
Front. Math. China 2021, 16(2): 345–379
https://doi.org/10.1007/s11464-021-0909-6

Computing top eigenpairs of
Hermitizable matrix

Mu-Fa CHEN1,2,3, Zhi-Gang JIA1,4, Hong-Kui PANG1,4

1 Research Institute of Mathematical Science, Jiangsu Normal University, Xuzhou 221116,
China

2 School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China
3 Laboratory of Mathematics and Complex Systems (Beijing Normal University),

Ministry of Education, Beijing 100875, China
4 School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China

c©Higher Education Press 2021

Abstract The top eigenpairs at the title mean the maximal, the submaximal,
or a few of the subsequent eigenpairs of an Hermitizable matrix. Restricting on
top ones is to handle with the matrices having large scale, for which only little
is known up to now. This is different from some mature algorithms, that are
clearly limited only to medium-sized matrix for calculating full spectrum. It is
hoped that a combination of this paper with the earlier works, to be seen soon,
may provide some effective algorithms for computing the spectrum in practice,
especially for matrix mechanics.

Keywords Hermitizable, Householder transformation, birth-death matrix,
isospectral matrices, top eigenpairs, algorithm

MSC2020 15A18, 15A57, 60J27, 65F10, 65F15, 65F30

This paper is a continuation of [7] which surveys partially the results
(algorithms) presented in [3–5], plus some additional materials. The main
context in [7] is on real tridiagonal matrix, except few comments on the
complex situation. In the real context, the theoretical study on the leading
spectrum of the infinitesimal matrix operator is reviewed in [2]. This paper
starts at a computational technique for checking the Hermitizability and then
goes to study the Householder transformation, and furthermore the submaximal
eigenpair for Hermitizable matrices. The algorithms can also be used to
compute a few number of the other subsequent eigenpairs. The price we have
to pay is mainly for the Householder transformation (Algorithm 3) which is a
famous algorithm having complexity O(N3). The other algorithms in the paper
are mainly O(N) algorithm. In Section 4 of the paper, except some remarks on

Received July 26, 2020; accepted December 4, 2020
Corresponding author: Mu-Fa CHEN, E-mail: mfchen@bnu.edu.cn

346 Mu-Fa CHEN et al.

our algorithms, a proof of a key result, an isospectral property of the Hermitiz-
able matrix and a Jacobi (birth-death) one, originally given in [5], is presented.
The last section of the paper is devoted to the practical implementation of
the results obtained in the previous sections on large scale matrices. Some
additional analysis and the programs in MatLab of the algorithms, as well as a
number of tests in comparison with the known programs are presented.

1 Checking the Hermitizability

Let A = (aij)
N
i,j=0 be a given complex matrix. We are going to check by

computer its Hermitizability introduced in [5]: there exists a positive measure
µ such that

µiaij = µj āji, ∀ i, j, (1)

where ā denotes the conjugate of a. Note that we have a very simple necessary
condition for the property (1): for each pair (i, j), either aij = 0 and aji = 0
simultaneously, or aijaji > 0 (cf. [5]). In particular, (aii)

N
i=0 must be real.

However, for the criterion of the Hermitizability, one more condition is
essential: the so-called circle condition. The analytic method for checking the
circle condition was given in [5; Theorem 5]. Here we introduce an algorithm for
checking the condition by computer. Define a column vector 1 having elements
1 everywhere and denote by Diag(u) the diagonal matrix with vector u as its
diagonal elements. For simplicity, let B = A−Diag(Ā1). Denote by B\{last line}

the matrix obtained from B by removing its last line.
The checking procedure consists of three steps.

Algorithm 1 (1) Computing the harmonic measure. Consider the (row-)
harmonic equation: µB = 0 with µ0 6= 0. Assume that there exists at least one
non-zero solution µ. Equivalently, the equation

B∗\{last line}µ∗ = 0

has at least one solution (µ0, . . . , µN) with fixed boundary condition, say µ0 = 1
for instance. Actually, in the Hermitizable case, the resulting measure µ must
be positive (and is indeed unique under the irreducible condition, cf. [5]), then
we can go to the next step. Otherwise, the matrix A is not Hermitizable.

(2) Define the quasi-Hermitizing matrix as follows:

Â = Diag(µ1/2)ADiag(µ−1/2), âij =

√
µi aij
√
µj

, ∀ i, j. (2)

(3) Hermitizability criterion. Now, A is Hermitizable if and only if Â = ÂH ,
where the superscript H means the conjugate transpose.

The next example illustrates an application of Algorithm 1.

Computing top eigenpairs of Hermitizable matrix 347

Example 2 [7; Example 3] Let

A =

−2 2 + 2 i 1− i 0

1− i

2
−3 1− i

2
3 + i

1 + i 4 + 2 i −4 8 + 2 i

0 3− i 2− i

2
−5

 .

Then µ1 = 1, µ2 = 4, µ3 = 1, and µ4 = 4. Furthermore,

Diag(µ)1/2ADiag(µ)−1/2 =

−2 1 + i 1− i 0

1− i −3 2− i 3 + i
1 + i 2 + i −4 4 + i

0 3− i 4− i −5

 ,
which is clearly Hermitian. Its eigenvalues are as follows:

−9.1026, −5.75255, 2.62816, −1.77301.

Proof Note that

B =

−3 + i 2 + 2 i 1− i 0
1− i

2
−9

2
1− i

2
3 + i

1 + i 4 + 2 i −13 + 5 i 8 + 2 i

0 3− i 2− i

2
−5− 3 i

2

 .

And then

B∗\{last line} =

−3 + i

1− i

2
1 + i 0

2 + 2 i −9

2
4 + 2 i 3− i

1− i 1− i

2
−13 + 5 i 2− i

2

 .
Now, the conclusion follows from Algorithm 1. �

2 Reducing Hermite matrix to tridiagonal one

We have in the last section reduced the Hermitizable matrix to an isospectral
Hermitian matrix Â given in (2). In this section, we further reduce an Hermitian
matrix to some isospectral symmetric tridiagonal matrix with nonnegative sub-
diagonal elements, in terms of Householder transformation. Thus, throughout
this section, we fix an Hermitian matrix A = (aij)

N
i,j=1. We are going to use

some unitary similar transformation, making the off-tridiagonal elements to

be zero. The algorithm is running column by column. Let Ak−1 = (a
(k−1)
ij)

348 Mu-Fa CHEN et al.

(A0 := A) and b(k) be the kth column of Ak−1 given in Fig. 1. Replacing the
first k components of b(k) by zero, we obtain the vector x(k). Next, define y(k)

by the following procedure: replacing each component by 0 in x(k), except the

element b
(k)
k+1 is replaced by sk :=

√
x(k)Hx(k).

b(k) =

b
(k)
1
...

b
(k)
k

b
(k)
k+1

b
(k)
k+2
...

b
(k)
N

−→ x(k) :=

0
...

0

b
(k)
k+1

b
(k)
k+2
...

b
(k)
N

−→ y(k) :=

0
...

0

sk

0
...

0

Fig. 1 Construction of two vectors: x(k) and y(k)

Algorithm 3 At the k (> 1)th step, suppose that the matrix obtained after
k − 1 transformations is Ak−1. Then, we want to transform x(k) into y(k) =
(skδi,k+1: 16i6N) by a unitary transformation defined by using x(k) and y(k):

Uk = I +
uuH

α
, u := x(k) − y(k), α := sk(b

(k)
k+1 − sk),

or in pointwise form:

Uk(i, j) = δij +
1

sk(b
(k)
k+1 − sk)

(x
(k)
i − skδi,k+1)(x̄

(k)
j − skδj,k+1).

Furthermore, we obtain the transformed matrix Ak at step k :

Ak = UkAk−1U
H
k .

Note that in the special case that sk = 0 or sk = b
(k)
k+1 > 0, the Uk defined above

is meaningless, we can simply ignore this step (or reset Uk = I) and jump to
the next step at k + 1. At the last step k = N − 1 (at most), we obtain the
required real symmetric tridiagonal matrix AN−1.

We mention that the unitary matrix I + (uuH/α) is Hermitian if and only

if α is real, or equivalently, so is b
(k)
k+1. If α 6= 0, then

uHu =
∑
j 6=k+1

x̄
(k)
j x

(k)
j + (x̄

(k)
k+1 − sk)(x

(k)
k+1 − sk)

= 2s2k − sk(x
(k)
k+1 + x̄

(k)
k+1)

= 2s2k − sk(b
(k)
k+1 + b̄

(k)
k+1)

= − (α+ ᾱ).

Computing top eigenpairs of Hermitizable matrix 349

Hence,

UHk Uk = I +
uuH

ᾱα
(α+ ᾱ+ uHu) = I.

Equivalently, UkU
H
k = I in view of the operation H : A → AH . Thus, Uk is

surely unitary.
The following algorithm is for computing the maximal eigenvector gmax(A),

which can be run in parallel to Algorithm 3 above.

Algorithm 4 Starting at V1 = UH1 , update Vj step by step in parallel to
Algorithm 3:

Vk = Vk−1U
H
k , k = 2, . . . , N − 1.

Denote by (λmax(T), gmax(T)) the maximal eigenpair of T := AN−1. Then the
maximal eigenpair of A can be expressed by

(λmax(A), gmax(A)) = (λmax(T), VN−1gmax(T)).

Similarly, one can compute the other eigenpairs of A using the ones of T with
the same transform VN−1.

Alternatively, gmax(A) =: g(0) can be obtained by the following procedure:

g(k−1) = UHk g
(k), k = N − 1, . . . , 1.

The first method in Algorithm 4 does not need to store, step by step, the
whole sequence {Vj}N−1j=1 , but it requires about N(N + 1)(N + 1

2) times of

multiplications. Here is a careful analysis on the complexity of gmax(A) of the
method. First, we compute the complexity of Vk. Note that Uk = I+ (uuH/α),
we have UHk = I+ (uuH/ᾱ). As usual, we count only the multiplications. Since
at the kth step, the first k components of u are zero, and so are u/ᾱ and uH ,
it follows that

z :=
u

ᾱ
requires N − k times of multiplications,

Z := Vk−1z requires N(N − k) times of multiplications,

ZuH requires N(N − k) times of multiplications.

The last step needs a little explanation. As a product of the column vector Z
and the row vector uH , one often requires N2 times of multiplications. Here the
first k columns of the resulting matrix are zero and so can be ignored, since the
first k components of uH are zero. Hence the total multiplications are reduced
to be N(N − k) as given above. Thus, it means that Vk = Vk−1U

H
k requires

(2N + 1)(N − k) times of multiplications. Next, for k varying from 1 to N − 1,
we obtain VN−1, which requires

N−1∑
k=1

(2N + 1)(N − k) = (2N + 1)
[
N(N − 1)− N(N − 1)

2

]
= N(N − 1)

(
N +

1

2

)

350 Mu-Fa CHEN et al.

times of multiplications. Finally, for gmax(A) = VN−1gmax(T), it requires
additionally N2 times of multiplications. Therefore, for gmax(A), it requires
totally

N(N − 1)
(
N +

1

2

)
+N2 = N

(
N2 +

N

2
− 1

2

)
= N(N + 1)

(
N − 1

2

)
times of multiplications.

Comparing the first method just discussed above, the second one (given at
the end of the algorithm) goes on the opposite direction: we have to store the
sequence {x(j)} (or plus {sj = ‖x(j)‖}) which generates the sequence {Uj}, but
the iterative computations require only N(N − 1)/2 multiplications. Thus, the
second method is more effective than the first one, at least for large matrices.

We will come back to this topic in Algorithm 7 below.
The Householder transformation goes back to [10]. The representation

here is taken from Wang [17] which is based on [16]. Since sk = y(k)Hu, the
expression of Uk here fits [8; p. 2375, the formula right above part III].

We now illustrate the algorithm by some examples.

Example 5 (Continued) Let A be the Hermitian matrix given at the end of
Example 2. Then we have

A3 =

−2 2 0 0

2 −5

2

√
67

2
0

0

√
67

2
−265

134

2
√

7717

67

0 0
2
√

7717

67
−504

67

.

Notice that the sub-diagonal elements of the symmetric tridiagonal matrix A3

are positive. We have thus reduced the computation of the maximal eigenpair
of Hermitian A to the real tridiagonal one A3. Furthermore, we have

λmax(A) = 2.62816,

gmax(A) = (.51569 + .137426 i, 1.07178 + .0943814 i, .969716 + .439587 i, 1)∗.

Proof At first step, we have

x(1) = (0, 1− i, 1 + i, 0)∗,

V1 = UH1 =

1 0 0 0

0
1− i

2

1 + i

2
0

0
1 + i

2

1− i

2
0

0 0 0 1

,

Computing top eigenpairs of Hermitizable matrix 351

A1 =

−2 2 0 0

2 −5

2
2 +

i

2

7 + i

2

0 2− i

2
−9

2

7 + 3 i

2

0
7− i

2

7− 3 i

2
−5

.

At the second step, we have

x(2) =
(

0, 0, 2− i

2
,

7− i

2

)∗
,

V2 = V1U
H
2 =

1 0 0 0

0 .5− .5 i .305424 + .183254 i .106015 + .601577 i

0 .5 + .5 i .183254− .305424 i .601577− .106015 i

0 0 .855186− .122169 i −.38067− .329881 i

 ,

A2 =

−2 2 0 0

2 −5

2

√
67

2
0

0

√
67

2
−265

134

(81− 34 i)(
√

67− 4 + i)2

134 (21− 2
√

67)

0 0
(81 + 34 i)(

√
67− 4− i)2

134 (21− 2
√

67)
−504

67

.

Finally, at the third step, we have

x(3) =

(
0, 0, 0,

(81 + 34 i)(
√

67− 4− i)2

134(21− 2
√

67)

)∗
,

V3 = V2U
H
3 =

1 0 0 0

0 .5− .5 i .305424 + .183254 i .148807 + .592445 i

0 .5 + .5 i .183254− .305424 i .592445− .148807 i

0 0 .855186− .122169 i −.403308− .301785 i

 ,
and then A3 given in the example.

Because

λmax(A3) = 2.62816, gmax(A3) = (1.60558, 3.71545, 3.87088, 1)∗,

we have λmax(A) = 2.62816 and

gmax(A) = V3 gmax(A3)

= (.51569 + .137426 i, 1.07178 + .0943814 i, .969716 + .439587 i, 1)∗.

352 Mu-Fa CHEN et al.

The conclusion is checked by

Agmax(A)

λmax(A)
= gmax(A). �

For the computation of the maximal eigenpair of tridiagonal matrix, refer
to [7], and see Section 4 of the paper for analytic details. The next example
shows a blocking phenomenon which seems not treated before carefully.

Example 6 Let

A =

732

289
−81− 27 i

289
−50 + 50 i

289
−70 + 60 i

289

−81 + 27 i

289

813

289
−20 + 40 i

289
−30 + 50 i

289

−50− 50 i

289
−20− 40 i

289

648

289

91− 7 i

289

−70− 60 i

289
−30− 50 i

289

91 + 7 i

289

41

17

.

Then the deduced tridiagonal matrix is divisible:

A3 =

732

289

3
√

2310

289
0

3
√

2310

289

713

289
64

27

√
170

27

0
√

170

27

71

27

.

Proof At the first step, we have

x(1) =
(

0, −81 + 27 i

289
, −50− 50i

289
, −70− 60 i

289

)∗
,

V1 = UH1

= −

1 0 0 0

0 .561769 + .187256 i .254965 + .418919 i .373346 + .519098 i

0 .346771− .346771 i −.84819 + .018202 i .199173 + .00848164 i

0 .485479− .416125 i .195533 + .0388436 i −.741923 + .0309434 i

 ,

A1 =

732

289

3
√

2310

289
0

3
√

2310

289

713

289
64

27

13− i

27

0 13 + i

27

71

27

.

Computing top eigenpairs of Hermitizable matrix 353

The second step can be ignored since for which we have x(2) = 0. Then we have
U2 = I and so V2 = V1. We now go to the third step:

x(3) =
(

0, 0, 0,
13 + i

27

)∗
,

V3 = V2U
H
3

= −

1 0 0 0

0 .561769 + .187256 i .254965 + .418919 i .332433 + .546204 i

0 .346771− .346771 i −.84819 + .018202 i .197936 + .0237325 i

0 .485479− .416125 i .195533 + .0388436 i −.742111− .0260506 i

 ,
and A3 given in the example. Clearly, the matrix A3 can be reduced to two
2×2 matrices and so it has two repeated pairs of eigenvalues {3, 2}. The reason
is as follows. First, for an irreducible (or unreduced) tridiagonal matrix, its
eigenvalues are distinct. This classical result is included in many textbooks, see,
for instance, [1; p. 97, Theorem 3.3], [11; p. 36, Theorem 2.2], [14; p. 134, Lemma
7.7.1]), or [18; pp. 300–302]. In this case, the block decomposition for the matrix
can be ignored. Hence, A3 should have multiple eigenvalues and the multiplicity
should be less than or equal to 2. Otherwise, there would have more blocks, not
only two. If there are three distinct eigenvalues, then there would have two
submatrices with size 3 × 3 and 1 × 1, respectively. Hence, we are not in this
situation. The conclusion can be easily checked by computing the eigenvalues
of these two 2× 2 submatrices separately.

To compute the maximal eigenvector of A in the above example, let

A
(1)
3 =

1

289

[
732 3

√
2310

3
√

2310 713

]
, A

(2)
3 =

1

27

[
64

√
170

√
170 71

]
.

Then, with the same maximal eigenvalue 3, the maximal eigenvectors for them
are

g
(1)
3 =

(
1

3

√
154

15
, 1

)∗
, g

(2)
3 =

(√
10

17
, 1

)∗
,

respectively. Thus, the matrix A3 has the maximal eigenvalue 3 with
multiplicity 2 and independent eigenvectors as follows:

g(1) =

(
1

3

√
154

15
, 1, 0, 0

)∗
, g(2) =

(
0, 0,

√
10

17
, 1

)∗
.

By Algorithm 4, the similar assertion holds for the original A with independent
eigenvectors

V3g
(1) = (1.06805, −.561769− .187256 i, −.346771 + .346771 i,

− .485479 + .416125 i)∗,

354 Mu-Fa CHEN et al.

V3g
(2) = (0, −.527982− .8675 i, .452596− .0376928 i, .592145− .00374103 i)∗,

respectively. Clearly, these two vectors are linear independent. Let us mention
that eachN -dimensional Hermite matrix hasN linear independent eigenvectors,
and so does each Hermitizable one. �

It is the position to come back to the computation of the maximal eigen-
vector. From the last two examples, we have seen that the computation of the
sequence {Vj} costs heavier work (actually has a higher complexity). We now
show that in some cases (the matrix has a smaller size or is rather sparse, for
instance), it is possible to use directly the shift inverse iteration.

Algorithm 7 Let A = (aij)
N
i,j=1 be a given Hermitizable matrix. Set z =

λmax(A)+ε with small ε > 0 (say 10−8 for instance) and choose a suitable vector
w0. For a given vector w (may have subscript), here we fix the normalization
of w in terms of its first w(1) or last components w(N):

v =
w

w(1)
or

w

w(N)
.

Now, for given v := vk−1, the shift inverse iteration goes as follows. Let w = wk
solve the equation

(zI −A)w = v.

Then define vk as the normalization of wk just defined. Continue the iterations
until the solutions become the same up to six digits of precision.

The reason we add a small constant ε in Algorithm 7 is to avoid the
singularity of the matrix zI − A. The main price we have to pay is for the
linear equation involved in the algorithm. Thus, once there is an effective
algorithm for solving the equation (when A is symmetric, or sparse, or having
smaller size, for instance), the algorithm should work well.

Example 8 (Continued) We now apply Algorithm 7 to Example 6. Set z =
3 + 10−8. We have chosen three initials for v0 :

(1) (1, 1, 0, 0)∗;

(2) (0, 0, 1, 1)∗;

(3) (1, 1, 1, 1)∗.

Since the eigenspace of the maximal eigenvalue 3 has dimension 2, there is some
freedom for the solution of the algorithm. After one iteration, the outputs of
the vector v1 in the corresponding cases are as follows:

(1) (1, 1.73539− 1.01172 i, −.44239 + 1.3965 i, −.714757 + 1.77121 i)∗;

(2) (−.588235− .504202 i, −.252101− .420168 i, .764706− .0588235 i, 1)∗;

(3) (−.577029− .140796 i, −.0872077− .970879 i, .764706− .0588235 i, 1)∗.

It is checked by the eigenequation Av1/3 = v1 so that these three solutions are
all the eigenvectors of A. The first two are quite different from those produced
by V3 as seen above. Each pair of them are linear independent.

Computing top eigenpairs of Hermitizable matrix 355

Originally, the next example was designed as a complex matrix. Since it is
too big for the output, we choose a real one. However, the story is very much
similar.

Example 9 Due to the multiplicity of the eigenvalues, the tridiagonalized
matrix of the next symmetric one

A =

8074

2601

271

5202

373

1734

746

2601

1355

5202

169

867

676

2601
− 959

5202
271

5202

31483

10404

373

3468

373

2601

1355

10404

169

1734

338

2601
− 959

10404
373

1734

373

3468

2787

1156

475

867

1865

3468

271

578

542

867
− 245

3468
746

2601

373

2601

475

867

7102

2601

1865

2601

542

867

2168

2601
− 245

2601
1355

5202

1355

10404

1865

3468

1865

2601

37987

10404

845

1734

1690

2601
− 4795

10404
169

867

169

1734

271

578

542

867

845

1734

1223

289

268

867
−1673

1734
676

2601

338

2601

542

867

2168

2601

1690

2601

268

867

11476

2601
−3346

2601

− 959

5202
− 959

10404
− 245

3468
− 245

2601
− 4795

10404
−1673

1734
−3346

2601

46123

10404

has a block decomposition with three blocks. Moreover, the distinguished eigen-
values are all included in the largest block of the decomposition.

Proof At Steps 1–3, the outputs are standard. Here is the output in Step 3.

x(3) = (0, 0, 0, .122312, −.565458, −.20606, −.274746, −.781817)∗,

A3 =

3.10419 .581915 0 0

.581915 6.43398 1.2267 0 0
0 1.2267 3.6022 1.03145

0 0 1.03145 2.85964

2.72146 −.20848 −.277973 −.283237

−.20848 3.48396 −.688054 −.211994

0 −.277973 −.688054 3.08259 −.282659

−.283237 −.211994 −.282659 2.71199

.

Note that here and in what follows, once the output is less than 10−14, we
simply reset it as zero, because it usually comes from the computational errors.
Step 4 can be omitted since x(4) = 0. Here is the output of Step 5:

x(5) = (0, 0, 0, 0, 0, −.20848, −.277973, −.283237)∗,

356 Mu-Fa CHEN et al.

A5 =

3.10419 .581915

.581915 6.43398 1.2267 0
1.2267 3.6022 1.03145

1.03145 2.85964 0

0 2.72146 .448281

.448281 2.27854 0

0 0 3.88097 .323827

.323827 3.11903

.

We do not need to move further since A5 has already arrived at the required
tridiagonal form. Actually, it reduces into three submatrices:

A
(1)
5 =

3.10419 .581915 0 0

.581915 6.43398 1.2267 0

0 1.2267 3.6022 1.03145

0 0 1.03145 2.85964

 ,

A
(2)
5 =

[
2.72146 .448281

.448281 2.27854

]
, A

(3)
5 =

[
3.88097 .323827

.323827 3.11903

]
.

Clearly, the eigenvalues of A
(2)
5 and A

(3)
5 are all included in those of A

(1)
5 . Thus,

in the case we are only interested in distinct eigenvalues, ignoring their multi-

plicity, it suffices to study the eigenvalues of the largest submatrix A
(1)
5 . More

explicitly, the eigenvalues of A
(1)
5 , A

(2)
5 , and A

(3)
5 are {7, 4, 3, 2}, {3, 2}, and

{4, 3}, respectively. Corresponding to each distinct eigenvalue, one eigenvector

can be deduced from those of the largest A
(1)
5 . Note that the eigenvalue 3 has

multiplicity 3, this is the reason why we have 3 submatrices and also the reason
we can omit several steps in the computation. �

In the past two examples, we have seen that the Householder transformation
transfers an irreducible matrix into a reducible tridiagonal one. This is
reasonable as explained before, due to the multiplicity of eigenvalues. Note
that the Householder transformation is a unitary one and hence keeps the
Hermitizability (symmetrizability), and furthermore the spectrum. By
[5; Corollary 6], for the Hermitizability of a tridiagonal matrix, the matrix can
be reducible. This property is remarkable since then for which, the Perron–
Frobenius theorem may not be true. Therefore, the same theorem may also not
true for Hermitian matrix.

To conclude this section, we mention that in practice, for improving the
efficiency of computations, one may adopt some artistic design for Algorithms 3
and 4. See for instance [15; pp. 106–108]. See also [15; pp. 582, 583] in particular,
for some analysis and algorithms on Householder transformation. Besides, refer
to [13] for concurrent algorithms.

Computing top eigenpairs of Hermitizable matrix 357

3 Sub-maximal eigenpair

In this section, we introduce two approaches to compute the submaximal (or
its next) eigenpair. For the first one, we need the following result.

Lemma 10 Let A be Hermitian. Denote by (λ0, g0) its maximal eigenpair
(λmax, gmax) with λ0 > 0 and gH0 g0 = 1. Define

A1 = (I − g0gH0)A. (3)

Then A1 is also Hermitian.

Proof We need to prove that A1 = AH1 . Equivalently,

g0g
H
0 A = AHg0g

H
0 .

First, we have

g0g
H
0 A = g0g

H
0 A

H (since A = AH)

= λ̄0g0g
H
0 (since Ag0 = λ0g0 =⇒ gH0 A

H = λ̄0g
H
0)

= λ0g0g
H
0 (since the spectrum of A is real).

Next,
AHg0g

H
0 = Ag0g

H
0 (since A = AH)

= λ0g0g
H
0 (since Ag0 = λ0g0).

We have thus proved the required assertion. �

We now consider a simple example. Let

Q =

−1 1

2 −3
. . . 0

. . .
. . .

. . .

0 . . .
. . . 1

2 −3

∈ R8 × R8.

Since the symmetrizing measure of Q is µk = 2−k+1, k = 1, . . . , 8, we have

Q sys = Diag(µ)1/2QDiag(µ)−1/2 =

−1
√

2
√

2 −3
. . . 0

. . .
. . .

. . .

0 . . .
. . .
√

2
√

2 −3

∈ R8 × R8.

358 Mu-Fa CHEN et al.

Example 11 Define A = Qsys + 3 I. Then the eigenvalues of A are as follows:

λmax = 2.99799, −2.63352, 2.50514, −2.07511,

1.79552, −1.22867, .847221, −.208572,

and the maximal eigenvector g0 is as follows:

gmax = (.715152, .504673, .354704, .247264,

.169471, .111997, .0679521, .0320544)∗.

We are now going to study the sub-maximal eigenpair of A. Actually, there
are at least two approaches to do the work: the deflation technique and the
optimal search approach, to be studied below.

Deflation technique

First, we use the known deflation technique introduced in [12; Theorem 2.2].
That is, studying the matrix A1 defined by (3). With g0 just obtained above,
by (3), the matrix A1 takes the following form:

.466701 .332185 −.760492 −.530139 −.363349 −.240124 −.145691 −.0687252

.332185 −.763572 .877545 −.374111 −.25641 −.169452 −.102812 −.0484984
−.760492 .877545 −.377192 1.15127 −.180215 −.119098 −.0722602 −.0340866
−.530139 −.374111 1.15127 −.183296 1.28859 −.083023 −.0503726 −.0237618
−.363349 −.25641 −.180215 1.28859 −.0861034 1.35731 −.0345246 −.0162859
−.240124 −.169452 −.119098 −.083023 1.35731 −.0376049 1.3914 −.0107628
−.145691 −.102812 −.0722602 −.0503726 −.0345246 1.3914 −.0138432 1.40768

−.0687252 −.0484984 −.0340866 −.0237618 −.0162859 −.0107628 1.40768 −.00308039

,

which is symmetric by Lemma 10. The eigenvalues of A1 are as follows:

− 2.63352, 2.50514, −2.07511, 1.79552, −1.22867,

0.847221, −0.208572, −1.33596 · 10−15.

Hence, λmax(A1) = 2.50514. In other words, the submaximal eigenvalue of A
now becomes the maximal one of A1 (cf. [12]). We remark that at this point,
the condition λmax(A1) > 0 is necessary. Otherwise, a shift of A is required.

By Lemma 10, we now come back to the starting point treated in Section
2. By using the Householder transformation, it follows that A1 is isospectral to
the following tridiagonal matrix:

T =

.466701 1.08875

1.08875 .852645 1.49569 0
1.49569 −.727517 1.21056

1.21056 .38967 1.44937

1.44937 −.592352 1.12888

1.12888 −.147293 1.25861

0 1.25861 −1.0249 .333798

.333798 −.214945

.

Computing top eigenpairs of Hermitizable matrix 359

We have thus reduced our problem to the setup treated in [7].
From the discussion above, it is clear that the Householder transformation

can also be used to study the submaximal eigenpair, provided the given matrix
is not sparse. However, at the moment, we are not in such a case. Hence, it
is too heavy to use the transformation again for computing the submaximal
eigenpair, since then the sparse property of A is lost. Fortunately, we have a
different approach given in the next part.

Optimal search approach

Actually, in the present situation, there is an easier way to handle with this
problem, which uses the main advantage of the (symmetric) tridiagonal matrix.
Following [1; p. 146], we adopt the method of bisection. To fix the notation,
as before, let A ∼ (ak, ck, bk)

N
k=1. Throughout the remainder of this section,

assume that A is irreducible (i.e., ak+1bk > 0).

Method of bisection

To state the method, we need some notation. Define

s1(α) = c1 − α,

s2(α) =

 c2 − α−
b21

s1(α)
, if s1(α) 6= 0,

−ε (0 < ε� 1), if s1(α) = 0,

sk(α) =

ck − α−

b2k−1
sk−1(α)

, if sk−1(α)sk−2(α) 6= 0,

ck − α, if sk−2(α) = 0,

−ε (0 < ε� 1), if sk−1(α) = 0.

Next, define

γ(α) = #{sk(α) > 0, k = 1, . . . , N}.

Then, by [1; p. 142, (2.16) and Theorem 2.1; p. 146, (2.23) and the remark below
it], we have the following result.

Lemma 12 The number of eigenvalues of A on [α,∞) equals γ(α).

The application of the bisection method, given in the remainder of this
section, is mainly based on Lemma 12. To state an algorithm, we need a little
preparation. Define

η = max
{

min
16i6N

(ci − ai − bi), min
16i6N

(ci − ai+1 − bi−1)
}
, b1 := 0, aN+1 := 0.

In the present setup, there are N distinct eigenvalues, listed as

λ1 > · · · > λN .

360 Mu-Fa CHEN et al.

By Gershgorin Circle Theorem for the spectral radius, we have λN > η. To study
the top eigenpairs of A, we start at the top eigenvalues. The computation goes
one by one of the eigenvalues. The computation of (λ1, g1) was done in [7].
Starting from which, we study the subsequent top eigenvalues. For instance,
based on λ1 and η, we can compute λ2 by using the bisection method. The
algorithm given below consists of two parts. The first one is constructing an
initial interval (β2, β1) for the bisection method. The second one is the standard
sequent search of the method.

Algorithm 13 Let η be defined as above. Suppose that λk−1 (k > 2) is given
and we are going to compute λk.

Step 1 Define

ξ0 = λk−1, ξ1 =
1

N − k + 1
[(N − k)ξ0 + η],

ξm = max{3ξm−1 − 2ξm−2, η}, m > 2.

Compute γ(ξm) successively until for the first m = m0 such that γ
(
ξm0

)
> k.

Then take [β2, β1] = [ξm0 , ξm0−1] as the initial interval for using the method of
bisection.

Step 2 Set z = (β2 +β1)/2 and compute γ(z). We update the test interval by
making the following changes, step by step. In details, if γ(z) > k, then replace
β2 by z; and otherwise replace β1 by z :

γ(z) Change

> k β2 → z

= k − 1 β1 → z

Repeating the recursive procedure until the outputs are the same up to six
digits of precision, and γ takes value k at the final tested point.

Because
2−24 ≈ 5.96046× 10−8,

for the six/seven digits of precision, the method of bisection requires about 24
times of steps (tests), independent of the matrix size N. Of course, at each step,
in computing γ(α), it requires N times of computations. Hence, the complexity
for using the method of bisection is O(N).

The second (submaximal) eigenpair

(a) We now return to the matrix A given by Example 11. Keeping λmax(A) =
2.99799 in mind and using the method of bisection, after 16 steps, the outputs
are the same up to six digits of precision, we obtain the submaximal eigenvalue
≈ 2.50514.

(b) Next, we compute the submaximal eigenvector using the shift inverse
iteration. Recall that in the present tridiagonal situation, we have the more or

Computing top eigenpairs of Hermitizable matrix 361

less explicit Thomas algorithm for solving the required linear equation (cf. [7]).
By (a), we can fix the shift to be z = 2.50514− ε (ε = 10−8 for instance). Here
and in what follows, the small modification ε is for avoiding the degeneration
in using the shift inverse iteration, and also for avoiding the next eigenvalue.
Note that the maximal eigenvector of A is

gmax = (22.3106, 15.7443, 11.0657, 7.71389, 5.28698, 3.49398, 2.1199, 1)∗.

Its normalized vector is

g = (.715152, .504673, .354704, .247264,

.169471, .111997, .0679521, .0320544)∗.

Our initial v0 is chosen to be

v0 := g − 1
g∗1

(then v0 ∈ Span(g)⊥)

= (.261281, .0508014, −.0991675, −.206607,

− .284401, −.341874, −.385919, −.421817)∗.

After one iteration, the output of the computation is as follows:

g2 := (.341037, .121815, −.125255, −.343691,

− .483561, −.512889, −.424972, −.239907)∗.

This is checked by using the second iteration, its output is exactly the same. A
simpler way to check this conclusion is simply using the eigenequation: Ag2 =
λ2g2, where λ2 = 2.50514. Therefore, g2 can be regarded as the submaximal
eigenvector as we required.

The third (next to the submaximal) eigenpair

To conclude this section, we remark that the same method can also be used to
compute the subsequent eigenpairs. Here we mention shortly the computation
for the next to the submaximal eigenpair for the same example as above.
Rewrite λ1 = λmax(A). Then we have known the eigenpairs (λ1, g1) and (λ2, g2).
We are now going to compute the next one (λ3, g3). By using the method
of bisection above, we obtain λ3 = 1.79552. Now, to apply the shift inverse
iteration, choose shift z = 1.79552− ε. For the initial vector v0, we choose the
form

v0 = (1, x, x, x, y, y, y, 1.1)∗

with x and y determined by the conditions v0 ⊥ g1 and v0 ⊥ g2:

x = −.753323, y = .238242.

Here, the components 1 and 1.1 in v0 are chosen randomly. If these random
numbers are replaced by x and y, respectively, then the homogeneous equations

362 Mu-Fa CHEN et al.

have only trivial solution x = y = 0. In one step (iteration), we obtain the
required eigenvector

g3 = (−.350163, .0506296, .414444, .475559,

.189337, −.235171, −.487917, −.3843)∗.

To conclude this section, we mention that Algorithm 13 can be naturally
extended to concurrent computing, simply replacing the bisection method by
the equisection one, which is a generalization of the method of bisection in the
optimization theory.

4 Remarks and proofs

This section is mainly devoted to the analytical aspect of the algorithms
introduced in the previous sections. Besides, it also provides a detailed
exploration on [5; Theorem 24]. At the end of this section, we present a
simplified proof for a key result concerning with the isospectral property of an
Hermitizable tridiagonal matrix and a birth-death one (see Theorem 14 below).

Remark on Algorithm 1

Before moving to the main text, let us make a remark on Algorithm 1 (1). Let
A = (aij) be a given complex matrix. By (1), we have∑

i

µiaij = µj
∑
i

āji.

Equivalently, (µA)(j) = (µDiag(Ā1))(j). From this, we obtain µB = 0 as stated
in the algorithm.

Proof of Algorithm 4

Let g(k) 6= 0 be the eigenvector of Ak (0 6 k < N) with A0 = A, corresponding
to a fixed eigenvalue λ:

Akg
(k) = λg(k) ⇐⇒ (UkAk−1U

H
k)g(k) = λg(k) ⇐⇒ Ak−1(U

H
k g

(k)) = λ(UHk g
(k)).

This implies that g(k−1) = UHk g
(k). Then the last assertion in the algorithm

follows. Furthermore,

g(0) = UH1 g
(1) = UH1 U

H
2 g

(2) · · · = UH1 U
H
2 · · ·UHN−1g(N−1).

In other words, the eigenvector g = g(0) of A corresponding to the eigenvalue λ
can be expressed by

g =

(N−1∏
k=1

UHk

)
g(N−1).

Computing top eigenpairs of Hermitizable matrix 363

Thus, the recursive formula of {Vk} given in Algorithm 4 is an alternative
algorithm of the product above:

V1 = UH1 , V2 = UH1 U
H
2 = V1U

H
2 , VN−1 =

N−1∏
k=1

UHk = VN−2U
H
N−1. �

Remark on Algorithm 13

First, we explain the main idea in the special case that k = 2. By assumption,
ξ0 = λ1 and λN > η give us the upper and lower bounds of the eigenvalues
{λj}Nj=1, respectively. The left-endpoint ξ1 of the test interval should be an
approximation of λ2, even a rough approximation is still okay since the
convergence of the bisection method is quite fast. Actually, a little smaller
one is better since then we can ignore a subinterval on the left. If so, we do not
need the double extension of the test interval on the left-hand side. For this,
we may assume that λN = η. Then there are exact N − 2 eigenvalues located
inside of the interval [η, ξ0]. Suppose that these eigenvalues are located on N−2
equal points. Because the length of each equal division is (ξ0− η)/(N − 1), the
submaximal eigenvalue λ2 should be located around

ξ0 −
1

N − 1
(ξ0 − η) =

1

N − 1
((N − 2)ξ0 + η).

That is the ξ1 given in the algorithm corresponding to k = 2. Very often,
ξ1 is enough as the left-end point of the initial interval. If not, we need the
subsequence {ξm}m>2. To which, the construction is as follows. Suppose that
we are at ξm−1. Then choose ξm so that

ξm−1 − ξm = 2(ξm−2 − ξm−1).

This gives us ξm as in part (1) of the algorithm, in terms of the natural control by
η. The factor 2 used above is optimal, simply based on the method of bisection.

For general k > 2, suppose that λk−1 is known and we are going to compute
λk. In this case, the first k−2 eigenvalues λ1, . . . , λk−2 play no role. The number
of the eigenvalues decreases. Therefore, we need to make the following change:

N → N − k + 2, λ1 → λk−1,

in the formula just obtained for k = 2. We have thus arrived at the expression
of ξ1 presented in part (1) of the algorithm. The change from k = 2 to general
k > 2 stated in part (2) of the algorithm is now obvious.

Proof of reduction to tridiagonal matrix

We now come back to the main text. In the matrix form, the Hermitizability
of A can be expressed as

Diag (µ)A = AH Diag (µ)⇐⇒ Diag (µ)ADiag (µ)−1 = AH (4)

364 Mu-Fa CHEN et al.

(actually, it is better to rewrite Diag (µ)α as Diag (µα) in computation). As
used in parts (2) and (3) in Algorithm 3, it is easy to see that

A is Hermitizable⇐⇒ H := Diag(µ1/2)ADiag(µ−1/2) is Hermitian. (5)

The assertion is clearly important since then every property and algorithm for
the Hermitian matrix can be transferred to the Hermitizable one.

Next, for the Hermitian H, as shown in Section 2, there exists a unitary
matrix U, as a product of some Householder transformations {Uk} (unitary),
such that

T := UHUH becomes a tridiagonal, real, and symmetric matrix. (6)

As also shown in Section 2, the tridiagonal matrix T can be blocked. In other
words, T may be reducible, it can be divided into several irreducible blocks, say
T = Diag({Tj}), where Tj is irreducible tridiagonal, real, symmetric matrix. In
general, the sum of some row of T can be positive and so is not a Q-matrix. Let
m = supk(T1)(k) <∞ (which may be a condition when the matrix is infinite).
Then the sum of each row of T −mI is not positive, so is each row of Tj −mI.
Fix j for a moment. By [5; Theorems 15 and 16], there exists a positive nearly
(Tj −mI)-harmonic function hj such that

Qj := Diag(h−1j)(Tj −mI)Diag(hj)

is a birth-death Q-matrix. In particular, Tj −mI and Qj are isospectral. To
return to the original setup, combining the family {hj} into a single vector
h with the same ordering as the blocking of {Tj}. Then we can combine the
family {Qj} into a single one with the same ordering just mentioned, denoted
by Q = Diag({Qj}). Furthermore, from the last formula, we obtain

Q = Diag(h−1)(T −mI)Diag(h).

Equivalently,
Diag(h−1)TDiag(h) = Q+mI =: Q(m). (7)

Combining (5)–(7) together, we obtain the following similar transformation of
A:

Diag(h−1)UDiag(µ1/2)ADiag(µ−1/2)UHDiag(h) = Q(m).

Set

M = Diag(µ−1/2)UHDiag(h)⇐⇒M−1 = Diag(h−1)UDiag(µ1/2). (8)

It follows that
M−1AM = Q(m) ⇐⇒ A = MQ(m)M−1.

Therefore,

Ag = λg ⇐⇒MQ(m)M−1g = λg ⇐⇒ Q(m)(M−1g) = λ(M−1g).

Computing top eigenpairs of Hermitizable matrix 365

By [5; Theorem 10], with the inner product

〈f, g〉 := (Mf,Mg)µ

and f̃ := M−1f : L2(E,µ)→ L2(E, 〈·, ·〉), we have

(f, g)µ = 〈f̃ , g̃〉 and (Af, g)µ = 〈Q(m)f̃ , g̃〉. (9)

For this specific M defined by (8), we have here more explicit formulation. Note
that

(Mf,Mg)µ = (Diag(µ−1/2)UHDiag(h)f,Diag(µ−1/2)UHDiag(h)g)µ

= (UHDiag(h)f, UHDiag(h)g)dx

= (Diag(h̄)Diag(h)f, g)dx (since UUH = I)

= (f, g)µ̃,

where µ̃ = |h|2dx and dx means the uniform measure in the discrete case:
µk ≡ 1. More precisely, here in the first equality above, we have used the fact
that

(Diag(µ−1/2)f,Diag(µ−1/2)g)µ = (Diag(µ1/2)f,Diag(µ−1/2)g)dx

= gHDiag(µ−1/2)Diag(µ1/2)f

= (f, g)dx,

and in the second equality, we have used the fact that

(UHf, UHg)dx = gHUUHf = (f, g)dx.

Hence, we have
〈f̃ , g̃〉 = (Mf̃,Mg̃)µ = (f̃ , g̃)µ̃.

Therefore, we indeed have L2(E, 〈·, ·〉) = L2(E, µ̃). Thus, for the mapping f̃ :=
M−1f : L2(E,µ)→ L2(E, µ̃), by (9), we have the isometry

(f, g)µ = (f̃ , g̃)µ̃,

and furthermore, the isospectral property

(Af, g)µ = 〈Q(m)f̃ , g̃〉 = (Q(m)f̃ , g̃)µ̃.

Here is our final conclusion.

Theorem 14 For given Hermitizable A, define M by (8). Then the mapping

f̃ := M−1f from the complex L2(E,µ) to the real L2(E, µ̃) is an isometry:

(f, g)µ = (f̃ , g̃)µ̃. Furthermore, it owns the isospectral property: (Af, g)µ =

(Q(m)f̃ , g̃)µ̃.

366 Mu-Fa CHEN et al.

Remark on the computational complexity

Now, we mention the computational complexity of the algorithms used in the
paper. The quasi-Hermitizing procedure in (2) requires 2N2 multiplications.
The computation for the maximal eigenpair of the tridiagonal matrix using the
method given in [7], as well as the one of bisection plus Thomas’ algorithm for
computing the other eigenpairs requires only O(N) multiplications. The main
work we need is Householder transformation which requires 2N3/3 multiplica-
tions. Refer to [18; p. 244].

5 Practical implementation on large scale matrices

In this section, we present some practical implementation of our algorithms on
large scale matrices. For counting the number of computational operations, the
additions and the multiplications are all collected together, and denote it by
‘flops’. All experiments were performed by MatLab on a personal computer
with the configuration: Intel(R) Xeon(R) CPU E5-2630 v3 @2.40 GHz and
32 GB of RAM.

Householder-based tridiagonalization

Assuming that the Hermitized Â of the Hermitizable matrix A is at hand, we
are going to propose the details of the Householder tridiagonalization of the
Hermitian matrix Â.

We use the following notation. Let N, k (6 N), and j (6 N) be given
three positive integers. Denote by IN the identity matrix of order N, and by
ek the kth column of the identity matrix. Next, for given 0 < k < N, an
N -dimensional vector x, and an N ×N matrix A, set

• x(k + 1 : N) : the vector of order N − k obtained from x by deleting its
first k entries;

• a(k + 1, j) : the entry of A at the (k + 1)th row and the jth column;

• a(k + 1 : N, j) : the vector of order N − k obtained from A by deleting
its first k entries of the jth column;

• A(k+1 : N, k+1 : N) : the (N−k)× (N−k) submatrix of A by deleting
its first k rows and columns.

Suppose that Householder matrices U1, . . . , Uk−1 have been determined such
that if

Âk−1 = (Uk−1 · · ·U1)Â(Uk−1 · · ·U1)
H ,

then

Âk−1 =

B11 B12 0

B21 B22 B23

0 B32 B33

 ,
where B11 ∈ C(k−1)×(k−1), B12 ∈ C(k−1)×1, B21 = BH

12, B22 ∈ C, B23 ∈

Computing top eigenpairs of Hermitizable matrix 367

C1×(N−k), B32 = BH
23, and B33 = BH

33 ∈ C(N−k)×(N−k). The kth Householder
transformation is computed by

Ûk = IN−k +
vvH

α
, α = sk(b

(k)
k+1 − sk), (10a)

0 6= v = x(k)(k + 1 : N)− y(k)(k + 1 : N). (10b)

Define

Uk =
[Ik 0

0 Ûk

]
.

Then

Âk = UkÂk−1U
H
k =

B11 B12 0

B21 B22 B23Û
H
k

0 ÛkB32 ÛkB33Û
H
k

 .
Notice that it is not necessary to compute B23Û

H
k and ÛkB32, since

ÛkB32 = ‖B32‖2e1 = ske1 ∈ RN−k, B23Û
H
k = (ÛkB32)

H .

Thus, the leading k × k principal submatrix of Âk is a tridiagonal matrix. In
the calculation of Âk, it is important to exploit the Hermitian structure during
the formation of the matrix. Note that

ÛkB33Û
H
k =

(
IN−k +

vvH

α

)
B33

(
IN−k +

vvH

α

)H
= B33 +

vvH

α
B33 +

B33vv
H

ᾱ
+
vvH

α
B33

vvH

ᾱ
.

Replacing the last term on the right-hand side by the sum of half and half of
it, we obtain

ÛkB33Û
H
k = B33 + v

(
vHB33

α
+
vHB33v

2αᾱ
vH
)

+

(
B33v

ᾱ
+ v

vHB33v

2αᾱ

)
vH

= B33 + vwH + wvH , (11)

where

w =
B33v

ᾱ
+ v

vHB33v

2αᾱ
.

Since only the upper triangular portion of this matrix needs to be calculated,
the transition from Âk−1 to Âk can be accomplished in only about 4(N − k)2

flops.

Algorithm 15 (Householder-based tridiagonalization) Given an Hermitian

matrix Â ∈ CN×N , the following algorithm overwrites Â with T = UÂUH ,

368 Mu-Fa CHEN et al.

where T is tridiagonal and U = U1 · · ·UN−1 is the product of Householder
transformations.

Step 1 for k = 1 : N − 1

Step 2 x = â(k + 1 : N, k), s =
√
xHx

Step 3 v = x, v(1) = v(1)− s
Step 4 α = s(x(1)− s)
Step 5 p = Â(k + 1 : N, k + 1 : N)v/ᾱ

Step 6 w = p+ (pHv/(2ᾱ))v

Step 7 â(k + 1, k) = s ; â(k, k + 1) = â(k + 1, k)

Step 8 Â(k + 1 : N, k + 1 : N) = Â(k + 1 : N, k + 1 : N) + vwH + wvH

Step 9 end

The transition from Âk−1 to Âk totally costs about
∑N−2

k=1 4(N − k)2 flops.
This is O(N3) flops. This is implemented in Algorithm 15 by

Â(k + 1 : N, k + 1 : N) = Â(k + 1 : N, k + 1 : N) + vwH + wvH .

This main step makes the total cost of Algorithm 15 to be O(N3). This
algorithm requires 4N3/3 flops when Hermitian is exploited in calculating the
rank-2 updating as in equation (11). The matrix U is stored in factored form in

the subdiagonal portion of Â. If U is explicitly required, then it can be formed
with an additional 4N3/3 flops.

Remark that the Householder transformation here defined by (10) is
different to the traditional one given in [9, pp. 234–237, 243, 244],

Ûk = IN−k − βvvH , β =
2

vHv
, (12a)

0 6= v = x± eiθ‖x‖2ek, x = x(k)(k + 1 : N). (12b)

The differences stay at two aspects: (a) β in (12) is always set to be real, while
α in (10) may be real or complex; (b) the resulted vector of (12) is real or
complex, while the resulted vector of (10) is set real. If we use alternatively
the traditional Householder transformation (12) in Algorithm 15, then we get
a complex tridiagonal matrix. Thus, we need to generate not more than N − 1
necessary rotations to transform conjugate complex (not real) entries on upper
and down subdiagonals to real numbers.

Example 16 In this example, we reduce an Hermitian matrix to a real
symmetric tridiagonal matrix by Algorithm 15. We compare the Householder
transformation (10) with the traditional Householder transformation (12),
denoted by HR and HC, respectively. The testing matrix is produced by the
command ‘rand’ in MatLab and the elements of the matrices are chosen from
[0, 10]. More precisely, let A1 = 10 · rand(N) and A2 = 10 · rand(N), where N
is the matrix size. Then we take

A =
A1 +AT1

2
+ i · A2 −AT2

2
.

Computing top eigenpairs of Hermitizable matrix 369

Proof We apply the Householder-based tridiagonalization on A in three cases:
N = 1200, 2500, and 5000. For each case, the whole procedure is carried out
for 100 times and the average values of results are output. The numerical
results are given in Tables 1 and 2. Note that the output display format is
chosen as the scaled fixed point format with 5 digits. For instance, 4.5937e+2
represents 4.5937 × 102. Table 1 presents the average CPU times to work out
the Householder transformation. The symbols ‘CPU-U’ and ‘CPU’ refer to the
CPU times in seconds with and without constructing the unitary matrix U,
respectively. Both of them are tested by the MatLab command cputime. Table
2 displays the accuracy of the methods, in which we adopt some average errors:

• err-U: ‖UUH − I‖∞/‖U‖∞,
• err-UAU-T: ‖UAUH − T‖∞/‖A‖∞,
• err-A-UTU: ‖UHTU −A‖∞/‖A‖∞,

where U is a unitary matrix arising in the Householder transformation and I is
the identity matrix. Here, for vector x = [x1, . . . , xN]∗ and matrix A = [aij] ∈
CN×N , we define

‖x‖∞ = max
i=1,...,N

|xi| and ‖A‖∞ = max
i=1,...,N

N∑
j=1

|aij |.

Table 1 Comparison of HC and HR with respect to CPU time for Example 16

N CPU-U CPU

HC HR HC HR

1200 2.8727e+2 2.8064e+2 1.1235e+2 1.1122e+2

2500 2.8840e+3 2.8689e+3 1.1577e+3 1.1514e+3

5000 2.1321e+4 2.1264e+4 9.2617e+3 9.2376e+3

Table 2 Comparison of HC and HR with respect to accuracy for Example 16

N err-U err-UAU-T err-A-UTU

HC HR HC HR HC HR

1200 2.5599e-15 2.5140e-15 4.1728e-14 3.9616e-14 2.3152e-14 2.0504e-14

2500 3.3557e-15 3.2936e-15 7.9696e-14 7.4699e-14 4.6707e-14 3.8897e-14

5000 4.4415e-15 4.4061e-15 1.5283e-13 1.4406e-13 9.0779e-14 7.7541e-14

From the numerical results in Tables 1 and 2, we see that the performances
of HR and HC are comparable with each other. HR saves a little bit of CPU
times costed by HC. For instance, when N = 1200, HR saves 2.31% CPU times
of computing T and U together, and 1.00% CPU times of computing T, respect
to HC. Two average residual errors of HR are smaller than those of HC. Taking

370 Mu-Fa CHEN et al.

N = 1200 for instance, HR improve ‘err-U’, ‘err-UAU-T’, and ‘err-A-UTU’ by
1.79%, 5.06%, and 11.4%, respectively. These numerical results successfully
indicate the high efficiency of the proposed Householder transformation (HR),
which directly transforms an Hermitian matrix into a real tridiagonal matrix
with nonnegative subdiagonals. �

Top k eigenpairs

Now, we concentrate on computing top k eigenpairs of large scale matrices.
After Hermitizing and tridiagonalizing, we reduce an Hermitizable matrix A to
an isospectral symmetric tridiagonal matrix T. The core work of computing top
k eigenpairs of A becomes the calculation of top k eigenpairs of T.

Note that for any tridiagonal matrix T, we can find a shift m such that the
diagonal entries of T −mI are negative. Without loss of generality, we build
our algorithm on the following irreducible tridiagonal matrix:

T =

−c0 b0 0
a1

. . .
. . .

. . .
. . .

. . .

. . .
. . . bN−1

0 aN −cN

, (13)

where the sequences {bj}N−1j=0 and {aj}Nj=1 are positive and {cj}Nj=0 is non-
negative. Let

E = {j ∈ Z : 0 6 j < N + 1} (N 6∞).

We may write T ∼ (aj ,−cj , bj) for simplicity. If aj = bj−1 (j ∈ E \ {0}), then
T is symmetric.

We now present a new two-stage method of computing top k eigenpairs
of the irreducible tridiagonal matrix T. In the first stage, we compute the
largest eigenpair, denoted by (λ1, g1), of T, for instance, applying Algorithm 1
in [7]. In the second stage, we compute the other top k− 1 eigenpairs, denoted
by (λ2, g2), . . . , (λk, gk), applying Algorithm 13 in this paper and the inverse
iteration. These two stages are not separated strictly, but are jointed tightly.
For convenience, we gather above steps into Algorithm 17 with a subroutine in
Algorithm 18.

Algorithm 17 (Computing top k eigenpairs) Suppose that T ∼ (aj ,−cj , bj)
is an irreducible tridiagonal matrix of the form (13). The following algorithm
computes top k eigenpairs of T, denoted by (λ1, g1), . . . , (λk, gk).

Step 1 Let a0 = 0, bN = 0,

m = sup
j∈E

(aj + bj − cj)+, x+ = max{x, 0},

and
uj = ajbj−1, j ∈ E \ {0}.

Computing top eigenpairs of Hermitizable matrix 371

Step 2 Specific isospectral transformation. Set c̃j = cj + m (j ∈ E) and

b̃0 = c̃0. Let

b̃j = c̃j −
uj

b̃j−1
, ãj = c̃j − b̃j , 1 6 j < N, ãN =

uN

b̃N−1
.

Then the tridiagonal matrix

T̃ ∼ (ãj ,−c̃j , b̃j)

possesses the properties: both (ãj) and
(
b̃j
)

are positive, the sum of each row
equals zero except the (N + 1) th row (c̃N > ãN).

Step 3 Symmetrizing. Define the symmetric tridiagonal matrix

T sym ∼ (asymj ,−csymj , bsymj)

as follows:

csymj = c̃j (j ∈ E), asymj = bsymj−1 =
√
uj (j ∈ E \ {0}).

Step 4 Computing the maximal eigenpair. If c̃N = ãN , then T sym has the
maximal eigenvalue λsym1 = 0 with eigenvector gsym1 =

√
µ̃:

µ̃0 = 1, µ̃j = µ̃j−1
b̃j−1
ãj

, j ∈ E \ {0}. (14)

More economically,

gsym1 (0) = 1, gsym1 (j) = gsym1 (j − 1)
b̃j−1√
uj
, j ∈ E \ {0}. (15)

Otherwise, set b̃N = c̃N − ãN . The jth approximation of the maximal eigen-
pair is computed by Algorithm 18. Then (−zj , v(j)) converges to the maximal
eigenpair of T sym:

λsym1 = − lim
j→∞

zj , gsym1 = lim
j→∞

v(j).

Step 5 Computing the subsequent eigenpairs. Compute k − 1 eigenvalues,
λsym2 , . . . , λsymk , of T sym by the bisection method (Algorithm 13).

For each j (2 6 j 6 k), compute the eigenvector gsymj corresponding to

λsymj of T sym, by the inverse iteration with the shift λsymj and an initial vector

v(0). The initial vector v(0) is generated as follows: choose a vector x(j) /∈
span{gsym1 , . . . , gsymj−1}, and compute v(0) :

w(0) = xj −
j−1∑
i=1

[(gsymi)Hxj]gi, v(0) =
w(0)√

(w(0))∗w(0)
.

372 Mu-Fa CHEN et al.

The modified version of the Gram-Schmidt method [9, pp. 254, 255] is used in
the practical implementation.

Step 6 Returning to the original top k eigenpairs. To go back to the original
matrix T, the top k eigenpairs are

λj = λsymj +m, gj = diag(hµ)gsymj ,

where diag(hµ) is the diagonal matrix having diagonal elements (hµj) :

hµ0 = 1, hµj = hµj−1

√
uj

bj−1
, j ∈ E \ {0}. (16)

Algorithm 18 (The jth approximation of the maximal eigenpair) With

computed ãj ’s and b̃j ’s, this algorithm computes the jth approximation of the

maximal eigenpair: (zj , v
(j)).

Step 1 Define the upper triangle matrix (Mij) and the vector (Φi) as follows:

Mii = 1, Mij = Mi,j−1
ãj

b̃j−1
= Mi,j−1

uj

b̃2j−1
, 1 6 i+ 1 6 j 6 N,

Φi =
∑
i6j6N

Mij

b̃j
, 0 6 i 6 N.

Step 2 Choose

w(0) =
√

Φ, v(0) =
w(0)

√
w(0)∗w(0)

.

Step 3 For a computed vector v(j) (j > 0), compute ζj :

ζj = sup
06n6N

1√
b̃nv

(j)
n −

√
ãn+1v

(j)
n+1

(n∑
i=0

v
(j)
i

√
Min

b̃i

)
, j > 0,

with assuming ãN+1 = 0.

Step 4 With setting zj = 1/ζj , solve w(j+1):

(−T sym − z(j)I)w(j+1) = v(j).

Step 5 Compute v(j+1):

v(j+1) =
w(j+1)

√
w(j+1)∗w(j+1)

.

Remark that if c̃N = ãN , the way of computing the maximal eigenpair,
(λ1, g1), in Algorithm 17, is different from that in Algorithm 1 in [7]. But their

Computing top eigenpairs of Hermitizable matrix 373

results are the same: if c̃N = ãN , then Algorithm 17 shows that T has the
maximal eigenvalue λ1 = m with eigenvector g1 = h:

h0 = 1, hj = hj−1
b̃j−1
bj−1

, j ∈ E \ {0}. (17)

These two algorithms are coincided since

hµj =
hj√
µ̃j
, j ∈ E \ {0}.

With applying equations (16) and (17), one can simplify the computation of
gsym1 in (14) into the economical formula in (15).

One important point is that the non-symmetric matrix T̃ and the symmetric
matrix T sym are coupled together in Algorithm 17. This coupling idea has been
introduced in [5; Section 4] and [7; Section 4.4]. For a short explanation, the

spectrum of T −mI is transformed (in Step 2) to the one of T̃ , which is a birth-

death Q-matrix (see [7; Definition 7]); and then the non-symmetric matrix T̃
is symmetrized to a symmetric matrix T sym in Step 3. The maximal pair is
computed by coupling T̃ and T sym; see Algorithm 18 and Step 4 of Algorithm
17. The subsequent eigenpairs are computed by applying Algorithm 13 and the
iteration method on T sym. We have two reasons: one is that T sym is symmetric
and has eigenvectors which are orthogonal to each other; another one is that
T sym has been generated during the computation of the maximal eigenpairs,
and it does not rise extra computational flops. At last, the top k eigenpairs are
generated for the original matrix T.

Clearly, we do not have to go to the last Step 6 every time when using
Algorithm 17. Actually, for very large N, this step is risky. Especially for
non-symmetric matrices, the overflow happens very often. This is due to the
limitation of the accuracy of the machine. At this time, if you still want to
calculate, then one may use the above iterative formula (17). Because the

sequences
{
b̃k
}

and {bk} are known, and so is the ratio b̃j/bj which does not
overflow (see [6] for more related details on Hermitizable complex tridiagonal
matrices).

Example 19 In this example, we compute top k eigenpairs of a symmetric
tridiagonal matrix of the form (13),

T ∼ (aj ,−cj , bj) ∈ RN×N ,

where aj and cj are random positive integers which are less than or equal to N,
generated by the command ‘randi’ in MatLab, and bj−1 = aj for j = 1, . . . , N.

Proof We apply Algorithm 17 and the MatLab functions, eig and eigs, to
compute top k eigenvalues and corresponding eigenvectors of T, respectively.
For comparison, we set k = 3, and N = 5000, 10000, 15000, 20000. We run the
whole process of each case for 1000 times and take the average numerical results.

374 Mu-Fa CHEN et al.

Note that eig computes all eigenpairs, and eigs is called by the command
eigs(T,k,’LA’). For the iterative methods (Algorithm 17 and eigs), the
convergence tolerance is set as tol = 10−10 and the maximal number of
iterations is 100.

Let V denote the matrix consisting of eigenvectors and D the diagonal
matrix with eigenvalues on the diagonal. The numerical results are given in
Table 3, in which ‘CPU’ refers to the CPU time in seconds, ‘Res’ represents the
relative residual error ‖TV − V D‖∞/‖T‖∞, and ‘NaN’ refers to no answer.

Table 3 Numerical results of Example 19: CPU times and residual errors

N Algorithm 17 eigs eig

CPU Res CPU Res CPU Res

5000 2.2367 4.2206e-11 6.4821e-1 3.3668e-12 2.1670 6.5837e-15

10000 6.8966 7.7877e-11 9.3459e-1 3.4931e-12 5.1046 7.1151e-15

15000 7.9176e+1 5.8389e-11 2.4787 3.5428e-12 4.5517e+1 7.1183e-15

20000 3.6226e+1 9.0249e-11 3.3654e-1 NaN 2.2656e+1 6.7109e-15

From the numerical results, it follows that Algorithm 17 and the MatLab
function eig correctly compute the top 3 eigenpairs in all cases, and they cost
almost same CPU times. The MatLab function eigs successfully obtains the
top 3 eigenpairs in the first three cases. But whenN = 20000, it fails to converge
at one time of 1000 tests and no result is obtained. Thus, we can conclude that
the proposed new method is more reliable than the MatLab function eigs.
Moreover, Algorithm 17 also has the comparable level of accuracy with the
MatLab function eigs in the first three cases. �

Example 20 In this example, we compute top k eigenpairs of an Hermitizable
tridiagonal matrix of the form (13),

T ∼ (aj ,−cj , bj) ∈ RN×N ,

where aj ≡ a, bj ≡ b, and cj ≡ c are positive. We test the following two cases:

Case 1 a = 2, b = 1, and c = 3;

Case 2 a = 1, b = 2, and c = 3.

Proof Let (λexactj , gexactj) and (λj , gj) denote the exact and computed eigen-
pairs of T ∼ (a,−c, b), respectively. They are defined by

λexactj = 2
√
ab cos

jπ

N + 1
− c,

gexactj (i) =

(√
a

b

)i
sin

ijπ

N + 1
, i = 1, . . . , N.

For comparison, we define the error of the computed eigenvalues by

ERR = max
j=1,...,k

|λj − λexactj |.

Computing top eigenpairs of Hermitizable matrix 375

Let sj denote the sign changing time of the jth eigenvector and the vector
SCT = [s1, . . . , sk] denote the sign changing times of each of the top k eigen-
values. Remember that the jth exact eigenvector has j − 1 times of sign
changing.

In the two cases listed above, we set k = 3 and apply Algorithm 17 and
the MatLab functions, eig and eigs, to compute the top k eigenvalues and
corresponding eigenvectors of T, respectively. Note that eig computes all eigen-
pairs and eigs is called by the command eigs(T,k,’LR’). For the iterative
methods, Algorithm 17 and eigs, the convergence tolerance is set as tol = 10−8

and the maximal number of iterations is 300.
From the numerical results in Tables 4 and 5, we see that Algorithm 17

correctly computes the top k eigenpairs in all cases; but both eig and eigs

fail in most of cases, even when the size of T is very small. We underline the
values of ERR which are larger than 10−6, and also underline the values of
SCTs if they are not correct. The notation ‘–’ means that it is not necessary
to compute.

Table 4 Numerical results of Example 20: errors of eigenpairs in Case 1

N Algorithm 17 eigs eig

ERR SCT ERR SCT ERR SCT

51 4.4409e-16 [0,1,2] 3.4233e-7 [0,1,2] 6.7230e-11 [0,1,2]

52 3.6082e-16 [0,1,2] 5.8039e-6 [0,1,2] 1.4893e-10 [0,1,2]

83 1.8874e-15 [0,1,2] 5.0430e-5 [0,1,2] 5.4506e-7 [0,1,2]

84 1.4710e-15 [0,1,2] 1.0336e-2 [0,1,1] 1.0819e-6 [0,1,2]

103 1.3323e-15 [0,1,2] – – 1.0916e-4 [0,1,2]

104 1.9706e-15 [0,1,2] – – 5.6538 [102,102,103]

10000 3.3307e-16 [0,1,2] – – – –

20000 1.6037e-13 [0,1,2] – – – –

Table 5 Numerical results of Example 20: errors of eigenpairs in Case 2

N Algorithm 17 eigs eig

ERR SCT ERR SCT ERR SCT

44 1.6653e-16 [0,1,2] 1.8505e-7 [0,1,2] 4.1633e-16 [0,1,2]

45 2.7756e-16 [0,1,2] 5.6594e-6 [0,1,2] 6.6613e-16 [0,1,2]

104 1.9706e-15 [0,1,2] 1.0453e-3 [0,1,2] 1.0112e-11 [0,1,2]

105 1.8041e-15 [0,1,2] 7.7746e-3 [0,2,2] 3.3805e-11 [0,1,2]

106 1.5821e-15 [0,1,2] – – 1.2713e-11 [1,3,2]

160 9.9920e-16 [0,1,2] – – 3.2369e-9 [30,33,36]

161 7.4940e-16 [0,1,2] – – 5.6561 [160,160,157]

10000 3.3307e-16 [0,1,2] – – – –

20000 1.6037e-13 [0,1,2] – – – –

376 Mu-Fa CHEN et al.

Now, we give a detailed analysis as follows.

• Algorithm 17 computes correctly the top k eigenpairs in both Cases 1
and 2. The maximal errors of the computed top k eigenvalues are always less
than 10−6, and the times of sign changing of the computed eigenvectors are also
correct, that is, SCT = [0, 1, 2].

• eigs computes correctly the top k eigenpairs when N 6 51 in Case 1
(or N 6 44 in Case 2). The maximal errors of the computed top k eigenvalues
become larger than 10−6 when N > 52 in Case 1 (or N > 45 in Case 2).
Moreover, the times of sign changing of the computed eigenvectors become
wrong when N > 84 in Case 1 (or N > 105 in Case 2).

• eig computes correctly the top k eigenpairs when N 6 83 in Case 1 (or
N 6 105 in Case 2). The maximal errors of the computed top k eigenvalues
become larger than 10−6 when N > 84 in Case 1 (or N > 161 in Case 2).
Moreover, the times of sign changing of the computed eigenvectors become
wrong when N > 104 in Case 1 (or N > 106 in Case 2).

For Case 1 with N = 84, the signs of the top k = 3 exact and computed
eigenvectors are shown in Figs. 2–5. In Fig. 2 (a)–(c), the signs of the first,
second and third maximal exact eigenvectors (from left to right) are drawn; and
the times of sign changing are 0, 1 and 2, respectively. That is SCT = [0, 1, 2].
In Fig. 2 (d)–(f), three parts of the third eigenvector are drawn. The two points
at which the signs of the third eigenvector change are shown in Fig. 2 (d) and
(e).

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

(a) First eigenvector (b) Second eigenvector (c) Third eigenvector

(d) First part from 1 to 34 (e) Second part from 34 to 58 (f) Third part from 64 to 84

Fig. 2 (a)–(c) The sign of the top k = 3 exact eigenvectors of T ∼ (2,−3, 1) with N = 84.

(d)–(f) Three parts of the third exact eigenvector.

Computing top eigenpairs of Hermitizable matrix 377

Figures 3–5 indicate the signs of the top 3 eigenvectors, computed by
Algorithm 17, eigs, and eig, respectively; and the SCTs are [0, 1, 2], [0, 1, 1],
and [0, 1, 2]. From Fig. 4, it follows that the sign of the third eigenvector
computed by eigs is not correct.

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

(a) First eigenvector (b) Second eigenvector (c) Third eigenvector

Fig. 3 The sign of the top k = 3 eigenvectors computed by Algorithm 17 of T ∼ (2,−3, 1)

with N = 84

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

(a) First eigenvector (b) Second eigenvector (c) Third eigenvector

Fig. 4 The sign of the top k = 3 eigenvectors computed by eigs of T ∼ (2,−3, 1) with

N = 84

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

10 20 30 40 50 60 70 80

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

(a) First eigenvector (b) Second eigenvector (c) Third eigenvector

Fig. 5 The sign of the top k = 3 eigenvectors computed by eig of T ∼ (2,−3, 1) with

N = 84

As in Example 19, we list the CPU times (‘CPU’) and the relative residual
errors (‘Res’) of Cases 1 and 2 in Tables 6 and 7, respectively. Comparing these
two tables with Tables 4 and 5, respectively, it follows that the error estimates
by using ‘ERR’ plus ‘SCT’ are more precise than using ‘Res’. Note that the
CPU times are obtained by running the programs for 100 times and taking the

378 Mu-Fa CHEN et al.

Table 6 Numerical results of Example 20: CPU times and residual errors in Case 1

N Algorithm 17 eigs eig

CPU Res CPU Res CPU Res

51 1.5200e-2 2.7062e-16 3.0200e-2 3.2479e-11 4.3000e-3 1.1148e-15

52 8.9000e-3 3.1456e-16 4.6400e-2 7.6735e-11 4.7000e-3 1.1125e-15

83 1.5500e-2 6.0137e-16 6.9300e-2 3.4396e-11 1.5700e-2 1.5400e-15

84 1.5800e-2 6.1987e-16 4.7600e-2 1.9611e-10 1.8100e-2 1.6283e-15

103 3.0800e-2 7.0777e-16 – – 2.4100e-2 2.6738e-15

104 3.4000e-2 6.5688e-16 – – 2.7500e-2 7.5496e-15

Table 7 Numerical results of Example 20: CPU times and residual errors in Case 2

N Algorithm 17 eigs eig

CPU Res CPU Res CPU Res

44 1.2900e-2 1.7810e-16 2.8100e-2 3.1130e-12 3.6000e-3 1.8735e-15

45 8.9000e-3 3.1456e-16 4.6400e-2 7.6735e-11 4.7000e-3 1.1125e-15

104 3.4500e-2 6.8695e-16 9.9700e-2 7.5717e-11 2.4300e-2 3.2867e-15

105 3.0000e-2 6.1525e-16 6.7300e-2 2.5779e-11 2.0000e-2 1.7139e-15

106 3.2800e-2 6.2913e-16 – – 2.6600e-2 1.5451e-15

160 3.9500e-2 4.1402e-16 – – 1.2860e-1 1.7278e-15

161 3.9900e-2 4.0246e-16 – – 1.2930e-1 2.5905e-15

average values. The relative residual errors of Algorithm 17 are less than
those of eigs and eig. Algorithm 17 costs less CPU times than eigs and has
comparable speed with eig.

From above numerical results, we conclude that Algorithm 17 performs
better than eigs and eig, and is very feasible and reliable to compute the top
k eigenpairs of large scale matrices. �

Acknowledgements We are grateful to two anonymous referees for providing many useful

comments and suggestions. Acknowledges are given to Ying-Chao Xie and Yue-Shuang Li for

fruitful discussion and valuable suggestions. For the algorithms in the paper, a package in

MatLab is preparing by Jia and Pang and should appear soon. This work was supported in

part by the National Natural Science Foundation of China (Grant Nos. 12090011, 11771046,

11771188, 11771189), the National Key R & D Program of China (No. 2020YFA0712900),

the Natural Science Foundation of Jiangsu Province (Grant No. BK20171162), the project

from the Ministry of Education in China, and the Project Funded by the Priority Academic

Program Development of Jiangsu Higher Education Institutions.

Computing top eigenpairs of Hermitizable matrix 379

References

1. Cao Z H. Matrix Eigenvalue Problem. Shanghai: Shanghai Scientific & Technical
Publishers, 1983 (in Chinese)

2. Chen M F. Eigenvalues, Inequalities, and Ergodic Theory. London: Springer, 2005

3. Chen M F. Efficient initials for computing maximal eigenpair. Front Math China, 2016,
11(6): 1379–1418

4. Chen M F. Global algorithms for maximal eigenpair. Front Math China, 2017, 12(5):
1023–1043

5. Chen M F. Hermitizable, isospectral complex matrices or differential operators. Front
Math China, 2018, 13(6): 1267–1311

6. Chen M F. On spectrum of Hermitizable tridiagonal matrices. Front Math China, 2020,
15(2): 285–303

7. Chen M F, Li Y S. Development of powerful algorithm for maximal eigenpair. Front
Math China, 2019, 14(3): 493–519

8. Chung K L, Yan W M. The complex Householder transform. IEEE Trans Signal
Process, 1997, 45(9): 2374–2376

9. Golub G H, Van Loan C F. Matrix Computations. 4th ed. Baltimore: The Johns
Hopkins Univ Press, 2013

10. Householder A S. Unitary triangularization of a nonsymmetric matrix. J Assoc
Comput Mach, 1958, 5: 339–342

11. Jiang E X. Symmetric Matrix Computation. Shanghai: Shanghai Scientific & Technical
Publishers, 1984 (in Chinese)

12. Min C. A new understanding of the QR method. J Korean Soc Ind Appl Math, 2010,
14(1): 29–34

13. Niño A, Muñoz-Caro C, Reyes S. A concurrent object-oriented approach to the eigen-
problem treatment in shared memory multicore environments. Lecture Notes in
Computer Sci, Vol 6782. Cham: Springer, 2011, 630–642

14. Parlett B N. The Symmetric Eigenvalue Problem. Philadelphia: SIAM, 1998

15. Press W H, Teukolsky S A, Vetterling W T, Flannery B P. Numerical Recipes. The
Art of Scientific Computing. 3rd ed. Cambridge: Cambridge Univ Press, 2007

16. Shukuzawa O, Suzuki T, Yokota I. Real tridiagonalization of Hermitian matrices by
modified Householder transformation. Proc Japan Acad Ser A, 1996, 72(5): 102–103

17. Wang Z J. Householder transformation for Hermitizable matrix. Master Thesis.
Beijing: Beijing Normal Univ, 2018

18. Wilkinson J H. The Algebraic Eigenvalue Problem. Oxford: Oxford Univ Press, 1965

