avoiding
the pitfalls (cf. [4; §4]). Now, a challenge appears:

Question: What can we do without the assumption of the nonnegative property of the
off-diagonal elements?

A typical model led to the question is PCA, for which some of the off-diagonal ele-
ments can be negative. The question is quite serious since almost each advantage intro-
duced in the previous paragraph is lost. We do not have the Perron–Frobenius theorem;
more seriously, we do not have the C-W formula; and furthermore, the IPIv is not practi-
cal.

Certainly, the answer to the above question is not obvious. If you have luckily pro-
duced enough courage, you may look for a way to find a substitute of the C-W formula.
Assume that the given matrix A is real. Assume also for a moment that the maximal
eigenvalue λ we are working is positive. Of course, at the present case, the corresponding
eigenvector g is not necessarily positive, and it may have negative or zero components.
Because we are now bare-handed, to find an exit from the darkness, we have to go back
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to the original position: all we know is the eigenequation:

Ag�λg. (1)

That is, g is an eigenvector corresponding to the eigenvalue λ of A. It follows that once
gpkq�0, we must have pAgqpkq{gpkq¡0, here we have preassumed that λ¡0. If a vector
x produced by our iterative method (either PI or IPI) is close enough to g, then in one
iteration, we have

x�gùñAx�Ag�λg.

We now arrive at the first localized estimation technique: check sign and locally bilateral
estimates (abbrev. CS-LBE). Due to the property given above, on the set

Nx :�tk : |xpkq|¡0u, (2)

we should have
Ax

x
pkq :�

Axpkq

xpkq
¡0, kPNx, (3)

since λ¡0 by assumption. As usual, here “kPNx” means “for each kPNx”. The procedure
checking (3) is called “check sign” (abbrev. CS). Once this holds for a few of iterations, then
we do not need to check it again, just continue the PI until the relative difference (abbrev.
RD)

1�min
kPNx

Ax

x
pkq

N

max
kPNx

Ax

x
pkq  ε (4)

for some sufficiently small ε. Under condition λ¡0, assertions (3) and (4) are actually due
to the convergence of PI, assuming for a moment that the maximal eigenvalue coincides
with the maximal one in modulus. In practice, one has to take care for the initial vector in
using PI to guarantee its convergence. Next, using condition λ¡0 again, by (3), we have

either p0 q
Ax

x
pkq¤λ or

Ax

x
pkq¥λ for each kPNx.

Hence under condition (4) with ε! 1, we obtain the following locally bilateral estimates
(abbrev. LBE):

p0¤qmin
kPNx

Ax

x
pkq¤λ¤max

kPNx

Ax

x
pkq, (5)

the equalities in (5) hold once x is taken to be an eigenvector of the corresponding eigen-
value λ. We now regard (5) as a substitute of the C-W upper/lower estimates, and adopt

z :�max
kPNx

Ax

x
pkq (6)

as an upper bound of λ for the use in IPIv or IPI f . Condition (4) guarantees the validity
of LBE (5) and then (6). Thus, in (3)-(6), we use only those x in a small neighborhood of
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the eigenvector of λ in the corresponding vector space. That is the meaning of “locally”
used above.

In the above paragraph, we preassume that the maximal eigenvalue coincides with
the one in modulus and is positive. This is important not only in computing the ratios
above but also an essential point in the use of PI, since for which, the leading term in
the algorithm is determined by the maximal eigenvalue in modulus, one cannot ignore
the point “in modulus” here. Certainly, if one has known in advance that the spectrum
(at least the top six eigenvalues) of A has satisfied the assumption, then the step we are
working can be ignored. Otherwise, to remove the assumption, we simply use a shift
operator : replacing A by

A1 :�A�θ̄ I, (7)

θ̄�

#

θ if the order of A is bigger than 6 and θ is an integer,

rθu otherwise,

where rxu denotes the minimal integer that is greater or equal to x, and the constant θ is
an upper bound of the spectral radius. Here, the use of θ̄ instead of θ is to simplify the
computation. Clearly, the spectrum of A1 is nonnegative. Therefore, working on A1, the
assumption just mentioned holds automatically. The reason that we choose the top six
eigenpairs is to compare with the “eigs” package of MatLab, which is designed for the
same aim (See section 4 below). Certainly, one can continue the algorithm for additional
subsequent eigenpairs.

There are two ways to obtain an upper bound of the spectral radius of general com-
plex matrix A without additional restriction. The first one is a theoretic result, deduced
by the Gershgorin Circle Theorem (cf. [10]):

θ�min
 

}A}
8

, }A}1

(

, }A}
8

:�sup
i

¸

j

|aij|, }A}1�}A�

}

8

,

where A� denotes the transpose of A. In the symmetric case, the two terms in t���u are the
same. The disadvantage of this method is that the result is usually quite rough. We now
introduce the second numerical method which is similar to the technique deducing (1)-
(6) above. Since we are now interested only in the modulus of the eigenvalue λ, instead
of (1), we should start at

|Ag|�|λ||g|.

Next, we follow the analysis between (1) and (6). The output x produced by PI, with
suitable initial and after enough iterations, should have the following property. With the
same Nx defined by (2), replacing

Ax

x
by

�

�

�

�

Ax

x

�

�

�

�

, λ by |λ|, and z by θ,



M.-F. Chen and R.-R. Chen / CSIAM Trans. Appl. Math., 3 (2022), pp. 1-25 5

we obtain the analogs of (4)-(6) as follows:

1�min
kPNx

�

�

�

�

Ax

x

�

�

�

�

pkq

N

max
kPNx

�

�

�

�

Ax

x

�

�

�

�

pkq  ε,

min
kPNx

�

�

�

�

Ax

x

�

�

�

�

pkq¤|λ|¤max
kPNx

�

�

�

�

Ax

x

�

�

�

�

pkq,

θ :�max
kPNx

�

�

�

�

Ax

x

�

�

�

�

pkq. (8)

Starting from 1{}1}, where 1 is the constant column vector having its component 1 ev-
erywhere and }x} is the L2-norm of x. The resulting θ defined by (8) is what we need for
(7). This method is especially good for PI, it converges economically to λ�, the maximal
eigenvalue in modulus, but not the real maximum, effective enough unless it is too close
to λ�. Hence this method is good enough for our purpose. The value of θ is noticeable
since a larger θ makes the lower convergence speed of PI:

λ1¡λ2¡0 ùñ p0,1qQ
λ2�α

λ1�α

�

� as αp¡0qÒ .

We emphasize that the constant θ defined by (8) is used only in (7) for producing a ma-
trix with nonnegative spectrum having positive six top eigenvalues. In the subsequent
estimation of the eigenpairs, one does not use it again. In the special case that the given
matrix already has the required property just mentioned above, one can simply ignore
this shift procedure.

Usually, one needs to run the IPIv only for a few of iterations since its convergence
speed is very fast. Otherwise, the calculation will overflow quickly. The computation can
be finished once the output arrives at the required precision level:

max
kPNx

Ax

x
pkq�min

kPNx

Ax

x
pkq  ε, (9)

the left-hand part above is called the amplitude of LBE. If we do not want to compute the
next eigenpair, then we can stop the computations here. If otherwise, one has to improve
the precise level of the output of the eigenvector. For this, one should continue the work,
using IPI f instead of IPIv. This is important since for computing the next eigenpairs,
we will go to the subspace which is orthogonal to this eigenvector. The computation of
orthogonalization often requires a higher level of precision. Failure to achieve such a
precision often leads to error propagation and thus incorrect final results.

We now discuss the construction of the initial vector used by PI. First, for the maximal
eigenpair, simply choose the initial vector

x0�1{}1}. (10)

Once the computation of the maximal eigenpair is done, we obtain the first (maximal)
eigenvector, say g1. After k�1 steps, we have k�1 eigenvectors tg1,��� ,gk�1u (normalized
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Input: Construct A1 by (7) and (8)

Run IP using initial (10).
If at some iteration, (3) holds,
then look at (4) instead of (3)

If (4) holds with ε�10�2, then use
pz,Axq in (6) as initial pz0,v0q for IPIv

Run IPIv until (9) holds with ε�10�6

Return to
original

A
by (12)

Repeat the diagram
for computing sub-
sequent eigenpairs

With pzn,vnq

obtained as new
pz0,v0q, run IPI f

until (9) holds
with ε� 10�12

Stop IPIv Continue

Figure 1: Flowchart of the preliminary version of the extended global algorithm.

with respect to their L2-norm, respectively). Then the initial vector for computing the kth
eigenpair can be chosen to be the projection vector of x0 defined by (10) on the space
which is orthogonal to Span tg1,��� ,gk�1u. In general, for a given linear space L , let L K

denote its orthogonal space. Then, the projection Proj px,kq of a vector x on the space
Span tv1,��� ,vku

K is defined by

Projpx,kq�x�
ķ

j�1

pv�j xqvj (11)

for normalized orthogonal family tv1,��� ,vku, where v� (row vector) is the transpose of v
(column vector).

To study several eigenpairs, one may assume that the matrix A has real spectrum.
Otherwise, for a complex eigenpair, one may have a conjugate one. This poses some
difficulty.

At the last step, return to the original matrix:

Eigenpair pλ, gq of A1 Ñ Eigenpair pλ�θ̄, gq of A. (12)

We now make some additional analysis on the preliminary version of the extended
global algorithm in Fig. 1, as well as on the three algorithms used there: PI, IPIv and IPI f .
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While the localized estimation technique “check sign and locally bilateral estimates”(CS-
LBE) mentioned above looks rather simple, the simplicity is precisely its biggest advan-
tage — it can be applied to a rather wide range of applications, as we will see soon in the
subsequent sections. The CS-LBE presents new opportunities to use techniques from a
variety of fields such as optimization theory, machine learning, etc., since almost no theo-
retical results are available in this general setup. What we propose here is the (modified)
PI. One may see a concrete example in the next section. Note that the choice of ε used
for (4) or (9) in Fig. 1 may be changed according to different types of matrices used in
various applications. Roughly speaking, one may use ε P r0.01,0.1s instead of ε� 0.01 in
(4) for medium size matrices. At this beginning step, we have used the main advantages
of PI: it is safe and allows quite general initial vector, it has a good enough convergence
and computing speed, except close too much to the target eigenvector.

Having the initial vector v0 produced by the CS-LBE technique and the initial shift
given by (7) at hand, we are ready to apply IPIv to accelerate the computing speed. Under
the conditions (3) and (4), instead of (5), we have

min
kPNx

Ax

x
pkq¤

x�Ax

x�x
¤max

kPNx

Ax

x
pkq.

Replacing the term z given on the right-hand side by the middle one x�Ax
}x}2 , the IPIv be-

comes the so-called Rayleigh Quotient Iteration (abbrev. RQI), which is well-known a
cubic algorithm (i.e., the iterative solutions generated by the algorithm converge cubi-
cally). Note that RQI is practical only if x is close enough to the target eigenvector, and
hence is also a local algorithm. In particular, it is actually in a dangerous region once

x�Ax

x�x
P

�

min
kPNx

Ax

x
pkq, λ




.

However, since the precise local region over which the RQI is effective is not known,
practical use of RQI often runs into the issue of converging to other eigenvectors that are
close to the target ones. The last point is the main difference between our IPIv and RQI.
The proposed IPIv ensures the algorithm robustness and allows convergence to the target
eigenvector by adapting the shifts automatically. As verified by the practice in [4, 7] and
the subsequent sections, the difference given in (4) goes to zero very fast. then so is the
difference

max
kPNx

Ax

x
pkq�

x�Ax

}x}2
.

Hence, it is believable that IPIv and RQI should have the same order of convergence
speed, once RQI works.

For IPI f , the initial vector v is similar to those of PI; the initial shift z of IPI f should be
bigger than the target λ. Otherwise, the algorithm becomes dangerous. Certainly, IPI f is
more effective if the initial pair pz,vq is closer to the target one. In Fig. 1, IPI f is used in
the last step to improve the target eigenvector. For which, IPIv may no longer be practical



8 M.-F. Chen and R.-R. Chen / CSIAM Trans. Appl. Math., 3 (2022), pp. 1-25

since the inverse matrix would be degenerated too fast. The convergence by IPI f can be
faster than PI whenever the shift is close enough to the target λ from above.

We now summarize roughly the comparison the three algorithms: PI, IPIv and IPI f .
Let

DpUq�Domain of suitable initial (vector, shift) of algorithm U,

spUq�Convergence speed of algorithm U,

tpUq�Computational complexity of algorithm U.

From low to high is ordered by “ ”.

Certainly, for PI, the shift variable is free in DpUq. Then, roughly speaking, we have the
following comparison

DpPIq�DpIPI f q�DpIPIvq,

spPIq¤ spIPI f q¤ spIPIvq,

tpPIq  tpIPI f q  tpIPIvq.

A mixed algorithm of PI and IPIv was used in [4, 7]. In the present paper, we intro-
duce some extended algorithms which have more mixture of the above three algorithms,
making best use of the advantage and bypassing the disadvantage of each of these three
algorithms.

The next section is an exception where the algorithm is applied to the so-called Her-
mitizable complex matrix, not the real one treated in most part of the paper, to illustrate
the wide use of the algorithm. Certainly, from the preliminary version to more general sit-
uation, additional work is required, as shown in Section 3 by the algorithm for large scale
sparse matrix. The powerful algorithm is then illustrated by two examples in Section 4.
If a reader is eager to take a look at the power of the proposed algorithm introduced in
the paper, he or she can skip Sections 2, 3, and go directly to Section 4.

2 Application to Hermitizable matrix

Consider the following complex matrix (cf. [5; Example 7])

A0�

�

�

�

�

�

�

�6 8
5�

6i
5

8
13�

14i
13

18
17�

4i
17

3� 9i
4 �

55
4 �

5
13�

40i
13

30
17�

35i
17

12
5 �

21i
5 �

4
5�

32i
5 �13 60

17�
66i
17

63
10�

7i
5

28
5 �

98i
15

70
13�

77i
13 �16

�

Æ

Æ

Æ

Æ



.

A complex matrix A�paijq is called Hermitizable if there exists a positive measure µ�pµkq

such that µiaij�µj āji for each pair pi, jq (due to [5]). It is called symmetrizable in the real
context. It is easy to check that A0 is Hermitizable with respect to µ:

µ0�1, µ1�
8

15
, µ2�

10

39
, µ3�

20

119
.
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In general, from the proof of [5; Theorem 20], it is known that a complex matrix A�paijq

is Hermitizable w.r.t. measure µ�pµkq iff

A�Diagpµq�1 AHDiagpµq rAH :� Ā�

s. (13)

Equivalently,

Â :�Diagpµq1{2 ADiagpµq�1{2 (14)

is Hermitian. Clearly, the transformation of the eigenpair pλ,gq of A to the one pλ, ĝq of Â
goes as follows.

pλ,gqÑ
�

λ, ĝ�Diagpµq1{2g
�

. (15)

At the moment,

Â0�

�

�

�

�

�

�

�

�

�6 p4�3iq
b

3
10 p4�7iq

b

6
65 p9�2iq

b

7
85

p4�3iq
b

3
10 �

55
4 �

2�16i
?

13
p6�7iq

b

14
51

p4�7iq
b

6
65 �

2�16i
?

13
�13 p10�11iq

b

42
221

p9�2iq
b

7
85 p6�7iq

b

14
51 p10�11iq

b

42
221 �16

�

Æ

Æ

Æ

Æ

Æ

Æ



.

Due to (15), for computing the eigenpair of A0, it suffices to study the one for Â0. Hence,
from now on, we need only to consider the matrix Â0.

The maximal eigenpair

We now start the algorithm given in Fig. 1. The computation in this section is done by
using Mathematica (version 11.3) on PC.

Step 1. Construct A1. The upper bound produced by the first method given in Sec-
tion 1 is θ

�

Â0

�

�29.957. We now consider the second method.
Starting at w0�1{}1} (cf. (10)) and use the following PI:

wn� Â0vn�1, n¥1, vn :�wn{}wn}, n¥0.

Let
$

'

'

'

'

&

'

'

'

'

%

N pwq�tk : |wpkq|¡0u,

xn�

"

�

�

�

�

Â0wn

wn

�

�

�

�

pkq, kPN pwnq

*

,

yn� min
kPN pwnq

xnpkq, zn� max
kPN pwnq

xnpkq.

Then in 5 iterations, the outputs are as follows.

tzn,ynu
5
n�1 : p21.2379,5.26626q, p27.0853,17.7591q, p27.2742,17.6156q,

p21.9304,17.52740q, p21.6953,17.4757q;

t1�yn{znu
5
n�1 : .752035, .344325, .354132, .200772, .194493.
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Clearly, PI converges very well. Since z4 and z5 are closed each other, for them we have
the same θ̄� 22 which is an upper bound of the spectral radius of Â0 and is obviously
smaller than the one obtained by the first method. Actually, if we continue PI for more
iterations,

z5�21.6953, z10�21.5148, z20�21.7481, z30�21.4567, z40�21.3927,

then we get the same θ̄, since the convergence becomes rather slow when zn is close to
the modulus of the maximal eigenvalue λ���21.3806. Thus by (7), we have

A1� Â0�θ̄ I

�

�

�

�

�

�

�

�

�

16 p4�3iq
b

3
10 p4�7iq

b

6
65 p9�2iq

b

7
85

p4�3iq
b

3
10

33
4 �

2�16i
?

13
p6�7iq

b

14
51

p4�7iq
b

6
65 �

2�16i
?

13
9 p10�11iq

b

42
221

p9�2iq
b

7
85 p6�7iq

b

14
51 p10�11iq

b

42
221 6

�

Æ

Æ

Æ

Æ

Æ

Æ



.

To justify the effectiveness of the shift used here, let us compute the eigenvalues of A1:

21.8344, 12.5542, 4.24189, 0.619429.

It follows that there is only a little room (about 0.6) for the improvement of the shift θ̄�22
to keep the positivity of the spectrum of A1. The transformation of the maximal eigenpair
pλ1pA1q,g1pA1qq of A1 to the one pλ1,g1q:�pλ1pA0q,g1pA0qq of the original A0 is as follows.

λ1�λ1pA1q�θ̄, g1�Diagpµq�1{2g1pA1q. (16)

Step 2. Run PI. As in Step 1, we use the following PI:

wn�A1vn�1, n¥1, vn :�wn{}wn}, n¥0.

However, the original initial 1{}1} is replaced by w0�p1�iq1{
�

?

2}1}
�

. The reason is that
for non-real A1, since the eigenvalues are all real, the eigenvectors should be non-real
and so as a mimic, it is better to choose w0 to be non-real. However, this is useless in Step
1, since a nonzero constant factor α can be ignored in the equation

|Apαvq|�|λ||αv|.

We now come to the essential different point from the real case. Actually, for non-real A1,
instead of the single equation (1), we have two:

RepA1gq�λRepgq, ImpA1gq�λImpgq.
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Thus, it is naturally to split the original vector x (corresponding to g in the eigenequation)
into two: xR and xI (corresponding to Reg and Img, respectively). Similarly we have NR

and NI defined as follows.

$

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

&

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

'

%

NRpwq�tk : |Rewpkq|¡0u, NIpwq�tk : |Imwpkq|¡0u;

pn�A1wn;

xR
n �

"

Repn

Rewn
pkq, kPNRpwnq

*

, xI
n�

"

Impn

Imwn
pkq, kPNIpwnq

*

;

weak

$

&

%

yn�

�

�

kPNRpwnq
xR

n pkq
	

�

�

�

kPNI pwnq
xI

npkq
	

,

zn�

�

�

kPNRpwnq
xR

n pkq
	

�

�

�

kPNIpwnq
xI

npkq
	

;

strong

$

&

%

yn�

�

�

kPNRpwnq
xR

n pkq
	

�

�

�

kPNIpwnq
xI

npkq
	

,

zn�

�

�

kPNRpwnq
xR

n pkq
	

�

�

�

kPNIpwnq
xI

npkq
	

;

(17)

where α^β�mintα,βu and α_β�maxtα,βu for real α and β. The last two parts “weak”
and “strong” need some explanation. First, the only difference is exchanging the “^” and
“_” in the middle of definition of pyn,znq. To understand its essential difference, recall
that condition (5) is now split into two:

pRexq : min
kPNRpxq

RepA1xq

Rex
pkq¤λ¤ max

kPNRpxq

RepA1xq

Rex
pkq,

pImxq : min
kPNIpxq

ImpA1xq

Imx
pkq¤λ¤ max

kPNI pxq

ImpA1xq

Imx
pkq.

Now, for the “weak” case in (17) we simply adopt a weaker estimate of pyn,znq from (Rexn)
and (Imxn). And then the “strong” case should be clear. The weaker version of pyn,znq

plays the main role for the safety of converging to the required eigenpair, but makes a
little slower convergence. While the stronger version makes a faster convergence but it
requires that we are at the position close enough to the target eigenpair. Keeping these
ideas in mind, one may adopt a mixture of these choices in designing the algorithms.

To fix the idea, throughout this section, the weak version of pyn,znq is adopted at the
first use of PI only in the computation of each eigenpair. For the other steps, we adopt
the strong version.

It is the position to start the PI. In 6 iterations, the outputs are as follows.

tzn,ynu
6
n�1 : p22.6771,�8.15858q, p92.2205,21.1287q, p25.9135,20.2681q,

p23.4485,18.5274q, p22.6331,19.0585q, p22.2652,19.8867q;

tzn�ynu
6
n�1 : 30.8357, 71.0918, 5.64541, 4.92104, 3.57468, 2.37847;

t1�yn{znu
6
n�1 : 1.35977, .770889, .217856, .209866, .15794, .106825.
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Note that here y1   0. The outputs show that not only the components of Rewn and
Rewn�1 have the same sign once n¥ 2, but also the sequence of relative difference de-
creases quite quickly. We choose n�6 (ε� .1) as the final iteration. Then, we have

v6�p.363237�.491209i, �.00786884�.44046i, .488441�.0516616i,

.326973�.290776iq� .

Step 3. Run IPIv. Starting at pz0,v0q�pz6, v6q obtained in the last step, run IPIv. Here
we adopt a little different notation. Let wn solve the equation

pzn�1 I�A1qwn�vn�1, n¥1.

and set vn �wn{}wn} again. Next, define NRpwq, NIpwq and txR
n ,xI

n,yn,znu by (17) with
the strong version of pyn,znq.

Note that zn and 1�yn{zn are analogs of (6) and (4) in the complex context, respec-
tively. Then, in 2 iterations, we obtain

pzn, ynq
2
n�1 : p21.8358,21.8324q, p21.8344,21.8344q,

pzn�ynq
2
n�1 : .00346973, 5.22045�10�7;

t1�yn{znu
2
n�1 : .000158901, 2.39093�10�8 ,

v2�p.359825�.494092i, �.0061931�.44037i, .488017�.054044i,

.328093�.289324iq� .

Moreover, 1�y2{z2�10�8. This is not too small for the use of IPI f in the next step.

Step 4. Run IPI f . In the case we want to improve the above result furthermore, we
adopt the IPI f . Now, we take pz2,v2q from the last step as our new initial pz0,v0q. The
only change to the last IPIv is using the fixed zn�z0. In 3 iterations, if we adopt the same
precise digits as the last step, then we get the same outputs of pzn,ynq as the last one:

tpzn, ynqu
3
n�1 : the same pair p21.8344, 21.8344q;

tyn�znu
3
n�1 : t10.6581, 0, 3.55271u�10�15 ;

t1�yn{znu
3
n�1 : t5.55112, 1.11022, 2.22045u�10�16 ,

v3�p.359825�.494092i, �.00619309�.44037i, .488017�.054044i,

.328093�.289324iq� .

In what follows, we rewrite pz3,v3q as pλ1pA1q,g1pA1qq which is regarded as the max-
imal eigenpair of A1.
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The submaximal eigenpair

From the last part, we have obtained the maximal eigenpair pλ1pA1q, g1pA1qq, at the ma-
chine level of precision, as follows.

λ1pA1q� 21.834441785286337,

g1pA1q� p.35982503686976175�.49409186313969483i,

�.006193088194633169�.44037016603620777i,

.48801737987976945�.054043998846425696i,

.3280927162424674�.28932402046371486iq� .

Step 1. Run modified PI. As an analog (11), the projection of the vector w on the space
Span pg1pA1qq

K is as follows.

w�
g1pA1q

Hw

pg1pA1qq
Hg1pA1q

g1pA1q rgH :� ḡ�s.

The modified PI means the use of the usual PI with the modification by the projection
above at each step. That is

w0�
p1�iq1
?

2}1}
,

un�wn�
g1pA1q

Hwn

pg1pA1qq
H g1pA1q

g1pA1q, n¥0,

wn�A1
un�1

b

uH
n�1un�1

, n¥1.

Next, similar to (17), replacing w and wn by u and un respectively, we can define NR, NI ,
pn, xR

n , xI
n, and the weak version of pyn,znq. Starting at w0 and running the modified PI,

in 5 iterations, we obtain

tpzn,ynqu
5
n�1 : p13.3067,1.07981q, p12.7854,�32.9231q, p18.4212,10.2147q,

p13.9055,11.5768q, p12.9665,12.1958q;

tzn�ynu
5
n�1 : 12.2269, 45.7085, 8.20655, 2.32871, .770683;

t1�yn{znu
5
n�1 : .918852, 3.57505, .445495, .167467, .0594367.

Note that here y2 0. We stop at n�5 since 1�y5{z5 is small enough, even though it is
bigger than 10�2. Then, we have

z5�12.9665,

v5�p.0677311�.786181i, �.190409�.21529i, .356539�.247925i,

.0428153�.322965iq� .
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Step 2. Run IPIv. Taking pz5,v5q from the last step as new pz0,v0q, run IPIv. Let wn

solve the equation
pzn�1 I�A1qwn�vn�1, n¥1,

and define first vn�wn{}wn}, and then NRpwq, NIpwq and txR
n ,xI

n,yn,znu by (17) with the
strong version of pyn,znq. Now, in 3 iterations, we obtain

tpzn,ynqu
3
n�1 : p12.5546,12.5507q, p12.5542,12.5542q, p12.5542,12.5542q;

tzn�ynu
3
n�1 : .00385406, 1.50454�10�7, 3.55271�10�15 ;

t1�yn{znu
3
n�1 : .000306985, 1.19843�10�8 , 3.33067�10�16 ,

v2�p.604525�.508517i, �.301145�.0168374i, .0761289�.417867i,

�.196423�.2569iq� .

v3�p.604525�.508517i, �.301145�.0168374i, .0761289�.417867i,

�.196423�.2569iq� .

In the case we do not want to go further, we can stop here at n�3 since 1�y3{z3�10�16 is
sufficiently small. It is actually too smaller to go to the next step, otherwise it would cost
some computational error.

Step 3. Run IPI f . To have a test, setting pz0,v0q to be pz2,v2q obtained in the last step,
run IPI f also in 3 iterations, we obtain the same output zn�yn�12.5542 for n�1,2,3, and

tzn�ynu
3
n�1 : t3.55271, 3.55271, 8.88178u�10�15 ;

t1�yn{znu
3
n�1 : t3.33067, 3.33067, 6.66134u�10�16 .

Moreover
v3�p.6045251632662887�.5085174051419706i,

�.3011448284487476�.016837350902488956i,

.07612884589652998�.4178669662768421i,

�.19642273529356236�.2568995483366027iq� .

The present v3 has a much higher precise level than v2 obtained in Step 2. We now regard
pz3,v3q as the submaximal eigenpair pλ2pA1q, g2pA1qq of A1.

Similarly, one can compute the other eigenpairs of A1 but we are not going to the
details here.

Finally, we return to the original eigenpairs of A0 by (16):

λ1�λ1pA1q�22��.165558,

g1�Diagpµq�1{2g1pA1q�p.359825�.494092i, �.00848024�.603002i,

.963757�.106728i, .800304�.705737iq� ,

λ2�λ2pA1q�22��9.44576,

g2�Diagpµq�1{2g2pA1q�p.604525�.508517i, �.41236�.0230555i,

.150342�.825221i, �.479127�.626645iq� .
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It is nice chance to learn some thing from the above computation.

1) In the earlier papers [3] and [7], the sequence tznu should control the maximal
eigenvalue from above, due to the Perron-Frobenius theorem and the C-W formula men-
tioned in Section 1. However, this may not be true in the present general setup, as can be
seen from Step 1 of computing the maximal eigenpair,

z1 |λ
�

pÂ0q|�21.3806 z2 z3¡z4¡z5¡|λ
�

pÂ0q|,

the sequence tznu arrives its maximum at z3. In Step 2, we have similarly,

λ1pA1q�21.8344 z1 z2¡z3¡���¡z6¡λ1pA1q.

In this case, it follows that the sequence tznu arrives its maximum at z2, and then it goes
down. In both cases, the sequence t1�yn{znu is decreasing in n quickly.

Step 1 in computing the submaximal eigenpair is much more interesting. It illustrates
the unstable property of tznu at the beginning. Here we adopt the modified PI. We have

z1¡z2¡λ2pA1q�12.5542 z3¡z4¡z5¡λ2pA1q.

Correspondingly, for ξn :�1�yn{zn, we have

tξnu
5
n�1 : .918852, 3.57505, .445495, .167467, .0594367.

A big jump happens at z3 since as mentioned earlier, y2   0 and so the check sign (CS)
is necessary. At n� 5, even though ξ5� .059¡ .01, but z5� 13.0168¡λ2pA1q, and so the
use of IPIv in the subsequent step is safe. Roughly speaking, one can stop PI at the mth
iteration, if starting from zm, the sequence tznun¥m converges decreasingly. It is the case
if the matrix has nonnegative off-diagonals, as studied in [3, 7], or the examples given
in Section 4. In view of this point, one may reduce the number of iterations in using
PI at the beginning of the computation for the maximal/submaximal eigenpair. More
precisely, the PI (Step 2) for computing the maximal eigenpair needs only 6�2 iterations
and for submaximal one, it requires only 5�1 iterations. For subsequent IPIv or IPI f , the
number of iterations remains the same as the original in the both cases.

2) All the computations above show that the sequence t1�yn{znun, may be except
a few of terms at the beginning, is monotone decreasing and converges, much stable
than the other sequences, tznu or t|1�zn{zn�1|u, in the present general setup. Among the
computations above, the exceptional part of the sequence tξn�1�yn{znu appears mainly
in the last case just discussed above. For which, the first 2 terms are unstable, especially
the second one is bigger than 1 since y2   0 as mentioned before. The stability starts at
the third term. It follows that the use of the sequence t1�yn{znu is more practical and
is actually adopted in the preliminary version of the algorithm given in Fig. 1. For this
reason, it seems more precise to rename the “CS-LBE” technique by adding the relative
difference (RD): CS-RD-LBE technique in the general situation.
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It is hoped that the algorithm given here could be used in the quantum mechanics
computation (cf. [6]).

For the remainder of the paper, we return to real matrices for which Hermitizable
becomes symmetrizable. By (15), we can reduce a symmetrizable matrix to a symmetric
one. Then, by using (16), we can assume that the given symmetric matrix has a nonneg-
ative spectrum.

3 A version of the global algorithm for large scale matrices

As remarked at the end of the last section, we need only to study the symmetric matrix
having nonnegative eigenvalues. In this section, we describe the extended global (or
global for short) algorithm for computing the top eigenpairs of a large sparse matrix.
This algorithm computes the eigenpairs sequentially, starting from the top eigenpair and
then uses the previously computed pi�1q eigenpairs to compute the next ith eigenpair.
The flowchart of the algorithm for computing the ith eigenpair is shown in Fig. 2.

We first summarize the key points of the proposed algorithm as follows.

• The inputs to the algorithm are the first i�1 eigenpairs tpλj,vjq, j�1,��� ,i�1u that
have already been computed using the same algorithm. Here, λj denotes the jth
largest eigenvalue and vj denotes the jth eigenvector.

• At the initial iteration n�0, we initialize with y0 given by (10).

• Starting from the initial vector y0, run a procedure called “Check sign with locally
bilateral estimates (CS-LBE)” to determine initial shift z0 and the corresponding
eigenvector estimate x0. This procedure involves running multiple power itera-
tions with projection and check sign, and estimating z0 based on the locally bilat-
eral estimates (an analog of (5)). Details of the CS-LBE procedure will be described
later.

• Given xn and zn, determined by the CS-LBE procedure, we then perform one it-
eration of the IPIv: pzn I�Aqyn � xn to solve for the updated eigenvector estimate
yn.

• Given yn, we will run the CS-LBE procedure to determine the next shift zn�1 and
the corresponding eigenvector estimate xn�1.

• Given xn�1, we will check whether the accuracy of xn�1 has improved compared
to that of earlier iterations. Detailed criterion used to evaluate the accuracy of the
eigenvector (which corresponds to the amplitude of LBE given in Section 1) will be
described later.

• If the accuracy of xn�1 has not improved compared to earlier iterations, then the
algorithm has converged. It then outputs the ith eigenpair λi� zn�1, vi� xn�1 and
proceeds with the computation of the pi�1qth eigenpair. On the other hand, if the
accuracy of xn�1 has improved compared to earlier iterations, then the algorithm
proceeds with the next iteration of IPIv.
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Input: first i�1 eigenpairs tpλj,vjq, j�1,��� ,i�1u

n � 0; Initialize y0 � 1{}1}

Start from y0, run CS-LBE
to determine x0 and shift z0.

Given xn,zn, perform one IPIv

pzn I�Aqyn � xn to find yn.

Start from yn, run CS-LBE to
determine xn�1 and shift zn�1.

Check if accuracy parameter ℓ

of xn�1, defined in (19), remains
the same in the last 5 iterations.

n�n�1

If |zn�zn�1|  10�8,
set zn � zn�1.

Output: ith eigenpair λi�zn�1, vi�xn�1

yes

no

Figure 2: Flowchart of the main algorithm for computing the ith eigenpair. Assume that the previous i�1
eigenpairs have been computed.

• Note that for the nth iteration of the IPIv, if the condition |zn�zn�1| 10�8 is met,
then we stop updating the shift and set zn�zn�1 instead. That is, we turn to IPI f .

Next, we provide more details of the global algorithm. We will first define the CS-LBE
procedure. This procedure requires the following two basic operations.

Projection operator. This is defined by (11). It ensures that after projection, the vector
Projpx,kq is orthogonal to the linear space Span (tvj, j�1,��� ,ku).

Shift evaluation. Given a current estimate of the eigenvector x, we aim to determine a
proper shift based on the locally bilateral estimates. For large sparse matrices, the compo-
nents of x may decay to zero very quickly. Thus, estimation of the shift using all compo-
nents of x can be unreliable, and sensitive to the estimation errors of those components of
x with very small amplitudes. In our algorithm, we propose to calculate the shift based
on only the principal components of x such that |xpiq| ¥ tpxq, where tpxq is a threshold
value to be determined. Estimating the shift based on only principal components with
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Input: m�0; x1�x

m � m�1;

Run one PI: ym � Axm

Check Sign: check if
ym

xm
piq ¡ 0 for all |xmpiq| ¡ ǫ1

ym�Projpym,kq,
xm�1�ym{}ym}

Evaluate shift zpxmq

Check if |zpxmq{zpxm�1q�1|   ǫ

Output: xm and shift zpxmq

yes

No

yes

No

Figure 3: Flowchart of the compute-shift with locally bilateral estimates (CS-LBE) procedure.

larger amplitude improves the estimate of the shift. Let x be a unit vector in the L2-space
of dimension N. Given x, we define the shift evaluation function, denoted by zpxq, as fol-
lows. Let xa denote the sorted vector of |x| in the descending order. Let n1 be the smallest

integer such that
°n1

i�1 xapiq
2
¥ ǫ0. Typically, we set ǫ0 � 0.9. This means that the first n1

components of vector xa captures 90% of the energy of vector x. Let tpxq�|xapn
1

q|. Given
x and y�Ax, we define the shift evaluation function zpxq by considering only the major
components of x such that |xpiq|¥ tpxq:

zpxq� max
ti:|xpiq|¥tpxqu

y

x
piq

�

y

x
piq :�

ypiq

xpiq

�

. (18)

This is a modification of (6) for the large scale matrix. Note that in (18), we adaptively
determine the principal components of the estimated eigenvector x over iterations. This
is important to obtain good estimates of the shift zpxq.

In Fig. 3, we show the flow-diagram of the CS-LBE procedure in using the modified PI
(cf. Step 1 of computing the submaximal eigenpair given in Section 2). The input to this
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procedure is an initial estimate of the eigenvector x. The subscript m is the index of the
PI. At the mth PI, we calculate ym�Axm. This is followed by a check sign step in which
we check whether the condition that

ym

xm
piq¡0 is satisfied for all |xmpiq|¡ǫ1 (analog of (3)).

If check sign fails, then we conduct a projection step on ym to make sure that the resulting
vector is orthogonal to the linear space generated by the first k�1 eigenvectors. Then we
set xm�1�ym{}ym} and then proceeds to the next PI. If the check sign is successful, then
we compute the shift zpxmq in the next step. The shift evaluation function z is defined as
in (18). We will compare the newly computed shift zpxmq with the previous shift zpxm�1q

to see whether the shift values have converged. If so, we will finish the procedure and
output the updated estimate of the eigenvector xm and the shift zpxmq. Otherwise, the
algorithm will proceed with the next PI.

Check eigenvector accuracy. Most works in the literature use L2 norm of the error vec-
tor between the true eigenvector and the estimated eigenvector to evaluate the accuracy
of the eigenvector estimation. However, since L2 norm is obtained by summing over all
components of the error vector, it can not accurately describe the accuracy of the indi-
vidual components. In this work, we adopt a different metric by examining the accuracy
of component-wise ratios of y�Ax and x. By the definition of the eigenvector, for each
component xpkq � 0, then the ratio ypkqxpkq�1 should equal the eigenvalue λ. This is a
challenging task for the setting of large matrices due to the high matrix dimension and
the rapid decay of the eigenvectors. Typically, when the amplitude of a component xpkq
is large, the estimation tends to be more accurate, and thus the ratio ypkqxpkq�1 will be
closer to the eigenvalue λ. For small xpkq, the ratio ypkqxpkq�1 tends to deviate away from
λ due to estimation inaccuracy. Hence, it is meaningful to consider the amplitude range
of xpkq over which all ypkqxpkq�1 are close to λ.

We now arrive at the second localized estimation technique: Accuracy of the principal
components of the approximating eigenvector.

Consider an estimated eigenvector x of dimension N. Let I denote a permutation of
t1,2,��� ,Nu obtained by sorting the components of |x| in the descending order. Given I,
we define x̃ as x̃piq� xpIpiqq, i�1,��� ,N. Given the same I, we let y�Ax and define ỹ as
ỹpiq�ypIpiqq, i�1,��� ,N.

• Let m1

�max
i

!

i : |x̃piq|¡0
)

.

• The accuracy parameter ℓ of the estimated eigenvector specifies the number of reli-
able components of x̃. It is defined as

ℓ� max
1¤i¤m1

#

i : max
1¤j¤i

ỹ

x̃
pjq�min

1¤j¤i

ỹ

x̃
pjq 10�6

+

. (19)
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• Based on the definition of ℓ in (19), we see that the estimated eigenvector x achieves
a high accuracy for the largest ℓ components (in absolute value). In other words, the
components of x have high accuracy for all components xpiq such that |xpiq|¥|x̃pℓq|.

Note that in the proposed algorithm shown in Fig. 2, we calculate the accuracy param-
eter ℓ for the estimated eigenvector xn�1 according to (19). As the algorithm proceeds, ℓ
will increase over iterations. We terminate the algorithm if ℓ no longer increases over five
consecutive iterations.

4 Application to large scale sparse matrices

In this section, we provide two examples of using the global algorithm to compute the top
6 eigenpairs. The two large matrices come from the SuiteSparse Matrix Collection, pub-
licly available at https://sparse.tamu.edu. We will compare the proposed algorithm
with two other methods. One is the Matlab Eigs function, which computes the top six
eigenpairs of large, sparse matrices. The other is the modified power iteration method,
where we perform the standard power iteration together with the projection step to com-
pute the top six eigenpairs. All the experiments presented in this section are executed on
an AMD Ryzen 5 2600 Six-Core Processor with single core CPU speed 3.85 GHz, Memory
32 GB. Matlab version is R2015b Windows 10. Related work on computing the top eigen-
pair for large sparse matrices include [8, 11, 12]. In particular, [11, 12] consider the use of
inverse iterations using fixed shifts. This work differs from [11, 12] in the use of the pro-
posed (CS-LBE) procedure to adaptively compute the shifts. Furthermore, the estimated
eigenvector accuracy considered in [8, 11, 12] (for the largest eigenpair only) is similar to
that of the Matlab Eigs function, which only guarantees the accuracy of a small number
of large principal components. In comparison, the proposed global algorithm achieves a
high accuracy for even eigenvector components with an exceedingly small magnitude.

dixmaanl dataset

This matrix has a dimension of N�60000. The number of nonzero elements (abbrev. nz) is
299998, This matrix is nonnegative, symmetric, and the range of the elements is between
0 and 154.8089. The sparsity pattern of this matrix is shown in Fig. 4(a).

In Table 1, we show the estimated top 6 eigenvalues obtained by each method. We see
that all three methods provide similar eigenvalue estimates that agree with each other up
to 10 decimal points.

In Table 2, we provide detailed comparisons of the three methods in terms of the ac-
curacy of the eigenvector, the complexity, and the running time. Each row corresponds
to results associated with the ith eigenpair. For instance, the row corresponds to λ1 reads
as follows. The global algorithm estimates the largest (in magnitude) ℓ� 56515 compo-
nents of the eigenvector v1 accurately (see (19)). This represents accurate estimation of
all components of v1 with a magnitude that is greater or equal to |v1pℓq|�8.1�10�316. The
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(a) (b)

Figure 4: Sparsity of the two datasets. (a) dixmaanl (b) roadNet-CA.

Table 1: dixmaanl dataset. Computed top 6 eigenvalues using the Global algorithm, eigs, and modified PI.

global eigs PI

λ1 317.0152899359881 317.0152899359666 317.0152899359881

λ2 317.0058090659085 317.0058090659162 317.0058090659074

λ3 316.9980633932568 316.9980633932683 316.9980633932562

λ4 316.9912300516546 316.9912300516576 316.9912300516548

λ5 316.9849936226963 316.9849936226929 316.9849936226971

λ6 316.9791911040992 316.9791911040974 316.9791911040990

triple p288,40,5q means that in order to achieve this accuracy, the global algorithm took
a total of 288 power iterations, including 40 iterations for inverse power iterations (35
of IPI f and 5 of IPIv). The global algorithm took 5.1 seconds to compute the first eigen-
pair while achieving this high level of accuracy. In comparison, the Matlab eigs function,
which computes all 6 top eigenpairs all at once, has a much inferior eigenvector accu-
racy. Only the largest ℓ�3311 components of estimated v1 achieve the desired accuracy
of (19) and these components are at least |v1pℓq|�3.7�10�8 in magnitude. The total com-
putation time of the eigs function for all 6 eigenpairs is 30 seconds. This is comparable
with the total computation time of the global algorithm, however, with a significantly
lower level of eigenvector accuracy. For the modified PI, we see that it can achieve an
accuracy that is comparable to that of the global algorithm. However, the computation
time is significantly longer. Due to its slow convergence, it takes 894 seconds and a total
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Table 2: dixmaanl dataset. Results and complexity using the Global algorithm, eigs, and modified PI.

Global eigs

ℓ |x̃pℓq| # iteration time ℓ |x̃pℓq| time

1st 56515 8.1e-316 (288, 40, 5) 5.1 3311 3.7e-08

30

2nd 57294 8.7e-316 (319, 45, 6) 5.8 3883 3.2e-08

3rd 57936 9.2e-316 (244, 40, 5) 4.6 4306 4.1e-08

4th 58515 8.7e-316 (274, 45, 7) 5.2 4599 8.6e-08

5th 59020 1.2e-315 (276, 45, 5) 5.4 5138 2.9e-08

6th 59536 9.1e-316 (312, 45, 6) 6.3 5401 5.2e-08

Modified PI

ℓ |x̃pℓq| time # PI

1st 56460 1.9e-315 894 1.5e+06

2nd 57246 1.8e-315 1173 1.5e+06

3rd 57896 1.7e-315 1442 1.5e+06

4th 58472 1.7e-315 1718 1.5e+06

5th 58988 2.0e-315 1998 1.5e+06

6th 59480 2.0e-315 2292 1.5e+06

of 1.5�106 PIs in order to attain a similar accuracy as that of the global algorithm. Similar
observations are made for the estimations of the other 5 eigenpairs. The proposed global
algorithm achieves the best accuracy with the shortest computation time. We note that
the main difference between the Global algorithm and the modified PI is that the for-
mer uses inverse power iteration with adaptive shifts, whereas the latter uses standard
power iterations. Our results shown that the proposed CS-LBE procedure for computing
the variable shifts is crucial in accelerating the convergence speed of the algorithm.

In Table 3, for each eigenpair, we show the value of the shifts used in the Global al-
gorithm. The shifts are generated using the CS-LBE procedure. For instance, the column
labeled as “1st” lists 5 values of the shifts zi, i�1,��� ,5, used in the estimation of the 1st
eigenpair. We see that zi approaches the true λ value (shown in the last row) quickly. For
the first eigenpair, only 5 different shifts are needed. In comparison, for the 4th and the
6th eigenpair, more shifts 7, and 6, respectively, are needed.

roadNet-CA dataset

For this dataset, the dimension of the matrix is N � 1971281. This matrix corresponds
to a graph of the road network of California. Each element is either 0 or 1. The sparsity
pattern of this matrix is shown in Fig. 4(b). The number of nonzero elements in the matrix
is nz�5533214, see Fig. 4(b).

In Table 4, we show detailed comparisons of the three methods in terms of the ac-
curacy of the eigenvector, the complexity, and the running time. We see that the Global
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Table 3: dixmaanl dataset. Shifts used by the Global algorithm.

1st 2nd 3rd

z1 317.2018759831095 317.0149029206981 317.0054220600994

z2 317.0220587013249 317.0412999365110 317.0056140237707

z3 317.0165531440067 317.0183499796456 316.9974443732343

z4 317.0152788610227 317.0044840756761 316.9980602821128

z5 317.0152899359775 317.0057627487807 316.9980633932562

z6 317.0058090643057

λ 317.0152899359881 317.0058090659085 316.9980633932568

4th 5th 6th

z1 316.9976763951934 316.9908430604246 316.9846066377027

z2 317.0174070334262 316.9924907259373 317.0002253316557

z3 316.9879937432648 316.9843539028472 316.9767242599030

z4 316.9896903234464 316.9849885385036 316.9784124921462

z5 316.9910317369073 316.9849936226933 316.9791679223474

z6 316.9912298325970 316.9791911036812

z7 316.9912300516546

λ 316.9912300516546 316.9849936226963 316.9791911040992

Table 4: roadNet-CA dataset. Results and complexity using the Global algorithm, eigs, and modified PI.

Global eigs

ℓ |x̃pℓq| # iterations time ℓ |x̃pℓq| time

1st 1933344 2.8e-317 (244, 35, 3) 309 1543 8.7e-10

38

2nd 1926704 3.0e-317 (245, 35, 3) 322 1413 1.1e-09

3rd 1957027 2.8e-295 (226, 30, 3) 276 2004 1.0e-09

4th 1948213 2.2e-317 (243, 30, 3) 285 2190 5.3e-10

5th 1956156 2.3e-317 (242, 30, 3) 293 2409 2.9e-10

6th 1923583 2.7e-317 (282, 30, 2) 296 1648 7.8e-10

Modified PI

ℓ |x̃pℓq| # PI time

1st 1933452 2.0e-317 1.0e+04 381

2nd 1926900 2.0e-317 2.5e+04 1432

3rd 1957027 2.8e-295 2.7e+04 2062

4th 49653 1.6e-33 5e+04 4700

5th 62901 1.8e-33 7e+03 776

6th 1923767 1.9e-317 5.0e+04 6671
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Table 5: roadNet-CA dataset. Computed top 6 eigenvalues using the Global algorithm, eigs, and modified PI.

global eigs PI

λ1 4.638361867351406 4.638361867351387 4.638361867351406

λ2 4.527027931848926 4.527027931848909 4.527027931848924

λ3 4.451588326941737 4.451588326941750 4.451588326941737

λ4 4.390275021532836 4.390275021532792 4.390275021532837

λ5 4.383736144475813 4.383736144475774 4.383736144475815

λ6 4.325729176980614 4.325729176980572 4.325729176980615

Table 6: roadNet-CA dataset. Shifts used by the Global algorithm.

1st 2nd 3rd

z1 4.651095152690492 4.541091827266276 4.457490006778257

z2 4.638369301398686 4.527034278350056 4.451618990253862

z3 4.638361867350882 4.527027931841913 4.451588326915770

λ 4.638361867351406 4.527027931848926 4.451588326941737

4th 5th 6th

z1 4.390768119815626 4.384210430746412 4.325729209088518

z2 4.390275047542154 4.383736186751131 4.325729176980588

z3 4.390275021532815 4.383736144475802

λ 4.390275021532836 4.383736144475813 4.325729176980614

algorithm reaches very good accuracy in terms of ℓ and |x̃pℓq| for all 6 eigenpairs. Due
to the increased matrix dimension, the computation time increases compared to that of
the dixmaanl dataset. The eigs function can compute the top 6 eigenpairs quickly, using
only a total of 38 seconds, but with a much inferior accuracy in ℓ and |x̃pℓq|. The mod-
ified PI algorithm can achieve a very good accuracy for the top 3 eigenpairs, despite a
longer computation time for using a high number of PI. The accuracy of the remaining 3
eigenpairs is much worse for the given number of PI.

In Table 5, we show the estimated top 6 eigenvalues using the three algorithms. They
all find similar eigenvalues.

In Table 6, we show the shifts produced by the CS-LBE procedure. We observe that,
despite the higher dimension of this dataset, the shift values converge to the eigenvalues
quickly. Up to 3 shift values are sufficient to approach the eigenvalues.
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