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Abstract. Between 1957-1985, Chinese mathematician Loo-Keng Hua pio-

neered economic optimization theory through three key contributions: estab-

lishing economic stability’s fundamental theorem, proving the uniqueness of
equilibrium solutions in economic systems, and developing a consumption-

integrated model 50 days before the immortal’s passing of him. Since 1988,

Mu-Fa Chen has been working on Hua’s theory. He introduced stochastics,
namely Markov chains, to economic optimization theory. He updated and de-

veloped Hua’s model, and came up with a new model (Chen’s model) which

has become the starting point of a new economic optimization theory. Chen’s
theory can be applied to economic stability test, bankruptcy prediction, prod-

uct ranking and classification, economic prediction and adjustment, economic

structure optimization. Chen’s theory can also provide efficient algorithms
that are programmable and intelligent. Stochastics is the cornerstone of Chen’s

theory. There is no overlap between Chen’s theory, and the existing mathe-
matical economy theory and the economics developments that were awarded

Nobel Prizes in Economics between 1969 and 2024. The distinguished features

of Chen’s theory from the existing theories are: quantitative, calculable, pre-
dictable, optimizable, programmable and can be intelligentable. This survey

provides a theoretical overview of the newly published monograph [1]. Specifi-

cally, the invariant of the economic structure matrix, also known as the Chen’s
invariant, was first published in this survey.

1. Introduction. From the beginning of the last century to the 1960s, mathemat-
ics was in Hilbert’s axiomatization era and the focus was on the construction of
the foundations of various branches and on the solutions of important problems. In
the 1960s, since most of the existing branches of mathematics have become mature,
there was a need to open new fields, and so mathematics experienced a revolution
and returned to the Poincaré era, that is, returned to the era of integrating mathe-
matics with various other disciplines such as physics and biology. One representative
of this revolution is the random field theory, developed by the Dobrushin’s school
at the intersection of probability and equilibrium statistical physics. Influenced by
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this, starting from 1980s, Mu-Fa Chen, along with his team at Beijing Normal Uni-
versity, built a new research direction, that is infinite-dimensional reaction-diffusion
processes, as the interaction of probability theory and non-equilibrium statistical
physics. He published the research monograph [2]. In the late 1980’s Chen and
his team expanded their direction. On the theoretical side, they started a system-
atic study of stability along with the associated convergence rate and spectrum
theory. On the application side, they developed and revitalized Hua’s economic
optimization theory. Recently, there has been great progress in the applications of
mathematics. Mathematics has entered the front of many fields (such as weather
forecasting, 3D printing, minimally invasive surgery, drones, robots and the boom-
ing artificial intelligence, etc) and triggered profound changes in many of these fields.
All the applications mentioned above involve data collection, storage, rapid anal-
ysis, intelligent decision-making and rapid implementation. All these applications
are supported by mathematical theory.

Applying mathematics to the economy, providing mathematical support for for-
mulating national economic development plans, and establishing a set of in-depth
methods to serve national economic development are the main parts of Hua’s re-
search direction in economic optimization, which is a model of interdisciplinary
research. This is also the direction that Chen has been working in.

The materials on Chen’s invariants for economic structure matrices are com-
pletely new and they have not been published elsewhere.

2. Input-Output model and preliminaries.

2.1. Input-Output model. In this survey, a “product’s vector” (abbrev. d-
vector) be regarded as an industry consisting of certain products, or a department
consisting of some industries. We use the d-vector

x =
(
x(1), · · · , x(d)

)
to denote the vector of the economic products we are concerned about, where x(i),
i = 1, · · · , d, denotes the amount of the i-th product with fixed dimension.

To understand the current economic situation, we need the following data:

• d-vector of last year: x0 =
(
x
(1)
0 , · · · , x(d)

0

)
;

• d-vector of this year: x1 =
(
x
(1)
1 , · · · , x(d)

1

)
;

• The structure matrix: A0 =
(
a
(0)
ij : i, j = 1, 2, · · · , d

)
,

where the meaning of A0 is as follows: to produce a unit of the i-th product, a
(0)
ij

units of the j-th products (j = 1, . . . , d) are consumed. Thus we have

x
(j)
0 =

d∑
i=1

x
(i)
1 a

(0)
ij ,

in matrix form, the above can be written as

x0 = x1A0.

Conversely, given x0 andA0, to uniquely determine x1, one needsA0 to be invertible.
Assume for now that all products produced are used for reproduction. This leads
to the Idealized (no consumption) model:

xn−1 = xnAn−1, n ⩾ 1.
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Hence
x0 = x1A0 = x2A1A0 = · · · = xnAn−1 · · ·A0.

In the time-homogeneous case An ≡ A, we get the Input-Output model:

x0 = xnA
n, n ⩾ 1. (1)

If we are only concerned with stability, that is, the limit behavior on the right side
of the equation above as n → ∞, we only need the asymptotic behavior of An, and
A do not need to be invertible. When A is reversible, (1) is equivalent to

xn = x0A
−n, n ⩾ 1. (2)

2.2. Two fundamental results of matrix theory. To state the main results
of Hua’s theory, we need two fundamental results in matrix theory. This section
only involves two concepts: irreducibility and aperiodicity. Let E = {1, 2, · · · , d},
A = (aij : i, j ∈ E), An =

(
a
(n)
ij : i, j ∈ E

)
. In this survey, by a nonnegative matrix,

we mean a matrix with all its entries being nonnegative. Positive matrix is defined
similarly.

Definition 2.1. A nonnegative matrix A = (aij) is said to be irreducible, if for
any pair i, j ∈ E, i ̸= j, there exist distinct i = i1, i2, · · · , im = j such that

ai1i2 > 0, ai2i3 > 0, · · · , aim−1im > 0.

A being irreducible means that any pair of i, j ∈ E are interconnected,
that is, there is a path from i to j and there is also a path from j to i. If we
put an edge between i, j ∈ E, i ̸= j, whenever aij > 0, then we get a connect
graph when A is irreducible. The following theorem is the most important result
on nonnegative irreducible matrices, and it is the cornerstone of Hua’s economic
optimization theory. It is also a major difference between the Hua’s theory and the
current popular input-output theory.

Theorem 2.2 (Perron-Frobenius 1907, 1912). If A is a nonnegative irreducible
matrix, then its spectral radius ρ(A) (in the aperiodic case) is a positive simple
eigenvalue of A, the corresponding left- and right-eigenvectors are also simple and
can be chosen to be positive.

Note that ρ(A) is the largest eigenvalue of A, and it is also called the maximal
eigenvalue of A. Let u (row vector) and v (column vector) be the corresponding
left- and right- positive eigenvectors of A:

uA = ρ(A)u, Av = ρ(A)v.

u and v are called the maximal left- and right-eigenvectors of A. They are unique
up to a multiplicative constant.

Based on these facts, the triplet (ρ(A), u, v) is called the three major character-
istics of A. As seen above, the row and column attributes of a vector can be often
identified from the context and we will not explicitly indicate them. From now on,
we assume that, for any i ∈ E,{

n ⩾ 1 : a
(n)
ii > 0

}
̸= ∅. (3)

Definition 2.3. The period of i ∈ E, di, is defined to be the greatest common
divisor of the elements in (3). If di = 1, we say that i is aperiodic. When A is
irreducible, there is a common period for all i ∈ E, which is called the period of A
([8] Theorem 1.26). If the period is 1, then we say A is aperiodic.
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If a nonnegative matrix A has a positive diagonal entry, then it is aperiodic.
The following results will be useful.

Proposition 2.4. If A is a non-negative irreducible, aperiodic matrix, then exists
a natural number M ⩽ (d− 1)2 +1 such that Am is a positive matrix when m ⩾ M
([13] Example 8.3.4 and Exercise 8.3.9). If all diagonal elements are positive, the
conclusion can be strengthened to M ⩽ d− 1 ([13] equation (8.3.5)).

Let Mmin be the smallest M satisfying the conclusion of the proposition above.

Proposition 2.5. If A is a nonnegative irreducible and aperiodic matrix, then the
modulus of every eigenvalue of A different from ρ(A) is less than ρ(A).

Except Proposition 2.4, the material in this section is classical and well known.
For details, see [8] (Chapter 1), [12] or the entry “Perron-Frobenius Theorem” in
Wikipedia. The terminology used here is from the theory of Markov chains. In
matrix theory, “irreducible” is called “indivisible”, a “irreducible, aperiodic, non-
negative square matrix” is referred to as a “prime square matrix”.

We end this section with an example showing that the invertibility assumption
of A in the model is necessary. Given a positive probability distribution π (row
vector) on {0, 1}. Let A = 1π, where 1 is a column vector with all components
equal to 1, then A is irreducible and aperiodic, and the only stationary distribution
is π: π = πA. If x0 = π, then it is easy to check that any probability distribution
x1 satisfies the equation x0 = x1A. By assumption A = 1π and the condition that
x11 = 1, it follows that

x1A = x11π = π.

Hence, the equation x0 = x1A has no solution once x0 ̸= π. This indicates that this
equation cannot completely determine an input-output system. The reason is that
the rank of A is 1 and A is not invertible.

3. Hua’s fundamental theorem of economic optimization. From now on,
unless explicitly stated otherwise, we will assume that A is nonnegative, irreducible
and aperiodic.

For a d-vector x, we write mink x = min{x(1), · · · , x(d)}. For positive in-
put d-vectors x (x has no zero-component) and y, we define the quotient y/x =
(y(1)/x(1), · · · , y(d)/x(d)). For a given input d-vector x, let y be the d-vector xA,
then the corresponding quotient is y/x = xA/x. The following lemma gives a
variational formula for the maximal eigenvalue ρ(A) of A using xA/x.

Lemma 3.1 (Collotz-Wielandt (C–W) formula). If A is a nonnegative irreducible
matrix, then

max
x>0

min
k

xA

x
= ρ(A) = min

x>0
max

k

xA

x
, (4)

where maxk
xA
x = maxk

(xA)(k)

x(k) .
The equalities above remain valid if xA is replaced by Ax. Two equalities hold

simultaneously if and only if x is the corresponding maximal eigenvector.

In applications, we often use the C-W formula (4) instead of the Rayleigh
entropy method to estimate ρ(A). This formula is universal, that is, for each positive
vector x, there are lower and upper bound estimates:

min
k

xA

x
⩽ ρ(A) ⩽ max

k

xA

x
.
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If x0 and x1 are the input and output indices respectively, we define mink x1/x0

to be the development rate of economy. The following result is Hua’s fundamental
theorem in economic optimization.

Theorem 3.2 (Hua’s Fundamental Theorem in Economic Optimization). Let
xn−1 = xnA, n ⩾ 1, ρ(A), u, v be the maximal left- and right-eigenvectors of A.
Then the following conclusions hold.

(i) The optimal input x0 = u, which gives the optimal development rate 1/ρ(A).
(ii) If A is aperiodic and x0 ̸= u, then the economic system will inevitably collapse,

that is, the collapse time

T+
x0

= inf{n : xn contains some negative component} < ∞.

Remark 3.3. This theorem says that u is optimal from two different perspective.

• From the perspective of economic development rate, the optimal input is the
left-eigenvector u, that is, x0 = u;

• In order for the economic system to never collapse, the optimal input must
also be the left-eigenvector u, That is, T+

x0
= ∞ =⇒ x0 = u.

Proof: (i) The slowest development rate of the economy is

min
k

x0A

x0
.

To attain the optimal development rate, we need to look for x0 so that the quantity
above achieve maximal. It follows from Lemma 3.1 that the maximal is achieved
when x0 is the maximal left-eigenvector u of A and the optimal development rate
is 1/ρ(A).

(ii) The following is the proof given by Chen in September of 1989 in the case
when A is a transition probability matrix. Assume A = P is a transition probability
matrix. Then P1 = 1, that is, the maximal right-eigenpair of P is (1,1), and the
optimal development rate is 1.

Assume P is irreducible and aperiodic. Then the ergodic theorem of Markov
chains ([8] Theorem 1.19)

Pn → 1π, n → ∞,

where π = (π(1), · · · , π(d)) (π(i) > 0, i = 1, · · · , d) is the invariant probability mea-
sure of P .

Assume µ0 = µnP
n,∀n ⩾ 1, µ0 ⩾ 0 satisfies µ01 = 1. It follows from P1 = 1

that

µ01 = µnP
n1 = µn1 = 1, ∀n.

Combining this with the nonnegative boundedness of {µn}, we get that there exists
a convergent subsequence {µnk

}k⩾1. If µnk
→ µ̄, then µ̄1 = 1. Therefore

µ0 = lim
k→∞

µnk
Pnk = µ̄1π = π. □

For a general structure matrix A, is it possible to transform A into a transition
probability matrix P and use it to prove Hua’s fundamental theorem? This leads
to Chen’s new theory of economic optimization.

It is well known that equilibrium is the core element of the economy. If the
balance is destroyed, it may not be restored for a hundred years. In the 1990s,
virtual economy developed rapidly due to the rise of the internet and countless
financial products emerged. When most of these virtual products defaulted, the
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financial world collapsed quickly, causing a series of collapses in the real economy.
When the financial crisis broke out in 2008, Iceland declared national bankruptcy.

People often say that “balance is temporary, and imbalance is the norm”.
In a rigorous mathematical framework, balance or equilibrium means a certain
ratio between products. The equilibrium solution is unique up to a multiplicative
constant. In practice, it is important to allow this free factor. No matter how many
products an economic model has, the equilibrium solution is just a ratio between
products. The importance of the equilibrium solution lies in that it is the only stable
solution of the economic system, that is, starting from it, we get x1 = x0/ρ(A), the
d-vector of each step is 1/ρ(A) times that of the previous step. 1/ρ(A) is uniquely
determined by the economic system and it is the optimal development rate. In
other words, the output of each step is an equilibrium solution, so it is also called a
stable solution. This is the first major result of Hua’s theory. Most of the results on
economic optimization before Hua were existential rather than constructive, Hua’s
results are computable.

Hua’s most surprising result is part (ii) of Theorem 3.2. In the ideal situation
without consumption, if the system does not start from the equilibrium solution,
then the economy will inevitably have products with different signs at a certain step
(year), that is, the economy will collapse or go bankrupt. We will prove that the
result remains true in the general model with consumption.

The following is the simplest model derived from Wassily Leontief that Hua
has simplified.

The ancient economy of men farming and women weaving. In this econ-
omy model, there are only two sectors (products): agriculture and manufacturing.
We fix product units; such as buckets and liters in agriculture, feet and yards in
manufacturing, etc. The following table gives the rules of economic operation in
this model.

Output

Consumption Input
Agriculture Manufacturing

Agriculture 0.25 0.14
Manufacturing 0.4 0.12

The first row in the table says that to produce 1 unit of agricultural product, 0.25
unit of agricultural product and 0.14 unit of manufacturing product are consumed.
Similarly, the second row say that to produce 1 unit of manufacturing product, 0.4
unit of agricultural product and 0.12 unit of manufacturing product are consumed.

The matrix composed of the four numbers in the table is called the “consump-
tion coefficient matrix” or the “structure matrix”.

A =
1

100

[
25 14
40 12

]
=

[
0.25 0.14
0.4 0.12

]
,

Write the output d-vector of the n-th year as (xn, yn), where xn is the output of
agriculture in the n-th year, and yn is the output of manufacturing in the n-th year.
Write the initial input index as (x0, y0). How to choose the input appropriately is
the core of this theory.

The first contribution of Hua in economic optimization is finding out that
the input-output table has a unique (up to a multiplicative constant) equilibrium



HUA-CHEN NEW THEORY OF ECONOMIC OPTIMIZATION 7

solution or stable solution, which is the maximal left-eigenvector of A.

u=(agriculture, manufacturing)

=

(
5

7

(√
2409 + 13

)
, 20

)
=̇ (44.34397483, 20),

where =̇ represents approximation. Here uniqueness is up to a multiplicative con-
stant. In practice, any multiple of u can be used. This is of course necessary in
practice: The number of products used by a small enterprise and the number the
same order of magnitude. In the economic model we are studying, the input is
allowed to differ by a multiplicative constant. Hua proved that if x0 = u is selected
as the input, then the economic system will always remain in balance and growth
rate will be optimal. He called this method the “positive eigenvector method” (the
“positive eigenvector” here is the equilibrium solution u mentioned above), which is
a “proportional, high-speed development” method. Hua’s most brilliant conclusion
is that if x0 ̸= u is selected as the input, then in a certain year, the d-vector of the
economy will definitely have components with different signs. The phenomenon is
commonly referred to collapse or bankruptcy. We will use T to denote the first year
that this situation occurs and call T the collapse time or bankruptcy time. We will
call the few years before T crisis times. If the collapse time is very far away, we do
not need to worry too much. The surprising thing is that the system is very sensi-
tive. Starting from the initial input (x0, y0), we can get the output {(xn, yn)}n⩾1

successively. We give two examples here and find out their bankruptcy and crisis
times.

Example 3.4. Set the initial input value to be the equilibrium solution rounded to
3 decimal places: (x0, y0) = (44.344, 20), and the result is shown in Figure 1 below.
The blue line represents agriculture, and the red line represents manufacturing. As
can be seen from the figure, the first 7 years (steps) ran well, but the increase in the
6th and 7th steps was a bit too fast, leading to a collapse in the next step, T =8.
For this initial value, the five-year plan is feasible.

0 1 2 3 4 5 6 7

2000

4000

6000

8000

10000

12000

2 4 6 8

-20000

0

20000

40000

60000

80000

Figure 1.
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Example 3.5. Set the initial input value to be the equilibrium solution rounded to
8 decimal places: (x0, y0) = (44.34397483, 20), as shown in Figure 2, the collapse
time is T = 13. For this example, the precision used is already very high, which
is not easy to achieve in practice, but it can only run for 12 years at most. In the
13th year, the maximal value of the upper curve reaches ten of millions, and the
minimum value of the lower curve reaches negative millions. It is easy to see that
the crisis time is 10 or 11.

0 2 4 6 8 10

100000

200000

300000

400000

500000

100  thousand

500 thousand

2 4 6 8 10 12 14

-5×106

0

5×106

1×107

Development Speed~2.232337

10 millon

 -5 million

Figure 2.

The left graphs in Figure 1 and Figure 2 above stop at the crisis time, and the
operation before this is relatively stable. Go forward one or two steps, the system
collapses, forming the right graph above. The scale of the right graph is compressed
a lot, and this makes the right graph very different the left one. The two graphs do
not have the same order of magnitude. These two examples show the sensitivity of
the system is beyond imagination.

It can be seen from the two graphs above that both products grow very fast
intially. Most of the right figure is covered by the last big jump, and the growth
of the previous steps is almost invisible. This method is not feasible for a larger
system since hundreds of iterations might be needed and our present day computer
are not powerful enough to handle the computations. We need to find a new way.

4. Chen’s Model. In 1957, Hua gave some lectures in the Institute of Mathe-
matics of the Chinese Academy of Sciences on the input-output method, popular
in the economic community at that time, established by Wassily Leontief in 1936
(Nobel Prize winner in Economics in 1973). Leontief removed the traditional basic
requirement of distinguishing between production data and consumption data, sim-
plified the conventional model and successfully applied the new model in practice.
From the Perron-Frobenius Theorem 2.2, Hua realized that production data and
consumption data should be clearly differentiated. In 1958–1959, in the textbook
“Introduction to Advanced Mathematics” (Volume 4) written for students of the
Mathematics Department at the University of Science and Technology of China, he
gave a new proof of the aforementioned theorem. The core part of Hua’s model is
keeping the tradition of clearly separating production data and consumption data.
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For models involving consumption, new methods are needed. This was the a ma-
jor challenge in our input-output model actually. Between 1984 and 1985, Hua
tried several methods and published more than 10 research reports in the “Chinese
Science Bulletin”. The key point was that each year, a portion of the increase in
production should be allocated for consumption. Hua proposed two approaches for
this. In papers [10] and [9], he used

xn − ξn = xn+1A, (5)

where ξn is the consumption; in the paper [11], he denoted the left-hand of the
equation above by yn, and hence (5) becomes yn = xn+1A. Suppose that, for
some α ∈ (0, 1), an α portion of the increment in production in the n-th year, i.e.,
α(xn − yn−1), is used for consumption, then the amount that d-vector that can be
used for reproduction in the (n+ 1)-th year is

yn = xn − α(xn − yn−1)

= (1− α)xn + αyn−1

= (1− α)yn−1A
−1 + αyn−1

= yn−1[(1− α)A−1 + αI].

Thus we obtain the model

yn = yn−1B, n ⩾ 1, (6)

where the matirx B = (1− α)A−1 + αI is no longer nonnegative and α ∈ (0, 1) the
consumption ratio. In this case the economic growth rate is (1− α)ρ(A)−1 + α.

As far as we know, Model (6) was in use until around October of 2021. However,
Hua was not satisfied with any of the aforementioned models. About 50 days before
the immortal’s passing of him, he removed all previous research reports from the
references of his manuscript [12] and proposed a new model, that is, in (5), set

ξn = γ(xn+1 − xn),

where γ ∈ (0, 1) is the consumption ratio, and so

xn = xn+1A+ γ(xn+1 − xn) = xn+1(A+ γI)− γxn.

Hence we have

xn = xn+1Aγ , Aγ =
A+ γI

1 + γ
, ρ(Aγ) =

ρ(A) + γ

1 + γ
.

This returns to the model with no consumption and with nonnegative structure
matrix Aγ :

x0 = xnA
n
γ . (7)

Unfortunately, the Model (7), Hua’s “Last Thought” remained dormant for 37 years
before it was awakened by Chen [5].

The development rate of the economic system corresponding to Model (7) is
1/ρ(Aγ) when ρ(A) ⩾ 1, the economic system is abnormal and further research is
required. Thus we assume that ρ(A) < 1. Then the corresponding growth rate is

1

ρ(Aγ)
− 1 =

1− ρ(A)

γ + ρ(A)

y 1− ρ(A)

1 + ρ(A)
> 0, γ ↑ 1.
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This shows that, for any γ ∈ (0, 1), Model (7) always has a positive growth rate,
which is inconsistent with reality. Therefore, Model (7) has a flaw. Noting that

1− ρ(A)

γ + ρ(A)

y 0 ⇐⇒ γ ↑ ∞,

Chen proposed the following model. Take

γ =
α

1− α
,

where α ∈ (0, 1) is the consumption parameter, and so γ ∈ (0,∞). This completely
different from the assumption γ ∈ (0, 1) in Model (7). In practice, γ > 1 may occur.
At last, the new model becomes

x0 = xnA
n
α, n ⩾ 1, (8)

where
Aα = (1− α)A+ αI, ρ(Aα) = (1− α)ρ(A) + α.

Obviously Aα (α< 1) has the same maximal left- and right-eigenvectors u and v as
A. Model (8) is called Chen’s model.

The matrix Aα in Chen’s model can be constructed in two steps:

A
(i)
=⇒ (1− α)A

(ii)
=⇒ (1− α)A+ αI = Aα.

(i) Since a portion of the the resources is used for consumption, α times of the
structure matrix A is deducted from A. Thus, only 1−α times of A is actually
invested in reproduction.

(ii) The deducted part is not used for reproduction, so the off-diagonal elements
of the deducted part of the new structure matrix are all 0; each product
still contributes an α portion to the new structural matrix, to be used for
consumption.

5. Key transform of non-negative matrices – Chen’s transform. As men-
tioned before, when the structure matrix A is a transition probability matrix, Chen
has given a proof of Hua’s fundamental theorem. How do we transform a general
structure matrix into a transition probability matrix? Chen has been working on
this topic for a long time.

The first step is figure out what needs to be done to transform A into a tran-
sition probability matrix P . We know that, for transition probability matrix P , its
maximal left-eigenvector π is the stationary distribution of P . Markov chain theory
tells us that, under the irreducibility condition, the stationary distribution of P is
unique.

Definition 5.1. The nonnegative matrix having sum 1 of each row is called a
transition probability matrix.

Lemma 5.2. The maximal eigenvalue of a transition probability matrix equals one.

Proof: Let ∥x∥∞ = supk |x(k)|, ∥P∥∞ = supx ̸=0 |Px|∞/∥x∥∞. Obviously 1 is an
eigenvalue of P , and its corresponding eigenvector is 1, we can get that its maximal
eigenvalue has a lower bound of 1. On the other hand, according to the definition
of the eigen-equation:

Px = λx.

Because
(Px)(k) =

∑
j

pkjx
(j) ⩽ ∥x∥∞

∑
j

pkj = ∥x∥∞,
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hence ∥Px∥∞| ⩽ ∥x∥∞. We get the maximal eigenvalue of P

λmax = sup
x ̸=0

∥Px∥∞
∥x∥∞

⩽ 1. □

Remark 5.3. If P is in addition irreducible, then the conclusion of Lemma 5.2 can
be derived directly from the C-W formula. In fact, since 1 is the eigenvalue of P ,
and 1 is the corresponding eigenvector, applying the C-W formula to the vector 1
we can get λmax ⩽ 1.

For a positive vector w, we use Dw to denote the diagonal matrix with diagonal
entries given by the components of w. For any vector x, we define the component
product w ⊙ x = (w(1)x(1), · · · , w(d)x(d)) and

Aw=̂D−1
w

A

ρ(A)
Dw. (9)

Then we have the following result.

Theorem 5.4 (Chen 1989, 1992, 2022). From (9), the following conclusions hold:
(i) Aw is a transition probability matrix P if and only if w = v;
(ii) The maximal left-eigenvector of P is µ := u⊙ v;
(iii) π := u⊙ v/(uv) is a stationary distribution of P : π = πP = πPn.

Proof: Without loss of generality, we assume ρ(A) = 1.
(i) From (9), we know that

Aw1 = D−1
w ADw1 = D−1

w Aw
?
= 1.

Conclusion (i) holds if and only if Aw = Dw1, i.e. Aw = w. Therefore Aw is a
transition probability matrix if and only if w = v.

(ii) It follows from (i) that

P = D−1
v

A

ρ(A)
Dv. (10)

Thus we have

µP = u⊙ vP = u⊙ vD−1
v ADv = uADv = uDv = u⊙ v = µ,

That is, u⊙ v is the maximal left-eigenvector of P .
(iii) Define π = u⊙ v/(uv). It is easy to verify that π is the stationary distri-

bution of P . Combining

P1 = D−1
v ADv1 = D−1

v Av = D−1
v v = 1

with Lemma 5.2, we get that ρ(P ) = 1 and the maximal right-eigenvector of P is
1. □

Remark 5.5. (1) The sufficiency part of Theorem 5.4(i) was obtained by Chen in
1989 and published in 1992. The necessity part was proved in 2022. Theorem
5.4(ii) and (iii) were also proved by Chen in 2022.

(2) We will call (10) Chen’s transform of A, which was given by Chen in 2022.

The equilibrium µ = u ⊙ v plays an important role in the present theory, as
shown in the next section.

Now we present Chen’s proof of Hua’s fundamental theorem in the case of
general structure matrices.
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Proof of Hua’s fundamental theorem: It follows from Theorem 5.4 (i) that

D−1
v

(
A

ρ(A)

)n

Dv = Pn. (11)

Thus (
A

ρ(A)

)n

= DvP
nD−1

v .

Assume that {xn}n⩾0 satisfies (x0Dv)1 = 1, x0 = xnA
n and xn ⩾ 0 (n ⩾ 0). By

the definitions of u and v and the assumption (x0Dv)1 = 1, we know that, up to a
multiplicative constant, x0 = u. Note that

x0Dv=xnA
nDv=[ρ(A)nxnDv]D

−1
v

(
A

ρ(A)

)n

Dv=[ρ(A)nxnDv]P
n. (12)

Denote yn = ρ(A)nxnDv, (12) can be rewritten as

y0 = ynP
n, n ⩾ 0

and y01 = 1 (n ⩾ 0). Combining Theorem 5.4 and the proof of Hua’s fundamental
theorem in the special case of A = P , we can get y0 = u ⊙ v/(uv), that is, x0 =
u/(uv). In order to make all xn nonnegative, the initial value must u. □

For given P and µ0, define µ0 = µnP
n, n ⩾ 1. {µn}n⩾0 is called the iterative

sequence of µ0 under P . Similarly, the iterative sequence {xn}n⩾0 of x0 under A
is defined by x0 = xnA

n, n ⩾ 1. The following result says that the equivalence of
these two iterative sequences.

Theorem 5.6. {µn}n⩾0, {xn}n⩾0 and v satisfy the following identities:

µn = ρ(A)nxn ⊙ v, n ⩾ 0, (13)

xn = ρ(A)−nµn ⊙ v−1, n ⩾ 0. (14)

Proof: Let {xn}n⩾0 be the iterative sequence of x0 under A. Then (12) holds.
It follows from x0Dv = ρ(A)0x0 ⊙ v that µn := ρ(A)nxn ⊙ v(n ⩾ 0), satisfies
µ0 = µnP

n, n ⩾ 1. That is, (13) holds. (14) can be proved similarly. □
Multiplying both sides of (13) by the vector 1 on the right side yields ρ(A)nxnv =

µn1. In particular, if we take x0 = u, then µ0 = u⊙ v, the normalization condition
is uv = µ01 = 1 = π1. Note that µn and xn are related like in (13).

Next we consider Chen’s transform Pα of the structure matrix Aα = (1 −
α)A + αI in the case with consumption. Obviously, the maximal eigenvalue of
Aα is ρ(Aα) = (1 − α)ρ(A) + α. Note that Aα and A have the same maximal
right-eigenvector v, thus Chen’s transform of Aα is

Pα =D−1
v

Aα

ρ(Aα)
Dv

=ρ(Aα)
−1[

(1− α)Dv−1ADv + αI
]

=ρ(Aα)
−1

[
(1− α)ρ(A)D−1

v

A

ρ(A)
Dv + αI

]
=(1− βα)P + βαI, (15)

where βα = α/ρ(Aα).
(15) shows that Pα (α< 1) has the same maximal left- and right-eigenvectors

u⊙v and 1. One can similarly prove the equivalence of the two iterative algorithms
for Aα and Pα.
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To conclude this section, let us illustrate the power of Chen’s transform. For
this, we return to the stability testing of Examples 3.4 and 3.5, using P instead of
A. The results are given by Figures 3 and 4 below. Certainly, the initials for P
should be different from that of A.

2 4 6 8
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20

40

60

80

Figure 3. New figure corresponding to Figure 1. Ini-
tial (34.41181135, 20), T = 8

2 4 6 8 10 12

-20

20

40

60

Figure 4. New figure corresponding to Figure 2. Ini-
tial (34.41179182, 20), T = 13

Very unexpected, the stability for P and A are completely the same (i.e., hav-
ing the same collapse time and the same collapse place (at the same product)).
Surprisingly, the picture generated by P is much better than the one generated
by A. Therefore, we use P only in practice for stability testing.
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6. Product ranking and classification. The second part of Theorem 3.2 is Hua’s
main contribution to economic optimization, and as far as we know, it has never
appeared before. It says that, if x0 ̸= u, then the system will collapse at an
exponential rate. Therefore, it is important to understand the classification of
products in the economic system: pillar products, intermediate products and weak
products, because the system often collapses at some weak products.

For a nonnegative and irreducible matrix A, the maximal left-eigenvector u
contains only two characteristics of A. But the maximal left-eigenvector µ = u⊙ v
of P obtained from A via Chen’s transform contains all three characteristics of A.
As mentioned before, u⊙ v represents the true total value of the products and has
a unified dimension. Therefore, compared with using the maximal left-eigenvector
u of A, it is more scientific to use the maximal left-eigenvector µ of P to ranking
products. Furthermore, as we have seen from the last section that using P or A, we
have completely the same stability, but the amplitude of oscillation of the former is
less than the one of the latter.

To illustrate the significance of product ranking, we give some practical ex-
amples. Figure 5 gives the rankings of 42 products in China’s input-output tables
in 2017 (red), 2012 (blue) and 2007 (black). The National Bureau of Statistics in
China compiles an input-output table every 5 years, so Figure 5 contains detailed
information about China’s economic situation in a 15 year period. For details, see
Chapter 4 of [1]. For ease of observation, the vertical axis represents multiples of
the equilibrium solution of the transition probability matrix P . The three curves
are surprisingly similar. Before we analyze the figure, we should inform our read-
ers that, in the 2007 input-output table, we did a numerical interpolation for the
missing value of the 24th product “Metal Products, Machinery and Equipment Re-
pair Services” in order to get a complete curve of 42 products. One can see from
the figure the main differences among the the blue, black and red curves are that
the top product in the red curve is the 20th product–“Communication Equipment,
Computers and other Electronic Equipment”, while the top product in the blue
cure is the 12th product–“Chemical Products”. It is not difficult to understand
why such a change occurred between 2012 and 2017, because this period is the time
mobile phones and other electronic devices began to become popular. If we take
the blue curve of 2012 as the benchmark, mark the top 6 products in a decreasing
order with circled numbers, the top 6 of the blue curve and that of the black curve
are basically the same except for the 5th one.

One can also see from Figure 5 that the rankings of the 30th product “Trans-
portation”, the 33th “Finance”, the 34th “Real Estate” and the 35th “Leasing and
Business” in these three curves gradually increase. We also find that, contrary to
traditional popular belief, finance and real estate are not pillar products.

Figure 6 is the distribution function diagram generated by π. Arranging the
components of π in ascending order p1 < p2 < · · · < p42, we get the discrete
cumulative distribution function as follows: p1, p1 + p2, · · · ,

∑42
k=1 pk.

We plot all three cumulative distribution graphs in Figure 6. There are two
graphs in Figure 6, the upper graph is the full graph, and the lower graph is a partial
one. The black, blue and red curves are the cumulative distribution curves of 2007,
2012 and 2017 respectively. The horizontal axis in Figure 6 is the rank order of each
product, the vertical axis is the cumulative distribution of the first n products. To
the left of the left vertical line, the cumulative distribution is less than or equal to
5%, and to the right of the right vertical line, the cumulative distribution is larger
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Figure 5. The equilibriums diagram of Year 2017’s 42 products,
Year 2012’s 42 products and Year 2007’s 41 products.

than or equal to 50%. Products to the left of the left vertical line are the weak
products, Products to the right of the right vertical line are the pillar products,
products between the two vertical lines are the intermediate products. One can
see from Figure 6 that there are 17 weak products and 5 pillar products in 2007.
One can also see that the cumulative distribution curves spanning 15 years are very
consistent, indicating that using cumulative distribution to classify product grades
is reliable. Since the number of weak products is relatively large, we further divided
them in the lower graph. One see that there 8 or 9 products with cumulative
distribution is less than or equal to 1%.

Figure 5 and 6 are taken from [14].

7. Quantum wave probability. The materials of this section are mainly taken
from Chen’s paper [6]. Consider the complex matrix A. There are some extended
versions of the Perron-Frobenius theorem, but the results are quite limited. How-
ever, a point in Section 5, the transform from A to P , still makes sense.

Definition 7.1. A complex matrix A is called an SR1 matrix if A1 = 1, i.e., the
row sums are all equal to 1.

Assume λ ̸= 0 is a simple eigenvalue of the complex matrix A. Similar to
Chen’s theorem on the key transform in Section 5, we have the following result.

Theorem 7.2 (Generalized Chen’s Theorem). Suppose that (λ, u) and (λ, v) are
left- and right-eigenpairs of the complex matrix A, respectively, uA = λu, Av = λv,
and all components of v are non-zero. For a column vector w with all its components



16 BIN CHEN, YINGCHAO XIE, TING YANG AND QIN ZHOU

Figure 6. Cumulative distribution of equilibrium solutions of 42
products in 2017 and 2012

being non-zero, define

Rw = D−1
w

A

λ
Dw.

Then the following conclusions hold:

(1) Rw is an SR1 matrix if and only if w = v;
(2) Rv has a left-eigenpair (λ, u⊙ v): (u⊙ v)Rv = λ(u⊙ v).

For a Hermitian matrix A, left- and right-eigenvectors of A corresponding to
the same eigenvalue are conjugates of each other, so u = v̄. Thus by Theorem 7.2,
the left-eigenvector of Rv is u⊙ v = v̄ ⊙ v. Hence, we have the following corollary.

Corollary 7.3. If in the theorem above we further assume that A is Hermitian,
then the left-eigenvector of Rv is v̄ ⊙ v.
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We know that a discretized Schrödinger operator corresponds to a Hermitian
matrix, and its eigenvalues correspond to discrete energy levels. In quantum me-
chanics, the square of the modulus of the wave function is the probability density
of particle distribution, that is:

π =
v̄ ⊙ v

|v|2
=

(
|v1|2, |v2|2, · · · , |vd|2

)
|v|2

.

In other words, the vector v̄ ⊙ v contains three characteristics of the Hermit-
ian matrix A: the maximal eigenvalue λ and the corresponding left- and right-
eigenvectors u and v. Since v̄⊙ v represents the square of the modulus of A’s wave
function (equivalently, the eigenvector) v, this explains why in Born’s comment
about matrix mechanics one should use “the square of the modulus” instead of “the
modulus”. Once |v|<∞, one can use its normalized probability measure π instead
of v̄⊙ v to denote the probability density of particle distribution. In summary, this
is just an explanation of the same thing in two different languages, and so there is
no objective randomness, just as Einstein said, “God does not play dice”.

Note that the real symmetric matrix is a special case of the complex Hermitian
matrix, so the above conclusions can also be applied to the principal component
analysis.

8. Economic forecasting and adjustment. In practice, for a model with con-
sumption, to determine a suitable economic growth rate, one needs to go through
a number of adjustments and computations. For a predetermined growth rate, we
first compute the consumption parameters, and then the available consumption.
The program goes as follows:

Growth rate ⇒ Consumption parameters

⇒ Available consumption
?
⩾ Planned consumption

If “⩾” holds, then the system can achieve the predetermined speed, and one
can stop. Otherwise, one can test again by reducing the growth rate. One can use
the optimization method to design these tests.

Theorem 8.1 ([5]). If the economic growth rate satisfies 0 < δ < min{1, ρ(A)−1−
1}, then the available consumption in the (n+ 1)-th year is

ξn =
1− (1 + δ)ρ(A)

δ
(xn+1 − xn), (16)

where {xn} is the iterative sequence with given the initial value x0 under Aα in
Chen’s model:

xn = xn+1Aα, α :=
(1 + δ)−1 − ρ(A)

1− ρ(A)
.

Conversely, one can use the fact the consumption in the (n + 1)-th year does not
exceed ξn to determine the maximal growth rate δ.

Proof: According to Theorem 3.2 (i), the economic growth rate (denoted by δ) is
1/ρ(Aα)− 1, so

δ =
1

ρ(Aα)
− 1 =

1

(1− α)ρ(A) + α
− 1. (17)
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Solving the equation (17), we get the consumption parameter

α =
(1 + δ)−1 − ρ(A)

1− ρ(A)
=: α(δ) (18)

and the consumption multiple

γα =
α

1− α
=

(1 + δ)−1 − ρ(A)

1− (1 + δ)−1
=: γ(δ). (19)

Therefore, the available consumption in the (n+ 1)-th year is

ξn(α) = γα(xn+1 − xn) =
(1 + δ)−1 − ρ(A)

1− (1 + δ)−1
(xn+1 − xn).

That is, (16) holds. □
Combining (18) and (19) with ρ(A) < 1, we get that α(δ) and γ(δ) are both

monotonically decreasing functions of δ. This implies that the consumption de-
creases when the economic growth rate increases, consumption increases when the
economic growth rate decreases.

It can seen from the proof above that, if the economic growth rate δ is given,
then we can get α from (18) and then Aα. Regarding the d-vector xn as input,
one can use Chen’s model xn = xn+1Aα to find the output d-vector xn+1 of the
(n+ 1)-th year, and then get the available consumption of the (n+ 1)-th year.

Conversely, if the available consumption of the (n + 1)-th year and the input
d-vector xn are given, the core of predicting the economic growth rate δ lies in to
solve the consumption parameter α. For this we have the following result.

Corollary 8.2. If the actual required consumption (planned consumption) is ξ̄n,
then we only need to find α so that ξ̄n ⩽ ξn(α). Naturally, we define ᾱ = inf{α ∈
(0, 1) : ξn(α) ⩾ ξ̄n}. ᾱ is the consumption parameter corresponding to ξ̄n. Since
ξn(α) increases with α, we have, for any α ⩾ ᾱ,

ξn(α) ⩾ ξn(ᾱ) ⩾ ξ̄n.

Then the planned consumption ξ̄n is alway less than or equal to the available con-
sumption ξn(α). δ(ᾱ) can be determined using the definition of ᾱ and (17).

Given xn and A, the available consumption ξn(α) = γα(xn+1 − xn) can be
uniquely determined by α ∈ (0, 1). In fact, ξn(α) is proportional to xn+1 − xn.
More precisely, the ratio of these two is α/(1−α), this is a carefully designed special
quantity. In general, one cannot expect that an arbitrary planned consumption
ξ̄n will be equal to the available consumption ξn(α) for a certain α. However,
such a strong restriction is not really needed in practice, because it is not always
necessary to reduce economic growth to increase consumption. One can adjust the
consumption structure or imports to achieve this.

9. Product regulation and optimization of economic structure. By “Prod-
uct regulation” we mean to determine the products or industries that should be
prioritized (or eliminated) in order to adjust and optimize the economic structure.
This should be based on the current economic situation, needs rigorous computation
and analysis.

This is a very difficult problem. Chen raised this as an open problem in 2005
(see [3]). It was not until 2022 that he completely solved this problem. The biggest
challenge is to find the optimization criteria. In traditional optimization theory, one
tries to find the values of certain variables (under certain constraints) so that the
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chosen cost function attains the optimum. The problem is that, in our economic
model, we do not know what the cost function is.

In our economic model here, we have actually done two times for the optimiza-
tion: one is to achieve the fastest growth rate and the other is make sure collapse
never happens. Hua’s fundamental theorem tells us that the unique solution of both
optimizations is the maximal left-eigenvector u of A. This prompts us to take the
d-vector ũ = (ũk) as the target. In other words, first, we should find a target ũ for

product regulation. Next, we construct a new structure matrix Ã with ũ being its
maximal left-eigenvector. This is a very complicated problem. For example, if we
consider a system with 100 products, we need to determine the 104 elements of the
new structure matrix. However, the given new equilibrium only provides 100 data
points. Where can we find the remaining 9900 data points? In order to fill in the
missing information of the new matrix, we can require the new structure matrix Ã
to be as close as possible to the original structure matrix A.

To complete the construction of the new structure matrix, we first make some
necessary preparations in the next section, and then we return to the topic in Section
11.

10. Markov chain, dual Markov chain and invariants of economic struc-
ture matrix. Recall that Chen’s transform Ã of the matrix A is defined by

Ã

ρ
(
Ã
) = D−1

w

A

ρ(A)
Dw, w > 0. (20)

It follows from Theorem 5.4(i) that Ã is a transition probability matrix P if and only
if w is the maximal right-eigenvector v of A. We will often call P a Markov chain.
The three major characteristics (the maximal eigenvalue and the corresponding
maximal left- and right-eigenvectors) of P are (1, u⊙ v,1).

LetA∗ be the transpose ofA, and u∗ the corresponding maximal right-eigenvector
of A∗. It follows from (20) that

D−1
w

A∗

ρ(A)
Dw, w > 0, (21)

gives another transition probability matrix if and only if w = u∗. The three char-
acteristics of (21) are (1, u∗ ⊙ v∗,1) (of course, u∗ ⊙ v∗ = u ⊙ v). To remove ∗ in
the above formula, we need to make the transposition and then get

Qw := Dw
A

ρ(A)
D−1

w .

Now the column sums of Qw are all equal to 1 if and only if w = u. We call Qu the
Dual Transition Probability Matrix or Dual Markov chain (abbrev.Dual
Chain). Its three major characteristics are (1,1∗, u⊙ v).

Before studying the invariants of the economic structure matrix, we first review
the simplest invariant:

π =
circumference of the circle

2 r
=

area of the circle

r2
,

which omits the basic parameter describing the size of a circle–radius r. Recall our
consumption model:

Aα = (1− α)A+ αI, α ∈ [0, 1).
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Omitting the spectral radius ρ(Aα) that describes the development speed, this fam-
ily of matrices has two invariants: they have the same maximal left- and right-
eigenvectors u and v. Two of the three major characteristics become invariants
(independent of α). We have seen that these two invariants (vectors rather than
scalars) play an important role in economic theory.

Now for a given P , we consider the inverse transform of the transform (20).
For any positive w, we can define Chen’s transform of P

Aw := DwPD−1
w .

Since Aw is similar to P , we have ρ(Aw) = 1. It is easy to show that w is the
maximal right-eigenvector of Aw. Therefore, by (20), the transition probability
matrix derived from Aw is P . This shows that the family of square matrices

AP = {Aw = DwPD−1
w : w > 0}

have the same invariant square matrix P , which is a square matrix instead of a
vector.

We can deal with the dual case similarly. For a fixed dual Markov chain Q, we
define the family of square matrices

AQ := {Aw = D−1
w QDw : w > 0}.

For any Aw ∈ AQ, it is obvious that ρ(Aw) = ρ(Q) = 1. It is easy to show that w
is the maximal left-eigenvector of Aw, so the dual Markov chain derived from Aw

coincides with Q. This says that the family of square matrices AQ has Q as an
invariant (invariant square matrices).

The above invariant vectors or invariant matrices are collectively called Chen’s
invariants.

Note that since w > 0, we can replace w by w−1, if necessary. In the definition
of the set AQ, D

−1
w QDw becomes D∓

wQD±
w , so the set AQ is large enough. This

is useful in practice, because we often need to adjust w = ũ. Of course, in the
definition of AQ, we can replace Aw by Aw/ρ(Aw), to add a degree of freedom to
AQ.

11. Product regulation and optimization of economic structure (contin-

ued). Now, we return to the topic of Section 9: construct a new structure matrix Ã
with ũ as the equilibrium solution, making it as close as possible to the original
matrix A. We are given A and its maximal left-eigenvector u, and the target equi-
librium solution ũ. From the previous section, we have a completely determined
dual chain

Qu := Du
A

ρ(A)
D−1

u .

It is in a one-to-one correspondence with A/ρ(A):

A

ρ(A)
= D−1

u QuDu.

Replacing A with the desired Ã, we formally get two equations parallel to the
equations above

Qũ := Dũ
Ã

ρ(Ã)
D−1

ũ ,
Ã

ρ(Ã)
= D−1

ũ QũDũ.

Since ũ is given, Ã and the corresponding Qũ are the only unkowns in the last
two equations. To make Ã as close to A as possible, one should require that their
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invariants to be as close as possible. The simplest way to do this is let Qũ = Qu.
Starting from Qũ and Qu, we can define, as we did in the previous section, two
families of square matrices with Qũ and Qu as invariants:

AQu =

{
A :

A

ρ(A)
= DwQuD

−1
w , w > 0

}
,

AQũ
=

{
Ã :

Ã

ρ(Ã)
= DwQũD

−1
w , w > 0

}
.

Clearly, AQũ
= AQu

once Qũ = Qu. Thus we can find the only unknown quantity

Ã
/
ρ(Ã) from the above system of equations:

Ã

ρ(Ã)
= D−1

ũ QũDũ (first take w = the known ũ in AQũ
)

= D−1
ũ QuDũ (let Qũ = the knownQu)

= D−1
ũ Du

A

ρ(A)
D−1

u Dũ (plug in the explicit expression of Qu)

= Dũ−1⊙u
A

ρ(A)
Du−1⊙ũ (simplify the right hand side)

= D−1
ũ⊙u−1

A

ρ(A)
Dũ⊙u−1 .

Because {Aα, α ∈ [0, 1)} have the invariants u and v, this result can be immediately
extended to the case with consumption, which leads to the following theorem.

Theorem 11.1. (Chen’s Economic Structure Optimization Theorem) The optimal

matrix Ãα, with the target ũ, of the structure matrices Aα with the maximal left-
eigenpair (ρ(Aα), u) can be determined by (20) and w = ũ⊙ u−1:

Ãα

ρ(Ãα)
= D−1

ũ⊙u−1

Aα

ρ(Aα)
Dũ⊙u−1 , α ∈ [0, 1). (22)

Furthermore, the maximal left- and right-eigenvectors of Ãα are ũ and ṽ = v⊙ u⊙
ũ−1.

Proof: We only need to show the last assertion. Since {Aα : α ∈ [0, 1)} have the
same maximal left- and right-eigenvectors u and v, we will omit α in this proof.

(a) First, we show that ũ is the maximal left-eigenvector of Ã, that is,

ũ
Ã

ρ(Ã)
= ũ.

Note that for any given vectors x and y, we have xDy = x⊙ y = Dxy. So

ũD−1
w = ũ⊙ w−1 = ũ⊙ ũ−1 ⊙ u = u,

From (20), we can conclude that

ũ
Ã

ρ(Ã)
= ũD−1

w

A

ρ(A)
Dw = u

A

ρ(A)
Dw = uDw = ũ.

This proves that ũ is the maximal left-eigenvector of Ã.
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(b) Now we prove that ṽ is the maximal right-eigenvector of Ã. From the definition
of w and ṽ, we know that

Dwṽ = w ⊙ ṽ = ũ⊙ u−1 ⊙ v ⊙ u⊙ ũ−1 = v, (23)

Hence
Ã

ρ(Ã)
ṽ = D−1

w

A

ρ(A)
Dwṽ = D−1

w

A

ρ(A)
v = D−1

w v = ṽ. □

We have proved that the optimal structure matrix defined by (22) has the

predetermined target d-vector as the equilibrium. With Ã and ũ, we get a new
economic system. To understand the new system, classify products and test system
stability, it is natural to use the equilibrium state u⊙v of the dual chain Qũ (which
was taken to be Qu). u⊙v is the maximal right-eigenvector of the dual chain, and it
is also the equilibrium solution of the invariant P derived from the original structure
matrix. Thus, Ã retained the invariant P from A. In fact, to classify products and
test system stability for the optimal structure matrix Ã, we can simply return to P
derived from the original structure matrix A, there is no need to use the dual chain
Qũ. The proof is as follows. From the known ṽ and w = ũ⊙ u−1, we have proved
in (23) that w ⊙ ṽ = v, thus

P̃α = D−1
ṽ

Ãα

ρ(Ãα)
Dṽ = D−1

ṽ D−1
w

Aα

ρ(Aα)
DwDṽ = D−1

v

Aα

ρ(Aα)
Dv = Pα.

In other words, we prove the following main property (i) of the optimal matrix.

Theorem 11.2. Given a target d-vector ũ and α ∈ [0, 1), let Ã be the optimal
matrix determined by the above theorem. Then

(i) the invariant P̃α of the optimal matrix Ãα

/
ρ
(
Ãα

)
coincides with the invariant

Pα of the original matrix Aα/ρ(Aα).

(ii) the stability index (collapse time, collapse location) are the shared invariants

of Aα, Ãα and Pα.

Proof: We only need to prove the assertion (ii). The stability of Aα, Ãα and Pα

are all realized through Pα. It follows from (i) that Aα, Ãα have the same invariant
Pα. Thus, to prove (ii), we only need to show that Aα and Pα have the common
stability index. This can be derived the result below. More precisely, since we are
concerned with when (i.e. n) and where (i.e. which product) a negative sign first
appears in µn and xn, we can omit the positive factors ρ(Aα)

n and v on both sides
of the identity (24) below, then we get the desired assertion. □

The following result is a natural extension of Theorem 5.6.

Theorem 11.3. (Conversion Theorem/Equivalence Principle) ([1]: Theorem 7.3)
The iterative sequence {µn}n⩾0 of Pα, the iterative sequence {xn}n⩾0 of Aα and v
satisfy the identity:

µn = ρ(Aα)
nxn ⊙ v, n ⩾ 0, (24)

xn = ρ(Aα)
−nµn ⊙ v−1, n ⩾ 0. (25)

Therefore, the two algorithms are equivalent.

If we take x0 = u in (24), then µ0 = u ⊙ v. Multiplying both sides of (24)
by the vector 1 on the right side yields ρ(A)nxn ⊙ v1 = µn1. In particular, when
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n = 0, we get the normalization condition uv = µ01 = 1 = π1. Note that µn and
xn differ by an exponential maximal order ρ(A)n and a constant vector factor v.

The above theorem also applies to the general transform A → Ã defined by
(20).

12. Programmable and intelligentizable efficient algorithms. The main dif-
ference between Hua’s economic optimization theory and other existing economic
theories is that Hua’s theory is computable and programmable. One of the impor-
tant cornerstones of Chen’s new economic optimization theory is the computation
of the maximal eigenvalue of a nonnegative matrix and the corresponding maxi-
mal left- and right-eigenvectors. For system stability analysis, we not only need
these three quantities, we also need to know how to compute them accurately and
efficiently.

Efficient algorithms play a significant role in Chen’s new theory. In recent years,
by using stochastics, Chen made many important progresses in efficient algorithms
for matrix eigenpairs. It is generally believed that power method converges too
slowly and is of little use and that, the inverse power method, due to its use of the
Rayleigh entropy estimate, may not be reliable. Chen introduced a new security
estimate and completely avoided using the Rayleigh entropy estimate. By combining
ideas from machine learning with these two methods and their variants, he achieved
an universal high-speed algorithm.

Using our present computer and existing algorithms, it is not difficult to com-
pute the maximal eigenvalues and the corresponding maximal left- and right-eigenvectors
of low dimensional or symmetric matrices. However, accomplish the same task for
high-dimensional non-symmetric matrices is still very daunting. To address this
problem, Chen proposed effective algorithms: Matrix quasi-symmetrization
technique and Eigenvector smoothing technique. The former is used to re-
duce the amplitude of the matrix (maxA − minA = maxij aij − minij aij), and
the latter is to make the right eigenvector v as flat as possible, i.e., max v/min v =
maxi v

(i)/mini v
(i) is nearly constant.

Matrix quasi-symmetrization technique (cf. [7]; §3): Given a nonnegative ir-
reducible matrix A = (aij), we define the following Q matrix (a matrix with non-
negative off diagonal elements and having zero-sum of each row):

Q = A−DA1.
Using irreducibility, we know that the equation

µQ = 0

has a unique positive solution µ = (µ(1), µ(2), · · · , µ(d)) satisfying the initial condi-
tion µ(1) = 1. With this positive vector µ, we can define the quasi-symmetrized
matrix Â of A:

Â = Dµ1/2ADµ−1/2 .

The important reason for introducing this concept is that A is symmetrizable with
respect to µ, that is,

DµA = A∗Dµ [= (DµA)∗].

It is easy to check that A is symmetrizable with respect to µ iff Â is symmereic.
Hence this is a very important generalization of symmetry. [4] illustrated the irre-
placeable power of the quasi-symmetrization technique for computing the eigenpairs
of non-symmetric but symmetrizable matrices through a simple tridiagonal matrix.
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We can not expect a general A to be symmetrizable, but Â often reduces the am-
plitude of A.

Eigenvector Smoothing Technique (cf. [7]; §4): Both the power method and
the inverse power method are mainly for computing eigenvectors of matrices. If the
amplitude of the eigenvector is too large, it is simply impossible to achieve this using
these two methods. Therefore, further transforming Â into a matrix with as a flat
eigenvector as possible (i.e., max v/min v is nearly constant) is naturally beneficial
for computation. At first glance, this problem seems difficult to approach, but with
Chen’s Theorem 5.4, the desired conclusion comes naturally.

Theorem 12.1. Let w be any positive vector, and define

Ā := Aw = D−1
w ADw = (w−1 ⊗ w)⊙A,

where w−1 ⊗w =
(
w(j)/w(i)

)
d×d

is the tensor product of vector w−1and vector w.

Then A1 = A. Denote the maximal right-eigenpair of Aw as (ρ(Aw), gw). Then we
have

ρ(Aw) = ρ(A), g = g1 = Dwgw.

In particular, if maxi |w(i) − v(i)| is sufficiently small, then gw is a vector close to
a constant.

Proof: Since Aw is similar to A, it shares the same eigenvalues with A, and the
eigenvector gw satisfies

ρ(A)gw = D−1
w ADwgw.

Thus, we have ρ(A)Dwgw = A(Dwgw), and hence the first assertion holds. Now,
we prove the last assertion. Since

Dwgw = g = Dvgv = Dv1,

we have

gw = D−1
w Dv1 = Dw−1⊙v1 = w−1 ⊙ v.

This leads to the desired assertion, as w−1 ⊙ v is a vector close to a constant. □
Now we can state our eigenvector smoothing technique. Suppose w is an ap-

proximate solution of v, then the maximal right-eigenvector of Ā is nearly a constant
vector.

Chen’s transform (the key transform A → P ) plays a central role in the theory.
Altogether, 7 times are used in Chen’s theory:
(i) The Proof of Hua’s Fundamental Theorem in sections 3 and 5;
(ii) In stability testing, he used P instead of A to study the stability of the

system;
(iii) In product grading and classification, he used the equilibrium solution of P ,

i.e., the component product of the maximal left- and right-eigenvectors of A,
which has a clear economic significance;

(iv) He uses the dual chain twice in economic structure optimization, i.e., he uses
the key transform twice;

(v) The stability test of the new optimal economic structure Ã returns to P

(P̃ = P );

(vi) The stability test of the new economic structure κÃ after the secondary

optimization still uses P , A, Ã, and κÃ have exactly the same stability as P .
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From above, it can be seen that the transition probability matrix P is an
invariant undoubtedly.
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For video of lectures, see Chen’s homepage: http://math0.bnu.edu.cn/ chenmf/

Videos of Lectures [19]–[21].


	1. Introduction
	2. Input-Output model and preliminaries
	2.1. Input-Output model
	2.2. Two fundamental results of matrix theory

	3. Hua's fundamental theorem of economic optimization
	The ancient economy of men farming and women weaving

	4. Chen's Model
	5. Key transform of non-negative matrices – Chen's transform
	6. Product ranking and classification
	7. Quantum wave probability
	8. Economic forecasting and adjustment
	9. Product regulation and optimization of economic structure
	10. Markov chain, dual Markov chain and invariants of economic structure matrix 
	11. Product regulation and optimization of economic structure (continued)
	12. Programmable and intelligentizable efficient algorithms 
	Acknowledgments
	REFERENCES

