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Abstract

For a homological ring epimorphism from a ringR to another ringS, we prove that if the module
RS has a finite-type resolution, then the algebraicK-theory space ofR decomposes as a product of the
ones ofS and a differential graded algebra. In addition, if the homological ring epimorphism induces a
recollement of derived module categories of rings, then thedifferential graded algebra involved can be
replaced by a usual ring. This result is then applied to noncommutative localizations and to homological
exact pairs introduced in the first paper of this series. For example, we get a long Mayer-Vietoris sequence
of higher algebraicK-groups for homological Milnor squares, including a resultof Karoubi.
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1 Introduction

Recall that a ring epimorphismR→ S between rings with identity is said to behomologicalif the derived
module category of the ringScan be regarded as a full subcategory of the derived module category of the ring
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Rby restriction. For a homological noncommutative localization λ : R→ Sof rings, Neeman and Ranicki in
[16] have discovered a remarkable long exact sequence of algebraicK-groups:

· · · −→ Kn+1(S)−→ Kn(R )−→ Kn(R)−→ Kn(S)−→ Kn−1(R )−→

·· · −→ K0(R )−→ K0(R)−→ K0(S)

for all n∈N, whereR is an exact category determined byλ. This result extends many results in the literature
(see [15]). On the one hand, this long sequence, in general, does not have to split into a series of short exact
sequences of the corresponding algebraicK-groups, and moreover, theK-theory of the categoryR seems
not to be easy to handle. On the other hand, there are many homological ring epimorphisms which do not
arise from noncommutative localizations, but do give recollements of derived module categories (see the
discussion in [6]). As is known, recollements are a generalization of derived equivalences, while derived
equivalences preserve algebraicK-theory of rings (see [7]). So, an interesting question for calculation of
algebraicK-groups of rings is: When does such a long exact sequence of algebraicK-groups split? Or more
generally, can we read off information on algebraicK-theory of rings from recollements of derived module
categories? Precisely, we consider the following question:

Question. Let R, SandT be rings with identity. Suppose that there is a recollement among the derived
module categoriesD(T), D(R) andD(S) of the ringsT, RandS:

D(S)
i∗ // D(R) //

ff

xx
D(T)

ff

xx

such thati∗(S) is quasi-isomorphic to a bounded complex of finitely generated projectiveR-modules. Is the
K-theory spaceK(R) of R homotopy equivalent to the product of theK-theory spaces ofSandT? That is,
does the following isomorphism hold true:

Kn(R)≃ Kn(S)⊕Kn(T) for eachn∈ N?

Here, we denote byK(E ) theK-theory space of an exact categoryE in the sense of Quillen, byK(R) theK-
theory space of the exact category of finitely generated projectiveR-modules, and byKn(R) then-th algebraic
K-group ofR for eachn∈ N.

We remark that, without the assumption oni∗(S), the isomorphismKn(R)≃ Kn(S)⊕Kn(T) cannot hold.
This was shown by an example in [4, Section 8, Remark (2)] forn = 0.

The main purpose of the present paper is to provide an affirmative answer to the above question for
homological ring epimorphisms. To attack the question, we will employ ideas from the representation theory
of algebras. As a consequence of our methods, we shall establish a long Mayer-Vietoris sequence of higher
algebraicK-groups for the so-called homological Milnor squares of rings studied in [3]. This strategy might
lead to a bridge between the representation theory of algebras and algebraicK-theory of rings.

Before stating our results precisely, we first recall some definitions.
Let R be a ring with identity. AnR-moduleM has afinite-type resolutionprovided that there is a finite

projective resolution by finitely generated projectiveR-modules, that is, there is an exact sequence 0→Pn→
··· → P1→ P0→M→ 0 for somen∈ N such that allR-modulesPj are projective and finitely generated.

Let X andY be pointed topological spaces. A mapf : X→Y is called ahomotopy equivalenceif there
is a mapg : Y→ X such thatf g : X→ X andg f : Y→Y are pointed-homotopic to the identities ofX andY,
respectively. Here, by a map between pointed topological spaces we always mean a pointed continuous map.
If there is a homotopy equivalence betweenX andY, then we say thatX andY arehomotopy equivalent, and
simply writeX

∼
−→Y.

For a differential graded algebraA, we denote byK(A) the algebraicK-theory space defined in Subsec-
tion 3.5, and byKn(A) then-th homotopy group ofK(A) for n∈ N.

Our general result on homological ring epimorphisms reads as follows.
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Theorem 1.1. Let λ : R→ S be a homological ring epimorphism.
(1) If RS admits a finite-type resolution, then there is a differential graded ringT determined byλ such

that K(R)
∼
−→ K(S)×K(T) as K-theory spaces, and therefore

Kn(R)≃ Kn(S)⊕Kn(T) for all n ∈ N.

(2) Suppose that there exists a ring T and a recollement among thederived module categoriesD(T),
D(R) andD(S) of the rings T , R and S:

D(S)
i∗ // D(R) //

ff

xx
D(T)

ff

xx

where i∗ is the restriction functor induced fromλ. If the moduleRS or SR has a finite-type resolution, then

K(R)
∼
−→ K(S)×K(T)

as K-theory spaces, and therefore

Kn(R)≃ Kn(S)⊕Kn(T) for all n ∈N.

Theorem 1.1 provides a partial answer to the above question and extends both [5, Theorem 1.1 (2)]
and some cases in [27]. As a consequence of the proof of Theorem 1.1, we have the following corollary
on noncommutative localizations, which, under the finite-type condition, provides a strong result (compare
with [16, Theorem 0.5]). Note that the terminology “noncommutative localization” was originally called
“universal localization” in the literature.

Corollary 1.2. Let R be a ring andΣ a set of injective homomorphisms between finitely generatedprojective
R-modules. Suppose that the universal localization R→ RΣ of R atΣ is homological and that the left R-
module RΣ has a finite-type resolution. Then

K(R)
∼
−→ K(RΣ)×K(E )

whereE is the small exact category of(R,Σ)-torsion modules which are exactly those finitely presented
R-modules M of projective dimension at most1 such that RΣ⊗RM = 0 = TorR1(RΣ,M).

As an application of our methods developed in this paper, we consider exact pairs introduced in [3] (see
also Subsection 5.2 below). In this case, we get a long Mayer-Vietoris sequence ofK-groups for homological
Milnor squares of rings.

Theorem 1.3. Let (λ,µ) be an exact pair of ring homomorphismsλ : R→ S and µ: R→ T, and let S⊔R T,
together with the ring homomorphismsρ : S→ S⊔RT andφ : T → S⊔RT, be the coproduct of S and T over
R. Suppose thatλ is a homological ring epimorphism andTorRi (T,S) = 0 for all i > 0. Then the following
statements hold true:

(1) The sequence of K-theory spaces

K(R)

(
−K(λ),K(µ)

)
// K(S)×K(T)

(
K(ρ)
K(φ)

)

// K(S⊔RT)

is a weak homotopy fibration, where−K(λ) denotes the composite of K(λ) with K([1]). In particular, there
is a long exact sequence of K-groups:

· · · −→ Kn+1(S⊔RT)−→ Kn(R)

(
−Kn(λ),Kn(µ)

)
// Kn(S)⊕Kn(T)

(
Kn(ρ)
Kn(φ)

)

// Kn(S⊔RT)−→ Kn−1(R)−→
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· · · −→ K0(R)−→ K0(S)⊕K0(T)−→ K0(S⊔RT)

for all n ∈ N.
(2) If, in addition, the moduleRS or TR has a finite-type resolution, then

K(R)×K(S⊔RT)
∼
−→ K(S)×K(T)

as K-theory spaces, and therefore

Kn(R)⊕Kn(S⊔RT)≃ Kn(S)⊕Kn(T) for all n ∈ N.

We remark that, by [3, Lemma 3.8 (2)], the coproductS⊔R T in Theorem 1.3 is actually isomorphic to
the endomorphism ring EndT(T⊗RS).

As an immediate consequence of Theorem 1.3, we get a result ofKaroubi, namely Corollary 5.3, which
provides a long exact sequence of algebraicK-groups for localizations. As another consequence of Theorem
1.3, we have the following result on a class of homological Milnor squares.

Corollary 1.4. (1) Let R be a ring with two ideals I1 and I2 such that I1∩ I2 = 0. Suppose that the canonical
ring homomorphism R→R/I1 is homological. If the left R-module I1 or the right R-module I2 has a finite-type
resolution, then

Kn(R)⊕Kn(R/(I1 + I2))≃ Kn(R/I1)⊕Kn(R/I2)

for all n ∈ N.
(2) Suppose thatλ : R→ S is a homomorphism of rings and M is an S-S-bimodule. Ifλ is a homological

ring epimorphism, then
Kn(R)⊕Kn(S⋉ M)≃ Kn(S)⊕Kn(R⋉ M)

for all n ∈ N, where S⋉ M stands for the trivial extension of S by M.

This paper is organized as follows: In Section 2, we briefly recall some definitions and basic facts on
triangulated categories, homological ring epimorphisms and recollements. In Section 3, we first recall the
algebraicK-theories developed by Waldhausen for Waldhausen categories and Schlichting for Frobenius
pairs, and then introduce our definition of algebraicK-theory spaces for differential graded algebras, which
is a modification of Schlichting’s definition in [20]. In Section 4, we prove the main result, Theorem 1.1.
But, before starting with our proof, we first consider homotopy-split injections forK-theory spaces as a
preparation, and then prove the first part of Theorem 1.1, which shows that, in general, the algebraicK-
theory of recollements induced from homological ring epimorphisms involves differential graded algebras.
With the help of the first part of Theorem 1.1, we then give proofs of the second part of Theorem 1.1 and its
Corollary 1.2. In Section 5, we apply our results in the previous sections to homological exact pairs defined in
the first paper [3] of this series, and get a long Mayer-Vietoris sequence ofK-groups, which shows Theorem
1.3. As an immediate consequence of Theorem 1.3, we reobtaina Mayer-Vietoris sequence in Corollary
5.3, due originally to Karoubi, for positiveK-theory of localizations. At the end of this section, we deduce
Corollary 1.4 from Theorem 1.3. In Section 6, we illustrate our results by an example which shows that the
differential graded algebra in Theorem 1.1 (1) cannot be substituted by its underlying ring (just forgetting the
differential).

2 Preliminaries

In this section, we shall fix notation which will be employed throughout the paper, and provide some basic
facts which will be used in our later proofs.
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2.1 General terminology and notation on categories

Let C be an additive category.
We always assume that a full subcategoryB of C is closed under isomorphisms, that is, ifX ∈ B and

Y ∈ C with Y ≃ X, thenY ∈ B .
Given two morphismsf : X→Y andg : Y→ Z in C , we denote the composite off andg by f g which is

a morphism fromX to Z, while given two functorsF : C → D andG : D → E among three categoriesC , D
andE , we denote the composite ofF andG by GF which is a functor fromC to E .

Let Ker(F) and Im(F) be the kernel and image of the functorF , respectively. That is, Ker(F) := {X ∈
C | FX ≃ 0} and Im(F) := {Y ∈ D | ∃X ∈ C ,FX ≃Y}. In particular, Ker(F) and Im(F) are closed under
isomorphisms inC andD , respectively.

An additive functorF : A → B between two additive categoriesA andB is called anequivalence up to
factorsif F is fully faithful and each object ofB is isomorphic to a direct summand of the image of an object
of A underF.

Let A be a triangulated category andX a full triangulated subcategory ofA . Then, essentially due to
Verdier, there exists a triangulated categoryA /X , and a triangle functorq : A → A /X with X ⊆ Ker(q) such
that q has the following universal property: Ifq′ : A → T is a triangle functor withX ⊆ Ker(q′), thenq′

factorizes uniquely throughA
q
−→ A /X (see [14, Theorem 2.18]). The categoryA /X is called theVerdier

quotientof A by X , and the functorq is called theVerdier localization functor. In this case, Ker(q) is the
full subcategory ofA consisting of direct summands of all objects inX . We remark that the objects of the
categoryA /X are the same as the objects ofA (see [14, Chapter 2] for details).

A sequenceA
F
−→ B

G
−→ C of triangle functorsF andG between triangulated categories is said to be

exactif the following four conditions are satisfied:
(i) The functorF is fully faithful.
(ii) The compositeGF : A → C of F andG is zero.
(iii ) The image Im(F) of F is equal to the kernel ofG.
(iv) The functorG induces an equivalence from the Verdier quotient ofB by Im(F) to C .

Clearly, if X is closed under direct summands inA , then we have an exact sequence of triangulated
categories:

X
� � // A

q // A /X .

Let T be a triangulated category with small coproducts (that is, coproducts indexed over sets exist inT ).
An objectU ∈ T is said to becompactif HomT (U,−) commutes with small coproducts inT . The full

subcategory ofT consisting of all compact objects is denoted byT c.
For any non-empty classS of objects inT , we denote by Tria(S ) (respectively, thick(S )) the smallest

full triangulated subcategory ofT containingS and being closed under small coproducts (respectively, direct
summands). IfS consists of only one objectU , then we simply write Tria(U) and thick(U) for Tria({U})
and thick({U}), respectively. The notation Tria(S ) without referring toT will not cause any confusions
because this notation can be clarified from the contexts of our considerations.

The following facts are in the literature (see [14, Proposition 1.6.8] and [3, Section 2.1]).

Lemma 2.1. (1) If T0 is a full triangulated subcategory ofT such thatT0 is closed under countable coprod-
ucts, thenT0 is closed under direct summands inT .

(2) LetT ′ be a triangulated category with small coproducts, and let F: T → T ′ be a triangle functor. If
F preserves small coproducts, then F(Tria(U))⊆ Tria(F(U)) for any U∈ T .

Finally, we mention a special case of the result [14, Theorem4.4.9] forβ = ℵ0.
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Lemma 2.2. Let S be a triangulated category with small coproducts. LetR ⊆ S be a full triangulated
subcategory, closed under the formation of the coproducts in S of any set of its objects. LetT := S /R .
Assume further that there exist: (i) A set of objects S⊆ S c, so thatS = Tria(S). (ii) A set of objects R⊆R ∩S c,
so thatR = Tria(R). Then the following hold true:

(1) The inclusionR ⊆ S takes compact objects to compact objects, and so does the Verdier localization
functorS → T . In other words, we have a commutative diagram

R c //
� _

��

S c //
� _

��

T c
� _

��
R // S // T .

Moreover, we haveTria(R )c = Tria(R )∩ S c = thick(R ).
(2) The compositeR c→ S c→ T c in the above diagram must vanish, since it is just the restriction toR c

of a vanishing functor onR . We therefore have a factorization ofS c→ T c as

S c−→ S c/R c i
−→ T c.

The functor i: S c/R c→ T c is an equivalence up to factors.

2.2 Complexes over module categories

Throughout the paper, by a ring we always mean an associativering with identity.
Let Rbe a ring. We denote byR-Mod, R-proj andP<∞(R) the categories of leftR-modules, finitely gen-

erated projective leftR-modules and leftR-modules having finite-type resolutions, respectively. Asusual, the
complex, homotopy and derived categories ofR-Mod are denoted byC (R),K (R) andD(R), respectively.
Clearly,D(R) = Tria(R). By usual convention, we writeDc(R) for D(R)c.

For eachn∈ Z, we denote then-th cohomology functor byHn(−) : D(R)→ R-Mod.

Now we briefly recall the definitions of Hom-complexes and tensor complexes.
Let (X•,dX•) and(Y•,dY•) be complexes inC (R). The Hom-complex ofX• andY• overR is a complex

Hom•R(X•,Y•) :=
(
Homn

R(X•,Y•),dn
X•,Y•

)
n∈Z

where

Homn
R(X•,Y•) := ∏

p∈Z

HomR(Xp,Yp+n)

and the differentialdn
X•,Y• of degreen is given by

(hp)p∈Z 7→
(
hpdp+n

Y• − (−1)ndp
X•h

p+1)
p∈Z

for (hp)p∈Z ∈ Homn
R(X•,Y•).

Let Z• be another object inC (R). We define

◦ : Hom•R(X•,Y•)×Hom•R(Y•,Z•)−→ Hom•R(X•,Z•), ( f ,g) 7→ ( f pgp+m)p∈Z

for f := ( f p)p∈Z ∈ Homm
R(X•,Y•) andg := (gp)p∈Z ∈ Homn

R(Y•,Z•) with m,n ∈ Z. Thus the operation◦
is associative and distributive, and therefore Hom•

R(X•,X•) is a Z-graded ring. For simplicity, the Hom-
complex Hom•R(X•,X•) is denoted by End•R(X•). In fact, End•R(X•) is a differential graded ring (see Sec-
tion 3.5 for definition) and will be called thedg endomorphism ringof X•. Note thatHn(End•R(X•)) ≃
HomK (R)(X

•,X•[n]) for anyn∈ Z.
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Moreover, the above-defined operation◦ satisfies the following identity:

( f ◦g)dm+n
X•,Z• = f ◦ (g)dn

Y•,Z• +(−1)n( f )dm
X•,Y• ◦g.

Let W• be a chain complex overR
op

-Mod. Then the tensor complex ofW• andX• overR is a complex
W•⊗•RX• :=

(
W•⊗n

RX•,∂n
W•,X•

)
n∈Z

where

W•⊗n
RX• :=

M
p∈Z

Wp⊗RXn−p

and the differential∂W•,X• of degreen is given by

w⊗x 7→ (w)dp
W•⊗x+(−1)pw⊗ (x)dn−p

X•

for w∈Wp andx∈ Xn−p.
Let S be another ring andM• a complex ofR-S-bimodules. The total left-derived functor ofM•⊗•S−

is denoted byM•⊗L

S− : D(S)→ D(R), and the total right-derived functor of Hom•R(M•,−) is denoted by
RHomR(M•,−) : D(R)→D(S). Clearly,

(
M•⊗L

S−,RHomR(M•,−)
)

is an adjoint pair of triangle functors.

2.3 Recollements and homological ring epimorphisms

In this subsection, we recall the notion of recollements which were introduced by Beilinson, Bernstein and
Deligne (see [1]), and are widely used in algebraic geometryand representation theory. Typical examples of
recollements can be constructed from homological ring epimorphisms.

LetD , D ′ andD ′′ be triangulated categories with shift functors denoted universally by [1].
We say thatD is arecollementof D ′ andD ′′ if there are six triangle functors as in the following diagram

D ′′
i∗=i! // D

j != j∗ //

i!

``

i∗

��
D ′

j∗

__

j!

��

such that
(1) the 4 pairs(i∗, i∗),(i! , i!),( j! , j !) and( j∗, j∗) are adjoint pairs of functors;
(2) the 3 functorsi∗, j∗ and j! are fully faithful;
(3) the composite of two functors in each row is zero, that is,i! j∗= 0 (and thus alsoj ! i! = 0 andi∗ j! = 0);

and
(4) there are 2 canonical triangles inD for each objectX ∈ D :

j! j !(X)−→ X −→ i∗i
∗(X)−→ j! j !(X)[1],

i! i
!(X)−→ X −→ j∗ j∗(X)−→ i! i

!(X)[1],

where j! j !(X)→ X and i! i!(X)→ X are counit adjunction maps, and whereX→ i∗i∗(X) andX→ j∗ j∗(X)
are unit adjunction maps.

It is known that, up to equivalence of categories, recollements of triangulated categories are the same
as torsion torsion-free triples (TTF-triples) of triangulated categories (see, for example, [4, Section 2.3] for
details). In the following lemma we mention some facts aboutrecollements for later proofs.
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Lemma 2.3. Suppose that the above recollement is given. Then the following hold:
(a) The images of the three fully faithful functors j! , i∗ and j∗ are closed under direct summands inD .
(b) The Verdier quotients ofD by the images of the triangle functors j! and i∗ are equivalent toD ′′ and

D ′, respectively.
(c) Assume thatD , D ′ andD ′′ admit small coproducts. Then both j! and i∗ preserve compact objects.

Suppose further thatD is compactly generated, that is, there is a set S of compact objects inD such that
Tria(S) = D , then i∗ preserves compact objects if and only if so is j! . In this case, we can obtain a “half
recollement” of subcategories of compact objects:

(D ′′)c i∗ // D c
j ! //

i∗

yy
(D ′)c

j!
zz

Note that(a) and(b) follow from [2, Chapter I, Proposition 2.6], while(c) follows from [2, Chapter III,
Lemma 1.2(1) and Chapter IV, Proposition 1.11].

A typical example of recollements is provided by homological ring epimorphisms. Recall that a ring
epimorphismλ : R→ S is said to behomologicalif TorR

n(S,S) = 0 for all n > 0 (see [8, 16]). This is also
equivalent to saying that the restriction functorD(λ∗) : D(S)→D(R) is fully faithful.

The following result can be concluded from [17, Section 4].

Lemma 2.4. Let λ : R→ S be a homological ring epimorphism. Then there is a recollement of triangulated
categories:

D(S)
i∗ // D(R)

j ! //
ff

i∗

xx
Tria(RQ•)

gg

j!
ww

where Q• is the two-term complex0→R
λ
−→ S→ 0 with R and S in degrees0 and1, respectively, and where

j! is the canonical embedding and

j ! = Q•⊗L

R−, i∗ = S⊗L

R−, i∗ = D(λ∗).

Thus, if we defineY := {Y ∈D(R) | HomD(R)(X,Y) = 0 for any X ∈ Tria(RQ•)}, then it follows from
Lemma 2.4 that

Y = {Y ∈D(R) | HomD(R)(Q
•,Y[n]) = 0 for n∈ Z}= {Y ∈D(R) |Q•⊗L

RY = 0},

and thati∗ induces an equivalenceD(S)
≃
−→ Y .

In general, for a ringR, the categoriesD(R) andD(R
op
) are not triangle equivalent. Nevertheless, with

the help of Lemma 2.4, we can establish the following result which will be used in the proof of Theorem 1.1.

Lemma 2.5. Letλ : R→ S be a homological ring epimorphism. Then the following are equivalent for a ring
T :

(1) There is a recollement of derived categories:

D(S)
D(λ∗) // D(R) //

ff

xx
D(T)

ff

xx

(2)There is a recollement of derived categories:

D(Sop)
D(λ∗) // D(Rop) //

gg

ww
D(Top)

gg

ww
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Proof. Observe that ifλ : R→ S is a homological ring epimorphism, then so is the mapλ : Rop→ Sop

by [8, Theorem 4.4]. Moreover, it follows from [17, Corollary 3.4] that(1) holds if and only if there is a
complexP• ∈C b(R-proj) such that Tria(P•) = Tria(RQ•), EndD(R)(P

•)≃ T and HomD(R)(P
•,P•[n]) = 0 for

anyn 6= 0, whereQ• is the complex 0→ R→ S→ 0. However, for such a complexP•, we always have

HomD(Rop)(P
•∗,P•∗[n]) ≃HomD(R)(P

•,P•[n]) for all n∈ Z,

whereP•∗ := HomR(P•,R)∈ C b(Rop-proj). So, to prove that(1) and(2) are equivalent, it is enough to prove
the following statement:

If P• ∈ C b(R-proj) such that Tria(P•) = Tria(RQ•), then Tria(P•∗) = Tria(Q•R).
In fact, letP• be such a complex and define

Y
′ := {Y ∈D(Rop) | HomD(Rop)(X,Y) = 0 for X ∈ Tria(P•∗)}.

SinceP• ∈ C b(R-proj), we haveP•∗ ∈ C b(Rop-proj). It follows from [4, Lemma 2.8] that there is a recolle-
ment:

Y ′
µ // D(Rop) //

ee

yy
Tria(P•∗)

gg

ww

whereµ is the inclusion. This implies that

(a) Tria(P•∗) = {X ∈D(Rop) | HomD(Rop)(X,Y) = 0 for Y ∈ Y
′}.

Furthermore, we remark that

Y
′ = {Y ∈D(Rop) | HomD(Rop)(P

•∗,Y[n]) = 0 for n∈ Z}= {Y ∈D(Rop) | RHomRop(P•∗,Y) = 0},

and that
RHomRop(P•∗,−)≃−⊗L

R P• : D(Rop)−→D(Z)

by [3, Section 2.1]. ThusY ′ = {Y ∈ D(Rop) | Y⊗L
R P• = 0}. However, by Lemma 2.1 (2), for a given

Y ∈D(Rop), the left-derived tensor functorY⊗L
R− : D(R)→D(Z) sends Tria(Q•) (respectively, Tria(RP•))

to zero if and only ifY⊗L
R Q• = 0 (respectively,Y⊗L

R P• = 0). Since Tria(P•) = Tria(RQ•) by assumption,
we certainly obtainY ′ = {Y ∈D(Rop) |Y⊗L

R Q• = 0}.
Sinceλ : Rop→ Sop is also a homological ring epimorphism, we obtain another recollement by Lemma

2.4:

D(Sop)
D(λ∗) // D(Rop)

G //
gg

ww
Tria(Q•R)

gg

F
ww

whereF is the inclusion andG is the tensor functor−⊗L
R Q•. This implies that Im(D(λ∗)) = Ker(G) and

(b) Tria(Q•R) = {X ∈D(Rop) | HomD(Rop)(X,Y) = 0 for Y ∈ Ker(G)}.

SinceY ′ = Ker(G), we conclude from(a) and (b) that Tria(P•∗) = Tria(Q•R). This finishes the proof of
Lemma 2.5.�

3 Algebraic K-theory

In this section, we briefly recall some basics on algebraicK-theory of Waldhausen categories and Frobenius
pairs developed in [24] and [20], respectively. And we then discuss algebraicK-theory of differential graded
algebras and prove a few lemmas as preparations for proofs ofthe main results.
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3.1 K-theory spaces of small Waldhausen categories

Let us first recall some elementary notion and facts about theK-theory of small Waldhausen categories (see
[24, 23, 18]).

Let C be a small Waldhausen category, that is, a pointed category (equipped with a zero object) with
cofibrations and weak equivalences. In [24, Section 1.3], Waldhausen has defined aK-theory spaceK(C )
for C , which is a pointed topological space, and ann-th homotopy groupKn(C ) of K(C ) for eachn ∈ N,
which is called then-th K-group ofC . Clearly, if a Waldhausen categoryC ′ is essentially small, that is, the
isomorphism classes of objects ofC ′ form a set, then the definition of WaldhausenK-theory still makes sense
for C ′ because, in this case, one can choose a small Waldhausen subcategoryC of C ′ such thatC is equivalent
to C ′, and define theK-theory ofC ′ through that ofC .

Note thatK(C ) is always homotopy equivalent to a CW-complex. In fact, thisfollows from the following
observation: The classifying space of a small category has the structure of a CW-complex and the loop space
of a CW-complex is homotopy equivalent to a CW-complex (see [13]), while K(C ) is the loop space of a
classifying space constructed fromC .

TheK-theory space defined by Waldhausen is natural in the following sense: Each exact functorF : C →
D between Waldhausen categoriesC andD induces a continuous mapK(F) : K(C )→ K(D ) of (pointed)
topological spaces, and a homomorphismKn(F) : Kn(C )→ Kn(D ) of abelian groups for eachn∈ N. If G :
D → E is another exact functor between Waldhausen categories, thenK(GF) = K(F)K(G) in our notation.

The cartesian productC ×C of a Waldhausen categoryC is again a Waldhausen category with cofibrations
and weak equivalences defined in an obvious way.

Note that finite coproducts always exist inC , and that the coproduct functor

⊔ : C ×C −→ C , (M,N) 7→M⊔N for all M,N ∈ C ,

is an exact functor between Waldhausen categories. More important, with the induced mapK(⊔) : K(C )×
K(C )→ K(C ), the spaceK(C ) becomes a homotopy-associative pointedH-space, and the homomorphism
Kn(⊔) : Kn(C )×Kn(C )→ Kn(C ) is actually given by(y,z) 7→ y+z for y,z∈ Kn(C ).

Recall that a pointed space(X,e) with X a topological space ande∈ X is called ahomotopy-associative
pointed H-space(see [22, Chapter 7]) if there is a pointed map(−,−) : X×X→ X satisfying the following
two conditions:

(1) The maps(e,−) and(−,e) are pointed-homotopic to the identityIdX of X.
(2) The respective composites of the following maps:

X× (X×X)
IdX×(−,−) // X×X

(−,−) // X and (X×X)×X
(−,−)×IdX // X×X

(−,−) // X

are pointed-homotopic.
Clearly, the associated pointeC of K(C ) corresponds to the image of the mapK({0})→ K(C ) induced

from the inclusion{0} →֒ C , where 0 denotes the zero object ofC .
Next, we shall discuss some additivity of exact functors between Waldhausen categories.
Let C i be a small Waldhausen category fori = 1,2. Denote byλi : C i→ C1×C2 andpi : C1×C2→ C i the

canonical injection and projection, respectively. ThenK(C1×C2) = K(C1)×K(C2) and

K(λ1) : K(C1)→ K(C1×C2), c1 7→ (c1,eC2),

K(λ2) : K(C2)→ K(C1×C2), c2 7→ (eC1,c2),

K(pi) : K(C1×C2)→ K(C i), (c1,c2) 7→ ci

for ci ∈ K(C i) with i = 1,2.
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On the one hand, ifG : C1×C2→ C is an exact functor, thenK(G) : K(C1)×K(C2)→ K(C ) is given by
the composite of the following two maps:

K(G1)×K(G2) : K(C1)×K(C2)→ K(C )×K(C ) and K(⊔) : K(C )×K(C )→ K(C )

whereGi : C i → C is defined to be the composition ofλi with G. This is due to the following identities:

G(C1,C2) = G
(
(C1,0)⊔ (0,C2)

)
= G(C1,0)⊔G(0,C2) = G1(C1)⊔G2(C2)

for Ci ∈ C i .
On the other hand, ifH : C → C1×C2 is an exact functor, then

K(H) =
(
K(H1),K(H2)

)
: K(C )→ K(C1)×K(C2)

whereHi : C → C i is defined to be the composition ofH with pi .
Finally, we recall some definitions and basic facts in homotopy theory for later proofs. For more details,

we refer the reader to [26, Chapters III and IV] and [22, Chapter 7]. Those readers who are familiar with
homotopy theory may skip the rest of this subsection.

Let (Y,y0)
g
−→ (Z,z0) be a map of pointed topological spaces. Thehomotopy fibre F(g) of g is defined

to be the following pointed topological space

F(g) := {(ω,y) | ω : [0,1]→ Z, y∈Y, (0)ω = z0, (1)ω = (y)g}

with the base-point
(
cz0,y0

)
, wherecz0 is the constant patht 7→ z0 for t ∈ [0,1]. If we defineh : F(g)→Y by

(ω,y) 7→ y for any(ω,y) ∈ F(g), then there is a long exact sequence of homotopy groups:

· · · −→ πn+1(Z,z0)−→ πn
(
F(g),(cz0,y0)

) πn(h)
−→ πn(Y,y0)

πn(g)
−→ πn(Z,z0)−→ πn−1

(
F(g),(cz0,y0)

)
−→

·· · −→ π0
(
F(g),(cz0,y0)

)
−→ π0(Y,y0)−→ π0(Z,z0)

whereπn(Z,z0) denotesthe n-th homotopy groupof (Z,z0) for eachn∈ N (see [26, Corollary IV. 8.9]).

A sequence(X,x0)
f
−→ (Y,y0)

g
−→ (Z,z0) of pointed topological spaces is calleda homotopy fibrationif

the composite off andg is equal to the constant map which sends everyx in X to the base-point ofZ, and if
the natural map

X −→ F(g), x 7→
(
cz0,(x) f

)
for x∈ X

is a homotopy equivalence.

The sequence(X,x0)
f
−→ (Y,y0)

g
−→ (Z,z0) of pointed topological spaces is calleda weak homotopy

fibration if there is a pointed topological space(Z′,z′0), and two pointed mapsg1 : Y→ Z′ andg2 : Z′→ Z
with g = g1g2 such that

(1) the sequence(X,x0)
f
−→ (Y,y0)

g1
−→ (Z′,z′0) is a homotopy fibration, and that

(2) g2 induces an injectionπ0(Z′,z′0)→ π0(Z,z0) and a bijectionπn(Z′,z′0)→ πn(Z,z0) for n > 0.

Assume that(X,x0)
f
−→ (Y,y0)

g
−→ (Z,z0) is a weak homotopy fibration. Then there is a long exact

sequence of homotopy groups:

· · · −→ πn+1(Z,z0)−→ πn(X,x0)
πn( f )
−→ πn(Y,y0)

πn(g)
−→ πn(Z,z0)−→ πn−1(X,x0)−→

·· · −→ π0(X,x0)−→ π0(Y,y0)−→ π0(Z,z0)

for all n∈N, andg2 induces a weak equivalence from the loop spaceΩ(Z′,z′0) of (Z′,z′0) to the one of(Z,z0).
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3.2 Frobenius pairs

We recall some definitions given in [20].
By a Frobenius categorywe mean an exact category (see [18, 10]) with enough projective and injective

objects such that projectives and injectives coincide. A map between two Frobenius categories is an exact
functor which preserves projective objects.

Let C be a Frobenius category.
We denote byC -proj the full subcategory ofC consisting of all projective objects. It is well known that the

factor categoryC of C moduloC -proj, called thestable categoryof C , is a triangulated category. Moreover,
two objectsX andY of C are isomorphic inC if and only if X⊕P≃Y⊕Q in C for someP,Q∈ C -proj. In
particular,X ≃ 0 in C if and only if X ∈ C -proj.

A subcategoryX of C is called aFrobenius subcategoryof C if X is a Frobenius category and the
inclusionX ⊆ C is a fully faithful map of Frobenius categories. In this case, X -proj⊆ C -proj, and a morphism
in X factorizes throughX -proj if and only if it factorizes throughC -proj. This implies that the inclusion
X ⊆ C induces a fully faithful inclusionX ⊆ C of triangulated categories. In general,X does not have to be
a triangulated subcategory ofC sinceX is not necessarily closed under isomorphisms inC . However, by our
convention, the image of the inclusionX ⊆ C is indeed a triangulated subcategory ofC .

A pair C := (C ,C0) of Frobenius categories is called aFrobenius pairif C is a small category andC0 is
a Frobenius subcategory ofC . A map from a Frobenius pair(C ,C0) to another Frobenius pair(C ′,C ′0) is a
map of Frobenius categoriesC → C ′ such that it restricts to a map fromC0 to C ′0 (see [20, Section 4.3]).

Let C := (C ,C0) be a Frobenius pair. Then the image of the inclusionC0⊆ C is a triangulated subcategory
of C . So we can form the Verdier quotient ofC by this image, denoted by

DF(C) := C /C0

which is called thederived categoryof the Frobenius pairC. Here, we use the same notationC /C0 as in [20]
to denote the derived category ofC, but the meaning ofC /C0 in our paper is slightly different from the one in
[20] because we require that the image of an inclusion functor is closed under isomorphisms. Nevertheless,
all results in [20] work with this modified definition of derived categories.

Clearly, if C0 = C -proj, thenDF(C) = C . In this case, we shall often writeC for the Frobenius pair
(C ,C -proj).

The categoryC of a Frobenius pairC := (C ,C0) can be regarded as a small Waldhausen category (for
definition, see [24] or [5]): The inflations inC form the cofibrations ofC , and the morphisms inC which are
isomorphisms inDF(C) form the weak equivalences ofC . In this note, we shall writeC for the Waldhausen
categoryC to emphasize the role ofC0. According to our foregoing notation, we denote byC the Waldhausen
category defined by the Frobenius pair(C ,C -proj). For the Waldhausen categoryC, we denote theK-theory
space ofC in the sense of Waldhausen byK(C) which is a pointed topological space, and then-th K-group
of K(C) by Kn(C) for eachn∈ N.

It is known thatK0(C) is naturally isomorphic to the Grothendieck groupK0(DF(C)) of the small tri-
angulated categoryDF(C) (see [23, Section 1.5.6], [25, Chapter IV, Proposition 8.4]and [21, Proposition
3.2.22]).

Let G : C→C ′ be a map of Frobenius pairs. On the one hand,G automatically induces a triangle functor
DF(G) : DF(C)→ DF(C ′), which sendsX ∈ C to G(X) ∈ C ′. On the other hand,G : C → C ′ is an exact
functor of associated Waldhausen categories, which induces a continuous mapK(G) : K(C)→ K(C ′).

In this paper, we assume that all Waldhausen categories considered arise from Frobenious pairs.

3.3 Examples of Frobenius pairs and their derived categories

Two typical examples of Frobenius pairs are of our interest.
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(a) The first typical example of Frobenius pairs is provided by the categories of bounded complexes over
exact categories.

Let E be a small exact category (for definition, see [18] and [10]).We denote byC b(E ) the category of
bounded chain complexes overE . ThenC b(E ) is a small, exact category with degreewise split conflations,
that is, a sequenceX• → Y• → Z• is a conflation inC b(E ) if Xi → Yi → Zi is isomorphic to the split
conflationXi→Xi⊕Zi→Zi for eachi ∈Z. Actually,C b(E ) is even a Frobenius category in which projective
objects are exactly bounded contractible chain complexes over E . Recall that a chain complexX• is called
contractiblewhen the identity onX• is null-homotopic. Moreover, the stable category ofC b(E ) is the usual
bounded homotopy categoryK b(E ), that is,DF(C b(E )) = K b(E ).

Recall that a complexX• = (Xi,di)i∈Z over E is calledacyclic if di is a composite of a deflationπi

with an inflationλi such that(λi ,πi+1) is a conflation for alli. Let C b
ac(E )⊆ C b(E ) be the full subcategory

of objects which are homotopy equivalent to acyclic chain complexes overE . ThenC b
ac(E ) contains all

projective objects of the Frobenius categoryC b(E ), and is closed under extensions, kernels of deflations as
well as cokernels of inflations inC b(E ). ThusC b

ac(E ) inherits a Frobenius structure fromC b(E ) and

C :=
(
C

b(E ),C b
ac(E )

)

is a Frobenius pair. In particular, the pairC (or the associated categoryC b(E )) can be regarded as a Wald-
hausen category: A chain mapf • : X•→Y• in C b(E ) is called a cofibration iff i : Xi→Yi is a split inflation
in E for eachi ∈ Z; a weak equivalence if the mapping cone off • belongs toC b

ac(E ). Moreover,DF(C)
coincides with the bounded derived categoryDb(E ) of C b(E ), which is defined as follows:

Let E ′ be an arbitrary exact category. The objects ofDb(E ′) are the objects ofC b(E ′). The morphisms
of Db(E ′) are obtained from the chain maps by formally inverting the maps whose mapping cones are acyclic
(as complexes of objects inE ′). For example, ifE ′ is the usual exact categoryR-Mod with R a ring, then
Db(E ′) is the usual derived categoryDb(R). Further, any exact functorF : E1→ E2 between exact categories
induces a triangle functorD(F) : Db(E1)→Db(E2). For more details, see [10].

Assume that the exact structure ofE is induced from an abelian categoryA . That is,E ⊆ A is a full

subcategory such that it is closed under extensions, and that a sequenceX
f
−→Y

g
−→ Z with all terms inE is a

conflation inE if and only if 0→X
f
−→Y

g
−→ Z→ 0 is an exact sequence inA . Furthermore, assume thatE

is closed under kernels of epimorphisms in the abelian category. In this case, the chain mapf • : X•→Y• is a
weak equivalence inC if and only if f • is a quasi-isomorphism inC (A ), that is,H i( f •) : H i(X•)→ H i(Y•)
is an isomorphism inA for eachi ∈ Z.

Note that an exact categoryE itself can also be understood as a Waldhausen category with cofibrations
being inflations, and weak equivalences being isomorphisms. Up to now, there are at least three algebraic
K-theory spaces associated with a small exact categoryE : The QuillenK-theory space of the exact category
E , the WaldhausenK-theory space with respect to the Waldhausen categoryE , and the WaldhausenK-theory
space of the Waldhausen category defined by the Frobenius pair

(
C b(E ),C b

ac(E )
)
. However, these spaces

are the same up to homotopy equivalence (see [24, Section 1.9]) and [23, Theorem 1.11.7]). So, in this paper,
we always identify these spaces.

(b) The next example of Frobenius pairs is constructed from categories of finitely generated projective
modules.

Let R be a ring. Then the categoryR-proj of finitely generated projectiveR-modules is a small exact
category with split, short exact sequences as its conflations. Clearly, this exact structure onR-proj is induced
from the usual exact structure of the abelian categoryR-Mod. Following Quillen [18], thealgebraic K-theory
space K(R) of R is defined to be the spaceK(R-proj) of R-proj, and then-th algebraic K-group Kn(R) of R
to be then-th homotopy group ofK(R).

According to (a), the pairs
(
C b(R-proj),C b

ac(R-proj)
)

and
(
C b(P<∞(R)),C b

ac(P
<∞(R))

)
are Frobenius

pairs. In this way, bothC b(R-proj) andC b(P<∞(R)) can be regarded as small Waldhausen categories. Note
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thatP<∞(R) is a small exact category.
It is easy to see thatC b

ac(R-proj) consists of all bounded contractible chain complexes overR-proj, which
are exactly projective objects in the Frobenius categoryC b(R-proj), that is,C b(R-proj)-proj = C b

ac(R-proj).
ThusDF(C b(R-proj)) is the bounded homotopy categoryK b(R-proj). Since each compact object ofD(R)
is quasi-isomorphic to an object ofC b(R-proj), we know thatK b(R-proj) is equivalent toDc(R) via the
Verdier localization functorK (R)→D(R).

Hence, we see thatK(R), K(C b(R-proj)) andK(C) with C :=
(
C b(R-proj),C b

ac(R-proj)
)

are homotopy
equivalent, and therefore their algebraicKn-groups are all isomorphic.

Note thatC b(P<∞(R))-proj 6= C b
ac(P

<∞(R)) in general.
Let Sbe another ring andM• a bounded complex ofR-S-bimodules. IfRM• ∈C b(R-proj), then the tensor

functorM•⊗•S− : C b(S-proj)→ C b(R-proj) is a well-defined map of Frobenius pairs.

Finally, we establish a useful result about constructing maps between some special Frobenius pairs.

Lemma 3.1. Let R and S be rings, and let Q• ∈ C b(R⊗Z S
op
) such thatRQn ∈P<∞(R) for all n ∈ Z.

Consider the following Frobenius pairs:

A :=
(
C

b(S-proj),C b
ac(S-proj)

)
and B :=

(
C

b(P<∞(R)),C b
ac(P

<∞(R))
)
.

Then the following statements hold:
(1) The functorRQ•⊗•S− : A→ B is a well-defined map of Frobenius pairs.
(2) The induced functorDF(RQ•⊗•S−) : DF(A)→DF(B) of derived categories is given by the compo-

sition of the following functors:

DF(A) = DF(C b(S-proj)) K b(S-proj)
RQ•⊗•S−// K b(P<∞(R))

q // Db(P<∞(R)) DF(B)

where q is the Verdier localization functor.

Proof. Recall thatC b(S-proj) andC b(P<∞(R)) are Frobenius categories in which the conflations are
degreewise split exact sequences of chain complexes, and the projective objects are bounded contractible
chain complexes overS-proj andP<∞(R), respectively.

SinceQ• ∈ C b(R⊗Z S
op
) with RQn ∈P<∞(R) for all n∈ Z, we haveRQ• ∈C b(P<∞(R)), and therefore

G := RQ•⊗•S− : C b(S-proj)→ C b(P<∞(R)) is an additive functor. Clearly,G preserves both degreewise
split conflations and contractible chain complexes. ThusG is a map of Frobenius categories. In particular,G
induces a triangle functorK b(S-proj)→K b(P<∞(R)) of homotopy categories. To show(1), it remains to
check thatG can restrict to a functorC b

ac(S-proj)→C b
ac(P

<∞(R)). However, this follows from the following
two observations:

(I) C b
ac(S-proj) consists of all bounded contractible chain complexes overS-proj, which are exactly pro-

jective objects in the Frobenious categoryC b(S-proj).
(II) All bounded contractible chain complexes overP<∞(R) belong toC b

ac(P
<∞(R)).

ThusG is a map of Frobenius pairs. This shows(1).
Recall thatDF(G) : DF(A)→DF(B) is defined byX 7→G(X) for X ∈ C b(S-proj). Clearly,(2) holds.�

3.4 Fundamental theorems in algebraic K-theory of Frobenius pairs

Now, we recall some basic results on algebraicK-theory of Frobenious pairs in terms of derived categories.
Our main reference in this section is the paper [20] by Schlichting.

The following localization theorem may trace back to the localization theorem in [18, Section 5, Theorem
5] for exact categories, the fibration theorem in [24, Theorem 1.6.4] for Waldhausen categories, and the
localization theorem in [23, Theorem 1.8.2] for complicialbiWaldhausen categories. For a proof of the
present form, we refer the reader to [20, Propositions 3 and 5, p.126 and p.128]. Also, the approximation and
cofinality theorems are taken from [20, Propositions 3 and 4].
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Lemma 3.2. (1) Localization Theorem:

Let A F
−→ B G

−→ C be a sequence of Frobenius pairs. If the sequenceDF(A)
DF (F)
−→ DF(B)

DF (G)
−→ DF(C)

of derived categories is exact, then the induced sequence K(A)
K(F)
−→ K(B)

K(G)
−→ K(C) of K-theory spaces is a

homotopy fibration, and therefore there is a long exact sequence of K-groups

· · · −→ Kn+1(C)−→ Kn(A)
Kn(F)
−→ Kn(B)

Kn(G)
−→ Kn(C)−→ Kn−1(A)−→

·· · −→ K0(A)−→ K0(B)−→ K0(C)−→ 0

for all n ∈ N.
(2) Approximation Theorem:
Let G: B→C be a map of Frobenius pairs. If the associated functorDF(G) : DF(B)→DF(C) of derived

categories is an equivalence, then the induced map K(G) : K(B)→ K(C) of K-theory spaces is a homotopy
equivalence. In particular, Kn(G) : Kn(B)

≃
−→ Kn(C) for all n ∈ N.

(3) Cofinality Theorem:
Let G: B→C be a map of Frobenius pairs. If the associated functorDF(G) : DF(B)→DF(C) of derived

categories is an equivalence up to factors, then the inducedmap K(G) : K(B)→ K(C) of K-theory spaces
gives rise to an injection K0(G) : K0(B) −→ K0(C) and an isomorphism: Kn(G) : Kn(B)

≃
−→ Kn(C) for all

n > 0.

Note that the surjectivity of the last map in the long exact sequence in Lemma 3.2 (1) follows from the
fact thatK0(C) is isomorphic to the Grothendieck groupK0

(
DF(C)

)
of DF(C).

The following result is a slight variation of [20, Section 6.1] which has been mentioned there without
proof. For the convenience of the reader, we include here a proof (see also [16, Lemma 2.5] for a special
case).

Lemma 3.3. Thickness Theorem:
Let C := (C ,C0) be a Frobenius pair. Suppose that there is a triangulated categoryC together with a

triangle equivalence G: DF(C)→ C . Let X be a full triangulated subcategory ofC . DefineX to be the
full subcategory ofC consisting of objects X such that G(X) ∈X . Then the following statements are true:

(1) The categoryX containsC0 and is closed under extensions inC . Moreover,X naturally inherits a
Frobenius structure fromC , and becomes a Frobenius subcategory ofC such thatX -proj = C -proj.

(2) BothX := (X ,C0) andCX := (C ,X ) are Frobenius pairs, and the inclusion functorX → C and the
identity functorC → C induce the following commutative diagram of triangulated categories:

DF(X) � � //

≃

��

DF(C) //

≃G
��

DF(CX )

≃

��
X

� � // C // C /X

(3) If X is closed under direct summands inC , then both rows in the diagram of(2) are exact sequences
of triangulated categories.

Proof. (1) By definition ofDF(C) := C /C0, the objects ofDF(C) are the same as the objects ofC . Thus,
if M ∈ C0 or M ∈ C -proj, thenM ≃ 0 in DF(C). This implies thatX contains bothC0 andC -proj. SinceG
is a triangle functor andX is a full triangulated subcategory ofC , it is easy to see thatX is closed under
extensions inC .

SinceX is closed under extensions inC , we can endowX with an exact structure induced from the one
of C , namely, a sequenceX→Y→ Z with all terms inX is called a conflation inX if it is a conflation in
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C . Then one can check that, with this exact structure,X becomes an exact category. Now, we claim thatX
is even a Frobenius category such thatX -proj = C -proj. Indeed, it suffices to show that ifL→ P→ N is a
conflation inC with P∈ C -proj, thenL ∈ X if and only if N ∈ X . Actually, such a conflation can be extended
to a distinguished triangleL→ P→ N→ L[1] in C , and further, to a distinguished triangle inDF(C). Since
P≃ 0 in DF(C), we haveN ≃ L[1] in DF(C). As X is closed under shifts inC andG is a triangle functor,
we know thatG(L) ∈X if and only if G(N) ∈X . In other words,L ∈ X if and only if N ∈ X . This verifies
the claim.

(2) Note thatC0 ⊆ X ⊆ C andC0-proj⊆ X -proj = C -proj. ThusX := (X ,C0) andCX := (C ,X ) are
Frobenius pairs.

Recall thatDF(X) := X /C0 andDF(CX ) := C /X . Clearly, the inclusion functorλ : X → C and the
identity functorIdC : C → C are maps from the Frobenius pairX to the Frobenius pairsC, and fromC to
CX , respectively. So we have two triangle functorsDF(λ) : X /C0→ C /C0 andDF(IdC ) : C /C0→ C /X ,
which are induced from the inclusionX ⊆ C and the identity functor ofC , respectively.

Clearly,X containsC0, that is, the objects ofC0 is a subclass of the objects ofX with the morphism set
HomC0(X,Y) = HomX (X,Y) for all objectsX,Y in C0. Since the inclusionX ⊆ C is fully faithful, the functor
DF(λ) is also a fully faithful inclusion which gives rise to the following commutative diagram:

(∗) X /C0
� � DF (λ) //

≃

��

C /C0

≃G
��

X
� � // C .

Consequently,G induces a triangle equivalence

G1 : (C /C0)/(X /C0)
≃
−→ C /X .

By the universal property of the Verdier localization functor q1 : C → C /X (respectively,q2 : C /C 0→
(C /C0)/(X /C0)), there is a triangle functorφ : C /X −→ (C /C0)/(X /C0) (respectively,ψ : (C /C0)/(X /C0)→
C /X ) such thatq2q0 = φq1 (respectively,DF(IdC ) = ψq2), whereq0 : C → C /C 0 is the Verdier localization
functor. Sinceq1 = DF(IdC )q0, we have

ψφq1 = ψq2q0 = DF(IdC )q0 = q1 and φDF (IdC )q0 = φq1 = q2q0.

It follows thatψφ = Id andφDF(IdC ) = q2. As φψq2 = φψφDF (IdC ) = φDF(IdC ) = q2, we obtainφψ = Id.
Thusφ is a triangle isomorphism.

Now, we defineG := G1φ : C /X → C /X . Then the following diagram of triangulated categories

(∗∗) C /C0
DF (IdC )//

≃G
��

C /X

≃G
��

C
q // C /X .

is commutative, whereq is the Verdier localization functor. Now,(2) follows from (∗) and (∗∗).
(3) In this case,X is the kernel of the localization functorq : C → C /X . Thus(3) follows. �.

3.5 Algebraic K-theory of differential graded algebras

In this subsection, we shall give a definition ofK-theory spaces of differential graded algebras, which gen-
eralizes the one ofK-theory spaces of ordinary rings and modifies slightly the definition in [20]. But, at the
level of homotopy groups, the two definitions give the isomorphic algebraicKn-groups forn∈ N.

16



Throughout this subsection,k stands for an arbitrary but fixed commutative ring (for example, the ringZ

of integers), and all rings considered here arek-algebras. Note that each ordinary ring with identity can be
regarded as aZ-algebra.

Let A be a differential graded (dg) associative and unitaryk-algebra, that is,A = ⊕n∈ZAn is aZ-graded
k-algebra with a differentialdn : An→ An+1 such that(An,dn)n∈Z is a chain complex ofk-modules and

(xy)dm+n = x(ydn)+ (−1)n(xdm)y

for m∈ Z, x∈ Am andy∈ An. Thus the mapA⊗•k A→ A, a⊗k b 7→ ba for a,b∈A, is a chain map.
A left dg A-moduleM• is aZ-graded left moduleM• = ⊕n∈ZMn over theZ-gradedk-algebraA, with

a differentiald such that(Mn,d)n∈Z is a complex ofk-modules, and for anya∈ Am,x ∈Mn, the following
holds:

(ax)dm+n = a(xdn)+ (−1)n(adm)x.

In particular, each dgA-module is aZ-gradedA-module (forgetting the differential).
We should observe that the dg algebra(A,d) and left dgA-moduleM• defined in this paper are actually

the dg algebra(A
op
,d) and right dgA

op
-module in the sense of [9, Summary], respectively.

For a dgA-moduleM•, we denote byM•[1] the shift ofM• by degree 1.
A homomorphismf • : M•→ N• of dgA-modules is a chain map of complexes overk, which commutes

with theA-actions onM• andN•. We say thatf • is aquasi-isomorphismif it is a quasi-isomorphism as a
chain map of complexes overk, that is,H i( f •) : H i(M•)→ H i(N•) is an isomorphism for everyi ∈ Z. For
more details, we refer to [9, Summary].

We denote byC (A) the category of left dgA-modules. It is known thatC (A) is a Frobenius category
(see [9, Section 2]) by declaring a conflation to be a short sequence of dgA-modules such that the underlying
sequence of gradedA-modules (forgetting differentials) is split exact. The stable category ofC (A) is the dg
homotopy categoryK (A) in which the objects are the dgA-modules and the morphisms are the homotopy
classes of homomorphisms of dgA-modules. By inverting all quasi-isomorphisms of dgA-modules, we
obtain thedg derived categoryD(A) of A. This is a triangulated category and generated by the dg module
A, that is,D(A) = Tria(A).

Observe that an ordinaryk-algebraA can be regarded as a dg algebra concentrated in degree 0, and that
the above-mentioned categoriesC (A), K (A) andD(A) coincide with the usual complex, homotopy and
derived categories ofA-modules, respectively. In this case, each dgA-module is exactly a complex ofA-
modules, and a homomorphism of dgA-modules is a chain map of complexes overA. Moreover, for any
X• ∈ C (A), the dg endomorphism algebra End•A(X•) is a dg algebra with the differential and multiplication
◦ given in Subsection 2.2. By the formula on the multiplication ◦, if Y• ∈ C (A) is another dgA-module, then
the Hom-complex Hom•A(X•,Y•) is actually a left dg End•A(X•)- and right dg End•A(Y•)- bimodule.

A dg A-module is said to beacyclic if it is acyclic as a complex ofk-modules. A dgA-moduleM• is
said to have theproperty(P) if HomK (A)(M

•,N•) = 0 for any acyclic dgA-moduleN•. Note that the class
of dg A-modules with the property(P) is closed under extensions, shifts, direct summands and direct sums
in C (A). We denote byK (A)p the full subcategory ofK (A) consisting of all modules with the property
(P). ThenK (A)p⊆K (A) is a triangulated subcategory containingA and being closed under direct sums.
More important, the Verdier localization functorq : K (A)→ D(A) restricts to a triangle equivalencẽq :
K (A)p

≃
−→D(A) (see [9, Section 3.1]). Particularly, this implies that anyquasi-isomorphism between two

dg A-modules with the property(P) is an isomorphism inK (A) and that, for each dgA-moduleM•, there
is a (functorial) quasi-isomorphismpM•→M• of dg A-modules such thatpM• has the property(P).

Let B be another dg algebra andU• a dgB-A-bimodule. For a dgA-moduleV•, we defineU•⊗•
A

V• to
be the quotient complex ofU•⊗•kV• modulo the subcomplexW• := (Wn)n∈Z, whereWn is thek-submodule
of U•⊗n

k V• generated by all elementsua⊗ v− u⊗ av for u ∈U r , a ∈ A
s andv ∈ Vt with r,s, t ∈ Z and
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n = r +s+ t. ThenU•⊗•
A

V• is indeed a dgB-module. This gives rise to the following tensor functor

U•⊗•A− : C (A)−→ C (B), V• 7→U•⊗•A V•.

Furthermore, the total left-derived functorU•⊗L

A
− : D(A)→ D(B) of this tensor functor is defined by

V• 7→U•⊗•
A

(pV•) (see [9, Section 6]). In particular, ifV• has the property(P), thenU•⊗L

A
V• = U•⊗•

A
V•

in D(B). Note that ifA andB are dg algebras concentrated in degree 0, then the above tensor functor and
total left-derived functor coincide with the ones defined inSubsection 2.2.

A dg A-moduleM is calledrelatively countable projective(respectively,countable projective) if there is
a dgA-moduleN such thatM⊕N is isomorphic to

L
i∈I A[ni ] as dgA-modules (respectively, asZ-graded

A-modules), whereI is a countable set andni ∈ Z. Observe that relatively countable projective modules are
countable projective modules and always have the property(P) because HomK (A)(A[i],M) ≃ H−i(M) for
all i.

Let X (A) be the full subcategory ofC (A) consisting of countable projectiveA-modules. ThenX (A)
is an essentially small category. This is due to the following observation: LetG (A) be the category ofZ-
gradedA-modules. For everyX :=

L
i∈Z Xi ∈ G (A), we have the following:(a) The classU (X) consisting

of isomorphism classes of direct summands ofX in G (A) is a set. In fact, there is a surjection from the set
of idempotent elements of EndG (A)(X) to U (X). (b) The classV (X) consisting of all dgA-modules with
X as the underlying gradedA-module is also a set sinceV (X) is contained into the set{(X,di)i∈Z | di ∈
Homk(Xi,Xi+1)}, which is a countable union of sets.

Furthermore,X (A) is closed under extensions, shifts, direct summands and countable direct sums in
C (A).

Let C (A,ℵ0) be the smallest full subcategory ofX (A) such that it
(1) contains all relatively countable projectiveA-modules;
(2) is closed under extensions and shifts;
(3) is closed under countable direct sums.

Then C (A,ℵ0) is essentially small, inherits an exact structure fromC (A), and becomes a fully exact
subcategory ofC (A). Even more,C (A,ℵ0) is a Frobenius subcategory ofC (A), in which projective-
injective objects are the ones ofC (A) belonging toC (A,ℵ0). This can be concluded from the following
fact: For eachM ∈ C (A), there is a canonical conflationM→C(M)→M[1] in C (A) such thatC(M) is a
projective-injective object ofC (A) (see [9, Section 2.2]). HenceC (A,ℵ0) provides a natural Frobenius pair
(C (A,ℵ0),C (A,ℵ0)-proj), and the inclusionC (A,ℵ0) ⊆ C (A) induces a fully faithful inclusion from the
derived categoryDF(C (A,ℵ0)) of C (A,ℵ0) to K (A).

We denote byK (A,ℵ0) the full subcategory ofK (A) consisting of those complexes which are iso-
morphic inK (A) to objects ofC (A,ℵ0). ThenK (A,ℵ0) is a triangulated subcategory ofK (A) by the
condition(2), and the inclusionDF(C (A,ℵ0))⊆K (A,ℵ0) is a triangle equivalence. Since the full subcat-
egory ofX (A) consisting of all dgA-modules with the property(P) satisfies the above conditions(1)-(3),
we deduce that each object ofC (A,ℵ0) has the property(P). This implies thatK (A,ℵ0)⊆K (A)p. Fur-
thermore, by definition,C (A,ℵ0) is closed under countable direct sums inC (A), and thereforeK (A,ℵ0)
is closed under countable direct sums inK (A)p. It follows from Lemma 2.1 (1) thatK (A,ℵ0) is closed
under direct summands inK (A)p.

Now, letX (A) be the full subcategory ofD(A) consisting of all those objects which are isomorphic in
D(A) to the images of objects ofK (A,ℵ0) under the equivalencẽq : K (A)p

≃
−→D(A). ThenX (A) is a

triangulated subcategory ofD(A) closed under direct summands, andq̃ induces a triangle equivalence from
K (A,ℵ0) to X (A). In all, we have

DF(C (A,ℵ0))⊆K (A,ℵ0)⊆K (A)p, X (A)⊆D(A)

and
DF(C (A,ℵ0))

≃
−→K (A,ℵ0)

≃
−→X (A)
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as triangulated categories.
Recall that a dgA-moduleM is called afinite cell moduleif there is a finite filtration

0 = M0⊆M1⊆M2⊆ ·· · ⊆Mn = M

of dg A-modules such that, for each 0≤ i ≤ n−1∈ N, the quotient moduleMi+1/Mi is isomorphic toA[ni]
for someni ∈ Z (see [11, Part III]). Clearly, each finite cellA-module belongs toC (A,ℵ0). Moreover,
the category of finite cellA-modules is closed under extensions inC (A,ℵ0). Actually, this category is a
Frobenius subcategory ofC (A,ℵ0), in which projective-injective objects are the ones ofC (A,ℵ0) belonging
to this subcategory.

An object M ∈ D(A) is said to becompactif HomD(A)(M,−) commutes with direct sums inD(A).
Let Dc(A) be the full subcategory ofD(A) consisting of all compact objects. ThenDc(A) is the smallest
full triangulated subcategory ofD(A) containingA and being closed under direct summands. In fact, each
compact object ofD(A) is a direct summand of a finite cell module inD(A) (see [9, Section 5]). This
implies the following chain of full subcategories:Dc(A)⊆X (A)⊆D(A).

Now, we defineW A to be the full subcategory ofC (A,ℵ0) consisting of all those objects inC (A,ℵ0)
such that they are isomorphic inD(A) to compact objects ofD(A). Clearly,W A is essentially small. More-
over, by applying Lemma 3.3 to the Frebenius pairC (A,ℵ0) and the equivalenceDF(C (A,ℵ0))

≃
−→X (A)

with the triangulated subcategoryDc(A) of X (A), we deduce thatW A is a Frobenius subcategory of
C (A,ℵ0) with the same projective objects, and that the following diagram of triangulated categories com-
mutes:

(⋆) DF(W A)
� � //

≃

��

DF(C (A,ℵ0))

≃

��

� � // K (A)p

≃q̃
��

� � // K (A)
q

zzttttttttt

Dc(A) � � // X (A) � � // D(A)

From now on, we regardW A as a Waldhausen category in the sense of Subsection 3.2, namely, it arises
exactly from the Frobenius pair(W A,W A-proj).

We define thealgebraic K-theory space of the dg k-algebraA to be the spaceK(W A), denoted byK(A).
Forn∈N, then-th K-groupof A is defined to be then-th homotopy group ofK(A), denoted byKn(A). Note
that K0(A) is isomorphic toK0(DF(W A)), the Grothendieck group of the (essentially small) triangulated
categoryDF(W A) of the Frobenius pair(W A,W A-proj)(see Subsection 3.2).

Consequently, we have obtained the following result.

Lemma 3.4. The Verdier localization functorK (A)→D(A) induces a triangle equivalence:DF(W A)
≃
−→

Dc(A). In particular, K0(W A) is isomorphic to the Grothendieck group K0(D
c(A)) of Dc(A).

To illustrate our definition ofK-theory spaces of dg algebras, we first establish the following result.

Lemma 3.5. LetFA be the full subcategory ofW A consisting of all finite cellA-modules. Then the inclusion
FA→W A induces an injection K0(FA)→K0(W A) and an isomorphism Kn(FA)

∼
−→Kn(W A) for each n> 0.

Proof. Note thatFA is a Frobenius subcategory ofW A and that the inclusionsFA ⊆W A ⊆ C (A) induce
fully faithful inclusionsDF(FA)⊆DF(W A)⊆K (A)p (see Subsection 3.2).

To show that the inclusionDF(FA)→ DF(W A) is an equivalence up to factors, we shall compare the
images of these two categories under the equivalence ˜q : K (A)p→D(A) in the above diagram (⋆). In fact,

by Lemma 3.4, the restriction of the functor ˜q to DF(W A) gives rise to a triangle equivalenceDF(W A)
≃
−→

Dc(A). Let Y be the smallest full triangulated subcategory ofDc(A) containingA. Since the objects
of DF(FA) are the same as the ones ofFA, the image of the restriction of the functor ˜q to DF(FA) is
contained inY , and therefore is equal toY . Thusq̃ induces a triangle equivalenceDF(FA)

≃
−→ Y . Since
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Dc(A) = thick(A) andA ∈ Y ⊆ Dc(A), we have thick(Y ) = Dc(A). So the inclusionY → Dc(A) is an
equivalence up to factors. Consequently, the inclusionDF(FA)→DF(W A) induced fromFA ⊆W A is also
an equivalence up to factors. Now, Lemma 3.5 follows from Lemma 3.2 (3).�.

Remark 3.6. In [20, Section 12.3], aK-theory spectrumK(FA) is defined for the categoryFA. Moreover, it
is known in [20, Theorem 8] that, for eachn∈ N, then-th homology group ofK(FA) is given by

πn
(
K(FA)

)
=

{
Kn(FA) if n > 0,
K0(D

c(A)) if n = 0.

Thus Lemmas 3.5 and 3.4 show thatπn
(
K(FA)

)
≃Kn(A) for all n∈N, and therefore, at the level of homotopy

groups, our definition ofK-theory for dg algebras is isomorphic to the one defined by Schlichting in [20].

The following result, together with Lemma 3.5, may explain the advantage of definingK-theory of arbi-
trary dg algebras by using the categoryW A rather thanFA.

Lemma 3.7. Let A be an algebra with identity, and letA be the dg algebra A concentrated in degree0. Then
K(A)

∼
−→ K(A) as K-theory spaces.

Proof. Clearly,C (A) = C (A), K (A) = K (A) andD(A) = D(A). In particular,Dc(A) = Dc(A). By
the construction ofW A, we see thatC b(A-proj)⊆W A andC b(A-proj)-proj = C b

ac(A-proj)⊆W A-proj. Thus
the inclusionj : C b(A-proj)→W A is a fully faithful map of Frobenius pairs. In other words,C b(A-proj) is
a Frobenius subcategory ofW A. This implies that the triangle functorDF( j) : DF(C b(A-proj))→DF(W A)
is fully faithful (see Subsection 3.2). Now we show thatDF( j) is an equivalence. On the one hand, the
localization functorq : K (A)→ D(A) induces an equivalenceq1 : DF(W A)→ Dc(A) by Lemma 3.4. On
the other hand, the composite of the following functors:

K
b(R-proj) = DF(C b(A-proj))

DF ( j)
−→ DF(W A)

q1
−→D

c(A)

is also an equivalence induced byq. ThusDF( j) is a triangle equivalence. By Lemma 3.2 (2), we know that
K(A)

∼
−→ K(W A) =: K(A) asK-theory spaces.�

The following result is in the literature [7, Proposition 6.7 and Corollary 3.10] where proofs use knowl-
edge on model categories. For the convenience of the reader,we include here another proof based on the
facts mentioned in the present paper.

Lemma 3.8. Let λ : B→ A be a homomorphism of dg algebras which is a quasi-isomorphism. Then the
functor A⊗•

B
− : C (B)→ C (A) induces a homotopy equivalence K(B)

∼
−→ K(A) of K-theory spaces. In

particular, if H i(A) = 0 for all i 6= 0, then K(A)
∼
−→ K(H0(A)).

Proof. Note that the functorA⊗•
B
− :W B→W A is a well-defined map of Frobenius pairs and that objects

belonging toW B orW A always have the property(P). So we can form the following commutative diagram
of functors:

DF(W B)

≃

��

DF (A⊗•
B
−)

// DF(W A)

≃

��
Dc(B)

A⊗L

B
−

// Dc(A)

where the equivalences in vertical direction are induced bythe localization functorsK (B)→ D(B) and
K (A)→ D(A), respectively (see Lemma 3.4). Sinceλ : B→ A is a quasi-isomorphism, it follows from

20



[11, Proposition 4.2] that the functorA⊗•
B
− induces a triangle equivalenceD(B)

∼
−→D(A) which restricts

to an equivalenceDc(B)
≃
−→Dc(A) (see also [9, Section 3.1]). Thus the functor

DF(A⊗•B−) : DF(W B)−→DF(W A)

is a triangle equivalence. Now, the first part of Lemma 3.8 follows from Lemma 3.2 (2).
Suppose thatA := (Ai ,di)i∈Z with H i(A) = 0 for all i 6= 0. We defineτ≤0(A) to be the following dg

algebra:

· · · −→ A−3 d−3

−→ A−2 d−2

−→ A−1 d−1

−→ Ker(d0)−→ 0−→ ·· · .

Then there exist two canonical quasi-isomorphismsτ≤0(A)→ A andτ≤0(A)→ H0(A) of dg algebras. It
follows from the first part of Lemma 3.8 that

K(τ≤0(A))
∼
−→ K(A) andK(τ≤0(A))

∼
−→ K(H0(A)).

Combining these homotopy equivalences with Lemma 3.7, we see thatK(A)
∼
−→ K(H0(A)) asK-theory

spaces.�

The following result will be used in proofs of our main results.

Lemma 3.9. Let A be an algebra and P• ∈ C b(A-proj). DefineS := End•R(P•) andP to be the full subcate-
gory ofC b(A-proj) consisting of all those complexes which, regarded as objects inD(A), belong toTria(P•).
Then K(S)

∼
−→ K(P ) as K-theory spaces.

Proof. We remark thatP is a Frobenius subcategory ofC b(A-proj) such that its derived categoryDF(P )
is equivalent toX := Tria(P•)∩Dc(A) via the Verdier localization functorq : K (A)→D(A).

In fact, sinceX is a full triangulated subcategory ofDc(A) andDF(C b(A-proj)) = K b(A-proj)
≃
−→

Dc(A), we see thatP is exactly the full subcategory ofC b(A-proj), in which the objects are complexes in
C b(A-proj) such that they are isomorphic inDc(A) to objects ofX . Hence, by Lemma 3.3,P is a Frobenius
subcategory ofC b(R-proj) and the functorq induces an equivalenceq1 : DF(P )

≃
−→X .

Now we view A as a dg algebra concentrated in degree 0, and letX be the full subcategory ofW A

consisting of those objects that are isomorphic inDc(A) to objects ofX . Then, applying Lemma 3.3
to the Frobenius pairW A and the equivalenceDF(W A)→ Dc(A) in Lemma 3.4, we get a Frobenius pair
(X ,W A-proj) which is included in the Frobenius pair(W A,W A-proj), and an equivalenceq2 : DF(X )

≃
−→X

induced from the functorq. Note thatX -proj =W A-proj. Recall that, for a dg algebraA, W A-proj consists
of all those objects which are homotopy equivalent to the zero object inC (A).

In the following, we first show thatK(P )
∼
−→ K(X ), and then thatK(S)

∼
−→ K(X ) asK-theory spaces.

With these two homotopy equivalences in mind, we will obviously haveK(S)
∼
−→ K(P ), as desired.

Let us check thatK(P )
∼
−→ K(X ). Actually, it follows from C b(A-proj) ⊆ W A that P ⊆ X . Since

P -proj = C b
ac(A-proj)⊆W A-proj = X -proj, the inclusionµ : P → X of Frobenius categories induces a fully

faithful functorDF(µ) : DF(P )→DF(X ). Sinceq1 = q2DF(µ), we see thatDF(µ) is an equivalence. Thus
the mapK(P )→ K(X ) is a homotopy equivalence by Lemma 3.2 (2).

Next, we prove that there is a homotopy equivalenceK(S)
∼
−→ K(X ).

To prove this statement, we defineG := P•⊗•
S
− : C (S)→ C (A) and claim thatG : W S→ X is a map

of Frobenius pairs. We first show thatG is well-defined, that is,G(W S)⊆ X . In fact, as a gradedA-module,
P• is equal to

L
i∈Z Pi , which is a finitely generated projectiveA-module. LetX (S) andX (A) be the full

subcategories ofC (S) and C (A) consisting of countable projective modules, respectively. Then, due to
G(S) = P•⊗•

S
S ≃ P•, we see that the functorG : X (S)→ X (A) is well defined. Note thatG(S) ≃ P• ∈

C b(A-proj) ⊆ C (A,ℵ0) and the functorG : X (S)→ X (A) preserves conflations and commutes with both
shifts and countable direct sums. This implies that the following full subcategory

G−1(C (A,ℵ0)) := {X ∈ X (S) |G(X) ∈ C (A,ℵ0)}
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of X (S) contains all relatively countable projectiveA-modules, and is closed under extensions, shifts and
countable direct sums.

SinceC (S,ℵ0) is the smallest subcategory ofX (S) which admits these properties, we haveC (S,ℵ0)⊆
G−1(C (A,ℵ0)). ThusG(C (S,ℵ0))⊆ C (A,ℵ0) andG : C (S,ℵ0)→ C (A,ℵ0) is a well-defined functor.

Furthermore, since eachM ∈ C (S,ℵ0) always has the property(P), we see thatP•⊗L

S
M = G(M) in

D(A). So, to show thatG(W S) ⊆ X , it suffices to prove that ifM ∈ W S, thenP•⊗L

S
M ∈X . Actually,

let M ∈W S. ThenM ∈ Dc(S). As P•⊗L

S
S ≃ P• ∈ Dc(A), the functorP•⊗L

S
− : D(S)→ D(A) preserves

compact objects. This impliesP•⊗L

S
M ∈Dc(A). Note thatP•⊗L

S
− commutes with direct sums andD(S) =

Tria(S). By Lemma 2.1 (2), we haveP•⊗L

S
M ∈ Tria(P•). ThusP•⊗L

S
M ∈ Tria(P•)∩Dc(A) = X .

As a result, we haveG(W S)⊆ X . SinceG always preserves conflations and homotopy equivalences, we
know thatG sends projective objects ofW S to the ones ofX , and thereforeG :W S→ X is a map of Frobenius
pairs.

Finally, we show that the functorDF(G) : DF(W S)→DF(X ) induced fromG is a triangle equivalence.
Indeed, by [9, Section 3.1], the functorG = P•⊗•

S
− : C (S)→ C (A) induces a triangle equivalence:

P•⊗L

S − : D(S)
≃
−→ Tria(P•),

which restricts to an equivalenceDc(S)
≃
−→X sinceX coincides with the full subcategory of Tria(P•)

consisting of all compact objects in Tria(P•) by Lemma 2.2 (1). Moreover, according to Lemma 3.4, the
localization functorK (S)→ D(S) induces an equivalence ˜q : DF(W S)

≃
−→ Dc(S). Consequently, we can

form the following commutative diagram of functors:

DF(W S)

q̃≃

��

DF (G) // DF(X )

q ≃

��
Dc(S)

P•⊗L

S
−

≃
// X

ThusDF(G) : DF(W S)
≃
−→DF(X ) is an equivalence. This implies thatK(S)

∼
−→ K(X ) by Lemma 3.2 (2).

As K(P )
≃
−→ K(X ), we see thatK(S)

∼
−→ K(P ) asK-theory spaces.�

As a further preparation for proofs of our main results, we now recall a useful fact aboutK-theory spaces
of ordinary rings, which is a revisited version of a special case of the classical ‘resolution theorem’ due to
Quillen (see [18, Section 4, Corollary 2]). For more generalarrangement of this result for exact categories,
we refer the reader to [21, Proposition 3.3.8]. For the convenience of the reader, we include here a proof for
this special case.

Lemma 3.10. Let A be a ring. Then the following are true.
(1) The inclusions A-proj →֒P<∞(A) →֒ A-Mod of exact categories induce equivalences:

K
b(A-proj)

≃
−→D

b(P<∞(A))
≃
−→D

c(A).

(2) The inclusion A-proj →֒P<∞(A) induces a homotopy equivalence K(A)
∼
−→ K(P<∞(A)), where

K(P<∞(A)) is the K-theory space of the exact categoryP<∞(A).

Proof. (1) Recall thatDb(P<∞(A)) denotes the bounded derived category of the exact categoryP<∞(A)
defined in Subsection 3.3. By the dual of [10, Theorem 12.1], the inclusionA-proj→P<∞(A) induces a
fully faithful functor K b(A-proj)→ Db(P<∞(A)). Actually, this functor is also dense since each mod-
ule in P<∞(A) has a finite resolution by finitely generated projectiveA-modules. ThusK b(A-proj)

≃
−→

Db(P<∞(A)). Note that the inclusionP<∞(A)→ A-Mod is an exact functor of exact categories. This
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directly yields a triangle functorDb(P<∞(A))→D(A) which factorizes throughDc(A). Since the compo-
sition of the following two functors:

K
b(A-proj)

≃
−→D

b(P<∞(A))−→D
c(A)

is an equivalence, we see that the latter is also an equivalence. This shows(1).
(2) The inclusionA-proj →֒P<∞(A) induces an inclusion functorC b(A-proj) →֒ C b(P<∞(A)) and a

map between the Frobenius pairs

A :=
(
C

b(A-proj),C b
ac(A-proj)

)
and B :=

(
C

b(P<∞(A)),C b
ac(P

<∞(A))
)
.

Note thatK(A)≃ K(A) andK(B)≃ K(P<∞(A)). Now, (2) follows from(1) and Lemma 3.2 (2).�

4 Algebraic K-theory of recollements: Proof of Theorem 1.1

The main purpose of this section is to prove Theorem 1.1 and Corollary 1.2. We first make a few preparations.

4.1 Homotopy-split injections on K-theory spaces of Frobenius pairs

As the first step toward the proof of our main result, Theorem 1.1, we will discuss when maps between
K-theory spaces, which are induced from maps of Frobenius pairs, are homotopy-split injections.

Let X andY be two pointed topological spaces. By a map between topological spaces we always mean
a pointed and continuous map. Recall that a mapf : X→Y is called ahomotopy-split injectionif there is a
mapg : Y→ X such thatf g : X→ X is pointed-homotopic to the identity map ofX. Dually, we can define
the homotopy-split surjections.

Homotopy-split injections provide us usually with decompositions of topological spaces. The follow-
ing result, due to [22, Corollary 7.1.5 and Theorem 7.1.14] and [26, Chapter III, 6.9∗], is useful for our
considerations.

Lemma 4.1. Let (X,x0)
f
−→ (Y,y0)

g
−→ (Z,z0) be a homotopy fibration. Suppose that X,Y and Z are homo-

topy equivalent to CW-complexes and that g induces a surjective mapπ0(g) : π0(Y,y0)→ π0(Z,z0) of the0-th
homotopy groups. If the map f is a homotopy-split injection,then Y is homotopy equivalent to the product of
X and Z.

Recall that theK-theory spaceK(C ) of a small Waldhausen categoryC is always homotopy equivalent to
a CW-complex (see Subsection 3.1). So, in our consideration, we can apply Lemma 4.1 to discuss homotopy-
split injections betweenK-theory spaces of small Waldhausen categories. In fact, by Lemmas 3.2 (1) and
4.1, we have the following consequence forK-theory spaces.

Corollary 4.2. LetA F
−→B G

−→C be a sequence of Frobenius pairs. Suppose that the sequenceDF(A)
DF (F)
−→

DF(B)
DF (G)
−→ DF(C) of triangulated categories is exact. If the map K(F) : K(A)→ K(B) induced by F is a

homotopy-split injection, then
K(B)

∼
−→ K(A)×K(C).

Next, we establish the following result which generalizes Lemma 3.2 (2).

Lemma 4.3. Let H : A→ B and G: B→ C be maps of Frobenius pairs such that
(1) DF(GH) : DF(A)−→DF(C) is fully faithful, and
(2) Im(DF(G)) = Im(DF(GH)) in DF(C).

Then the map K(H) : K(A)→ K(B) induced by H is a homotopy-split injection.
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Proof. Let B := (B ,B0), C := (C ,C0) and X := Im(DF(G)). By (1) and (2), we see thatX is a
full triangulated subcategory ofDF(C). Let X be the full subcategory ofC consisting of all these objects
which, viewed as objects ofDF(C), belong toX , and letX := (X ,C0). ThenX is a Frobenius pair and
DF(X) = X by Lemma 3.3. Clearly, we haveG(B ) ⊆ X . This implies thatG : B→ C induces a map
E : B→ X of Frobenius pairs, that is,G is a composition ofE with the inclusionX →֒ C. Now we consider
the following commutative diagrams:

A
H //

EH
��

B
E

����
�
�
�
��

G
��

X �� // C

and DF(A)
DF (H) //

DF (EH)
��

DF(B)
DF (E)

zzuuuuuuuuu

DF (G)
��

DF(X) �� // DF(C)

By (1), we see thatDF(EH) = DF(E)DF(H) : DF(A)→ DF(X) is fully faithful. By (2), we haveX =
Im(DF(GH)) = Im(DF(EH)). ThusDF(EH) : DF(A)→ DF(X) is an equivalence between derived cate-
gories of Frobenius pairs. Now, it follows from Lemma 3.2 (2)that the map

K(EH) = K(H)K(E) : K(A)−→ K(X)

is a homotopy equivalence. This means thatK(H) is a homotopy-split injection.�

As an application of Lemma 4.3, we have the following result which will serve as a preparation for the
proof of Theorem 1.1.

Corollary 4.4. Let R and S be rings, and let Q• be a complex inC b(R⊗Z S
op
) with RQn ∈P<∞(R) for

all n ∈ Z. Let Y be a full triangulated subcategory ofDc(S), and defineP ⊆ C b(S-proj) to be the full
subcategory of objects which belong toY as objects inDc(S). Then the following hold:

(1) The pair P := (P ,C b
ac(S)-proj) is a Frobenius pair and the inclusionP ⊆ C b(S-proj) is a map of

Frobenius pairs.
(2) If the functor Q•⊗L

S− : D(S)→ D(R) induces a triangle equivalenceY
≃
−→X := Tria(RQ•)∩

Dc(R), then the map K(P)→K(C b(S-proj)) induced from the inclusionP→C b(S-proj) is a homotopy-split
injection.

Proof. (1) We consider the Frobenius pairC b(S-proj) and the triangle equivalenceDF(C b(S-proj)) =

K b(S-proj)
≃
−→ Dc(S) induced by the canonical localization functor. Then, by Lemma 3.3 (1), we know

that P is a Frobenius subcategory ofC b(S-proj), and the inclusionP ⊆ C b(S-proj) is a map of Frobenius
pairs.

(2) Let B :=
(
C b(P<∞(R)),C b

ac(P
<∞(R))

)
. ThenDF(B) = Db(P<∞(R)). SinceQ• ∈ C b(R⊗Z S

op
)

with RQn ∈P<∞(R) for all n∈ Z, it follows from Lemma 3.1 that

G := RQ•⊗•S− : C
b(S-proj)−→ B

is a map of Frobenius pairs and the derived functorDF(G) : DF(C b(S-proj)) → DF(B) is given by the
composition of the following functors:

DF(C b(S-proj)) K b(S-proj)
RQ•⊗•S−// K b(P<∞(R))

q // Db(P<∞(R)) DF(B)

whereq is the localization functor.
SinceD(S) = Tria(SS) andQ•⊗L

S S= Q• in D(R), the image of the functorQ•⊗L
S− : D(S)→D(R) is

contained in Tria(RQ•) by Lemma 2.1 (2). So we writeQ•⊗L
S− : D(S)→D(R) as the following composi-

tion: D(S)→ Tria(RQ•) →֒ D(R). SinceQ• ∈ C b(R⊗Z S
op
) with RQn ∈P<∞(R) for all n∈ Z, it follows
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from P<∞(R) ⊆ Dc(R) that RQ• ∈ Dc(R). Note thatK b(S-proj)
≃
−→ Dc(S) andQ•⊗L

S S= Q• in D(R).
Thus the restriction ofQ•⊗L

S− to Dc(S) is actually a triangle functor fromDc(S) to X .

Suppose thatQ•⊗L

S− : D(S)→D(R) induces a triangle equivalenceY
≃
−→X . LetF : P→C b(S-proj)

be the inclusion map of the Frobenius pairs. Now, we show that
(1) DF(GF) : DF(P)→DF(B) = Db(P<∞(R)) is fully faithful, and
(2) Im(DF(G)) = Im(DF(GF))⊆Db(P<∞(R)).

In fact, by Lemma 3.10, the inclusionj : P<∞(R)→ R-Mod induces a triangle equivalence

D( j) : D
b(P<∞(R))

≃
−→D

c(R).

According to Lemma 3.3 (2), we can construct the following commutative diagram of triangulated categories
(up to natural isomorphism):

DF(P)
DF (F) //

≃

��

K b(S-proj)
DF (G) //

≃

��

Db(P<∞(R))
D( j)

&&MMMMMMMMMM

≃

��
Y

≃

**VVVVVVVVVVVVVVVVVVVVVVVVV
� � // Dc(S)

Q•⊗L
S− //

%%KKKKKKKKKK
Dc(R) � � // D(R)

X

+
�

88rrrrrrrrrrr

This implies thatD( j)DF(G)DF(F) : DF(P)→Dc(R) is fully faithful and that

Im
(
D( j)DF(G)

)
= Im

(
(Q•⊗L

S−)|Dc(S)

)
= X = Im(D( j)DF (G)DF(F)).

Now, (1) and(2) follow from the equivalenceD( j) : Db(P<∞(R))
≃
−→ Dc(R). By Lemma 4.3, we infer

that the mapK(F) : K(P)→ K(C b(S-proj)) is a homotopy-split injection.�

From the proof of Corollary 4.4, we obtain the following result.

Lemma 4.5. let R and S be rings, and let P• ∈ C (R⊗Z S
op
) such thatRP• ∈ C b(R-proj), HomR(P•,R) ∈

Dc(S) and the functor P•⊗L
S− : D(S)→ D(R) is fully faithful. Assume that there exists a complex Q• ∈

C−(S⊗Z R
op
) such thatSQn ∈P<∞(S) for all n ∈ Z and that

Q•⊗L

R−
≃
−→ HomR(P•,R)⊗L

R− : D(R)−→D(S).

Then the map K(P•⊗•S−) : K(S)→ K(R), induced from the mapRP•⊗•S− : C b(S-proj)→ C b(R-proj), is a
homotopy-split injection.

Proof. We first point out thatQ• in Lemma 4.5 can be chosen to be a bounded complex, that is,Q• ∈
C b(S⊗Z R

op
). Indeed, letQ• be of the from:

· · · −→Q−2 d−2

−→Q−1 d−1

−→Q0 d0

−→Q1−→ ·· · −→Qt −→ 0−→ ·· ·

with somet ∈N, and letP•∗ := HomR(P•,R). SinceQ•⊗L
R−

≃
−→ P•∗⊗L

R− : D(R)→D(S) by assumption,
we have

Q• = Q•⊗L

R R
≃
−→ P•∗⊗L

R R= P•∗ in D(S).

In particular,Hn(Q•)≃ Hn(P•∗) for all n∈ Z. Note thatP•∗ is a bounded complex sinceRP• ∈ C b(R-proj).
Thus there is an integers≤ t such thatH i(Q•) = 0 for all i < s. LetW• be the following complex obtained
from the canonical truncation in degrees:

· · · −→ 0−→ Coker(ds−1)−→Qs+1 ds+1

−→Qs+2 ds+2

−→ ·· · −→Qt −→ 0−→ ·· · .
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ThenW• ∈ C b(S⊗Z R
op
) and there is a canonical quasi-isomorphismf • : Q• →W• in C (S⊗Z R

op
). In

particular,Q• ≃W• in D(S). SinceP•∗ ≃ Q• in D(S) andP•∗ ∈ Dc(S), we see that bothQ• andW• lie in
Dc(S).

On the one hand, by [9, Lemma 4.2 (d)], the quasi-isomorphismf • induces a natural isomorphism of
derived functors:

Q•⊗L

R−
≃
−→W•⊗L

R− : D(R)−→D(S),

and thereforeW•⊗L
R−

≃
−→ P•∗⊗L

R− : D(R)→D(S). On the other hand, sinceSQn ∈P<∞(S) for s+1≤
n≤ t and sinceP<∞(S) ⊆ Dc(S), we see fromW• ∈ Dc(S) that the module Coker(ds−1) is in Dc(S), and
therefore it lies inP<∞(S). This implies that each term ofW• as anS-module belongs toP<∞(S). Thus we
can replaceQ• in Lemma 4.5 by the bounded complexW•.

Now, we assumeQ• ∈ C b(S⊗Z R
op
) and defineB :=

(
C b(P<∞(S)),C b

ac(P
<∞(S))

)
. ThenDF(B) =

Db(P<∞(S)). SinceSQn ∈P<∞(S) for all n∈ Z, we haveQ•⊗•RR≃Q• ∈ C b(P<∞(S)) transparently. By
Lemma 3.1, the additive functor

G := Q•⊗•R− : C
b(R-proj)−→ B

is a map of Frobenius pairs. SinceRP• ∈ C b(R-proj), the functorF := RP•⊗•S− : C b(S-proj)→ C b(R-proj)
is also a map of Frobenius pairs. Consider the following commutative diagram of triangulated categories:

(∗) K b(S-proj)
DF (F) //

≃

��

K b(R-proj)
DF (G) //

≃

��

Db(P<∞(S))

D( j)≃

��
Dc(S)

RP•⊗L
S− // Dc(R)

SQ•⊗L
R− // Dc(S)

where the equivalenceD( j) is induced by the inclusionj : P<∞(S)→ S-Mod by Lemma 3.10.
In the following, we claim that the composition of the two functors in the second row of the above

diagram is an equivalence.
Indeed, on the one hand, since(P•⊗L

S−,RHomR(P•,−)) is an adjoint pair andP•⊗L
S− : D(S)→D(R)

is fully faithful, the unit adjunction

η : IdD(S) −→ RHomR(P•, P•⊗L

S−) : D(S)−→D(S)

is a natural isomorphism. On the other hand, sinceRP• ∈ C b(R-proj), we know from [3, Section 2.1] that

P•∗⊗L

R−
≃
−→ RHomR(P•,−) : D(R)−→D(S).

Thus
IdD(S)

≃
−→ (P•∗⊗L

R−)(P•⊗L

S−) : D(S)−→D(S).

Due to the natural equivalenceQ•⊗L
R−

≃
−→ P•∗⊗L

R− : D(R)→D(S), we certainly have

IdD(S)
≃
−→ (Q•⊗L

R−)(P•⊗L

S−) : D(S)−→D(S).

Consequently, the functor(Q•⊗L
R−)(P•⊗L

S−) : D(S)→ D(S) is an equivalence, and therefore so is its
restriction toDc(S). This finishes the claim.

By the diagram(∗), the composite ofDF(F) with DF(G) is an equivalence of derived categories of
Frobenius pairs. Now, it follows from Lemma 3.2 (2) that the mapK(GF) = K(F)K(G) : K(S)→ K(S) is a
homotopy equivalence ofK-theory spaces. This shows thatK(F) is a homotopy-split injection, completing
the proof of Lemma 4.5.�
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Remark 4.6. A sufficient condition to guarantee that

Q•⊗L

R−
≃
−→ P•∗⊗L

R− : D(R)−→D(S)

in Lemma 4.5 is that the complexesQ• andP•∗ are connected by a series of quasi-isomorphisms among
chain complexes overS⊗Z Rop:

Q•←−U•0 −→U•1 ←− ·· · −→U•n−1←−U•n −→ P•∗

for somen∈ N. For a proof of this fact, we refer the reader to [9, Lemma 4.2 (d)].

4.2 Algebraic K-theory of recollements induced by homological ring epimorphisms

To prove Theorem 1.1, we shall establish the following substantial result, Proposition 4.7, onK-theory spaces
of rings which are linked by homological ring epimorphisms.This result involvesK-theory spaces of dg
algebras, which are introduced in Subsection 3.5, and givesa decomposition of higher algebraicK-groups.
The conclusion of our result under the assumption of finite-type resolution is, of course, stronger than the
result in [16].

Proof of Theorem 1.1 (1).
For the convenience of references, we restate the first part of Theorem 1.1 more precisely as the following

proposition.

Proposition 4.7. Let λ : R→ S be a homological ring epimorphism such thatRS∈P<∞(R). Then there is
a complex P• ∈ C b(R-proj) such thatTria(P•) = Tria(RQ•) ⊆D(R), where Q•[1] is the mapping cone ofλ.
Further, if we defineT := End•R(P•), then K(R)

∼
−→ K(S)×K(T) as K-theory spaces, and therefore

Kn(R)≃ Kn(S)⊕Kn(T) for all n ∈ N.

Moreover, ifHomD(R)(P
•,P•[i]) = 0 for all i 6= 0, then K(R)

∼
−→ K(S)×K(T) as K-theory spaces, where

T := EndD(R)(P
•). In particular,

Kn(R)≃ Kn(S)⊕Kn(T) for all n ∈N.

Proof. Under the assumptionRS∈P<∞(R), we can choose a complexS• in C b(R-proj) such thatRS
is isomorphic toS• in D(R). So we get a chain map fromRR to S• such that its mapping coneP•[1] is
isomorphic inD(R) to the mapping coneQ•[1] of λ. This complexP• satisfies the property in Proposition
4.7. Now, let us fix such a complexP• throughout the proof.

By definition,Q• is the two-term complex 0→R
λ
−→S→ 0 with RandSin degrees 0 and 1, respectively.

Clearly, Q• ∈ C b(R⊗Z R
op
). SinceRS∈P<∞(R), we haveRQn ∈P<∞(R) for all n ∈ Z. Therefore,Q•

satisfies the first assumption in Corollary 4.4.
Let

P := Tria(RQ•)∩D
c(R), P := {X• ∈ C

b(R-proj) | X• ∈P} and P :=
(
P ,C b

ac(R-proj)
)
.

Then it follows from Corollary 4.4 (1) that the inclusionF : P→ C b(R-proj) is a map of Frobenius pairs.
Considering the following sequence of Frobenius pairs:

C b(S-proj) C b(R-proj)
S⊗R−oo P,? _

Foo

we then obtain a sequence of triangulated categories:

(∗) DF(C b(S-proj)) DF(C b(R-proj))
DF (S⊗R−)oo DF(P).

DF (F)oo
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Let P ′ be the full subcategory ofK b(R-proj) consisting of all those objects which, regarded as objects
of Dc(R), belong toP. SinceDF(C b(R-proj)) = K b(R-proj)

≃
−→ Dc(R) and P is a full triangulated

subcategory ofDc(R), we see from Lemma 3.3 (2) thatDF(P) = P ′. So the sequence(∗) is exactly the
following sequence:

K b(S-proj) K b(R-proj)
DF (S⊗R−)oo

P ′? _
DF (F)oo

Now, we claim that this sequence (of triangulated categories) is exact (see Subsection 2.1 for definition).
Actually, there is a commutative diagram of triangulated categories:

K b(S-proj)

≃

��

K b(R-proj)
DF (S⊗R−)oo

≃

��

P ′? _
DF (F)oo

≃

��
Dc(S) Dc(R)

S⊗L
R−oo P?

_oo

in which the square on the right-hand side follows from Lemma3.3 (2). So it is sufficient to show that the
bottom sequence in the above diagram is exact.

Sinceλ : R→Sis a homological ring epimorphism, it follows from Lemma 2.4that there is a recollement
of triangulated categories:

(∗∗) D(S)
i∗ // D(R)

j ! //
ff

i∗

xx
Tria(RQ•)

gg

j!
ww

where j! is the canonical inclusion andi∗ is the restriction functorD(λ∗) induced fromλ, and wherej ! :=
Q•⊗L

R− andi∗ := S⊗L
R−.

SinceRS∈P<∞(R), we havei∗(S) = RS∈Dc(R). This implies thati∗ preserves compact objects. Note
thatD(R) is compactly generated by the compact objectRR. Thus, by Lemma 2.3 (c), we see that(∗∗) gives
rise to the following “half recollement” at the level of the subcategories of compact objects:

Dc(S)
i∗ // Dc(R)

j ! //

i∗

xx
P

j!
yy

= Tria(Q•)∩D
c(R)

which satisfies the following properties:
(a) The inclusion j! : P −→ Dc(R) is fully faithful. Since both Tria(RQ•) (see Lemma 2.3 (a)) and

Dc(R) are closed under direct summands inD(R), we know thatP is also closed under direct summands in
Dc(R).

(b) The composite ofj! with i∗ is zero, and the functori∗ induces an equivalenceDc(R)/P
≃
−→Dc(S)

of triangulated categories. In particular,P coincides with the kernel of the restriction ofi∗ to Dc(R).
As a result, the following sequence

Dc(S) Dc(R)
S⊗L

R−oo P?
_j!oo

is exact, and therefore so is the sequence(∗). This finishes the claim.
By Lemma 3.2, the exactness of(∗) implies that the sequence ofK-theory spaces:

K(S) K(R)
K(S⊗R−)oo K(P)

K(F)oo

is a homotopy fibration.
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Next, we shall apply Corollary 4.4 to show thatK(F) is a homotopy-split injection.
By Corollary 4.4, it suffices to check thatj ! : D(R)→D(R) induces an auto-equivalenceP

≃
−→P.

Indeed, by the recollement(∗∗), the composite ofj! with j ! is naturally isomorphic to the identity of
Tria(RQ•). This implies thatj ! : Tria(RQ•)−→ Tria(RQ•) is an auto-equivalence. Sincej! always preserves
compact objects, we see thatP coincides with the full subcategory of Tria(RQ•) consisting of all compact
objects in Tria(RQ•) (see also Lemma 2.2 (1)). Thusj ! induces an auto-equivalenceP

≃
−→P. It follows

from Corollary 4.4 thatK(F) is a homotopy-split injection. By Corollary 4.2, we see that

K(R)
∼
−→ K(S)×K(P)

asK-theory spaces.
In the following, we shall apply Lemma 3.9 to prove thatK(P) is homotopy equivalent toK(T), where

T := End•R(P•) is the dg endomorphism ring ofP•.
Recall thatP• ∈ C b(R-proj) and Tria(P•) = Tria(RQ•)⊆D(R). In particular, we have

P = Tria(RQ•)∩D
c(R) = Tria(P•)∩D

c(R)⊆D
c(R).

By Lemma 3.9, there is a homotopy equivalenceK(T)
∼
−→ K(P). Thus

K(R)
∼
−→ K(S)×K(T)

asK-theory spaces, and thereforeKn(R)≃ Kn(S)⊕Kn(T) for n∈ N. This shows the first part of Proposition
4.7.

Note thatH i(T) ≃ HomD(R)(P
•,P•[i]) for eachi ∈ Z. Now, the second part of Proposition 4.7 is a

consequence of Lemma 3.8 together with the first part of Proposition 4.7. Thus Theorem 1.1 (1) follows.�

Remark 4.8. By the recollement(∗∗) and Lemma 2.2 (1), we conclude that, under the assumptions ofPropo-
sition 4.7, the categoryP := Tria(RQ•)∩Dc(R) coincides with any one of the following three categories:

(1) The full subcategory of Tria(RQ•) consisting of all compact objects in Tria(RQ•).
(2) The smallest full triangulated subcategory ofDc(R) which containsQ• and is closed under direct

summands.
(3) The full subcategory ofDc(R) consisting of all objectsX• such thatS⊗L

R X• = 0 in D(S).

Particularly,(3) implies that the categoryP , defined in the proof of Proposition 4.7, is equal to the full
Frobenius subcategory ofC b(R-proj) consisting of all those complexesX• such thatS⊗RX• is acyclic, that
is, H i(S⊗R X•) = 0 for all i ∈ Z. In the literature, for example, see [16, Theorem 0.5] and [12, Theorem
14.9], it was shown that, for homological ring epimorphismsλ : R→ Swith certain condidtions, one may get
a weak homotopy fibration:

(†) K(P)
K(F) // K(R)

K(S⊗R−) // // K(S).

This implies that, in general, the mapK0(S⊗R−) : K0(R)→ K0(S) does not have to be surjective. However,
Proposition 4.7 shows a stronger conclusion, namely, underthe assumptionRS∈P<∞(R), the sequence(†)
splits up to homotopy equivalence:

K(R)
∼
−→ K(S)×K(P).

Now we turn to the proof of Theorem 1.1 (2). The main ingredient of the proof is Proposition 4.7.
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Proof of Theorem 1.1 (2).
Given a recollement of derived module categories:

D(S)
i∗ // D(R) //

ff

xx
D(T)

ff

j!
xx

we can obtain the following two consequences:
(1) The complexj!(T) is compact inD(R) and

EndD(R)( j!(T))≃ T, HomD(R)( j!(T), j!(T)[n]) = 0 for n 6= 0.

(2) Tria( j!(T)) = {X ∈D(R) | HomD(R)(X,Y) = 0 for eachY ∈D(S)}.

Moreover, sinceλ : R→ S is a homological ring epimorphism, there is a recollement oftriangulated
categories by Lemma 2.4:

D(S)
i∗ // D(R) //

ff

xx
Tria(RQ•)

gg

F
ww

whereF is the inclusion andQ•[1] is the mapping cone ofλ. It follows that

Tria(RQ•) = {X ∈D(R) | HomD(R)(X,Y) = 0 for eachY ∈D(S)}.

By (2), we have Tria( j!(T)) = Tria(RQ•)⊆D(R).
Since j!(T) is compact inD(R), we can chooseP• ∈ C b(R-proj) such thatP• ≃ j!(T) in D(R). Then

Tria(P•) = Tria(RQ•)⊆D(R), and by(1), we have

EndD(R)(P
•)≃ T and HomD(R)(P

•,P•[n]) = 0 for n 6= 0.

Now, suppose thatRS∈P<∞(R). It follows from Proposition 4.7 thatK(R)
∼
−→K(S)×K(T) asK-theory

spaces, and therefore
Kn(R)≃ Kn(S)⊕Kn(T) for all n∈ N.

This finishes the proof of Theorem 1.1 (2) for the caseRS∈P<∞(R).
Similarly, we can prove Theorem 1.1 (2) for the caseSR ∈P<∞(Rop). In fact, this can be understood

from Lemma 2.5 and the following fact: For any ringA, there is a homotopy equivalenceK(A)
∼
−→ K(Aop)

(see [18, Sections 1 (3) and 2 (5)]). Thus the proof of Theorem1.1 has been completed.�.

Proof of Corollary 1.2.
We shall apply Proposition 4.7 and [15, Theorem 0.5] to show Corollary 1.2.
Let λ : R→ S := RΣ be the universal localization ofR at Σ. By abuse of notation, we identify each

homomorphismP1
f
−→ P0 in Σ with the two-term complex 0→ P1

f
−→ P0→ 0 in C b(R-proj), wherePi is in

degrees−i for i = 0,1.
First of all, we recall the definition of a small Waldhausen categoryR . The categoryR is the smallest

full subcategory ofC b(R-proj) which
(i) contains all the complexes inΣ,
(ii) contains all acyclic complexes,
(iii ) is closed under the formation of mapping cones and shifts,
(iv) contains any direct summands of any of its objects.
We remark thatR was first defined in [16, Definition 0.4] and denoted byR. Observe that, inR , the

cofibrations are injective chain maps which are degreewise split, and the weak equivalences are homotopy
equivalences. Moreover,R has the following additional properties:
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(v) R is closed under finite direct sums inC b(R-proj).
(vi) If N• ∈ R andM• ∈ C b(R-proj) such that, inK b(R-proj), M• is a direct summand ofN•, then

M• ∈ R . In particular,R is closed under isomorphisms inK b(R-proj).
Actually, these two properties can be deduced from(ii)-(iv) with the help of the following two general

facts: LetX•, Y• ∈ C b(R-proj). Then
(1) X•⊕Y• is exactly the mapping cone of the zero map fromX•[−1] toY•.
(2) X• ≃Y• in K b(R-proj) if and only if there are two complexesU•, V• ∈ C b

ac(R-proj) such thatX•⊕
U• ≃ Y•⊕V• in C b(R-proj), becauseC b(R-proj) is a Frobenius category,C b(R-proj)-proj = C b

ac(R-proj)
andDF(C b(R-proj)) = K b(R-proj).

In the following, we shall prove that the Waldhausen category R coincides with the Waldhausen category
P defined by the Frobenius pairP :=

(
P , C b

ac(R-proj)
)
, whereP is a full subcategory ofC b(R-proj) defined

by
P := {X• ∈ C

b(R-proj) | X• is isomorphic inD(R) to an object in Tria(RQ•)}

andQ• is the two-term complex 0→ R
λ
−→ S→ 0 with R in degree 0.

In fact, by Remark 4.8, we see thatP is the same as the full subcategory ofC b(R-proj) consisting of
those complexesX• such thatS⊗RX• is acyclic (or equivalently,S⊗L

R X• = 0 in D(S)). It is easy to see that
the latter subcategory satisfies the conditions(i)-(iv). This gives rise toR ⊆ P .

Next, we show the converse inclusionP ⊆ R .
Let R be the full subcategory ofK b(R-proj) consisting of all objects ofR . Then, due to(i)-(vi), we

see thatR is a full triangulated subcategory ofK b(R-proj) containingΣ and being closed under direct
summands. SinceDF(P) ⊆K b(R-proj), we know from(vi) that P ⊆ R if and only if DF(P) ⊆ R. To
showDF(P) ⊆ R, it is enough to show thatDF(P) is exactly the smallest full triangulated subcategory of
K b(R-proj) which containsΣ and is closed under direct summands.

Indeed, by the proof of Proposition 4.7,DF(P) is the full subcategory ofK b(R-proj) in which the
objects, regarded as objects inDc(R), belong toP := Tria(RQ•)∩Dc(R). As P = thick(RQ•) by Remark
4.8,DF(P) is actually the full subcategory ofK b(R-proj) in which the objects, regarded as objects inDc(R),
belong to thick(RQ•). We claim that thick(Q•) = thick(Σ).

Sinceλ is a homological ring epimorphism, we know from [4, Proposition 3.6] and Lemma 2.4 that
Tria(Σ) = Tria(RQ•) in D(R). Since both Tria(Σ) and Tria(RQ•) are closed under small coproducts inD(R),
they have the same subcategories of compact objects, that is, Tria(Σ)c = Tria(RQ•)c ⊆ Dc(R). Clearly,
Σ ⊆ Dc(R) and RQ• ∈ Dc(R) sinceRS∈P<∞(R) ⊆ Dc(R) by our assumption. By definition, thick(Σ)
(respectively, thick(RQ•)) is the smallest full triangulated subcategory ofDc(R) containingΣ (respectively,
Q•) and being closed under direct summands. Then, by Lemma 2.2 (1), thick(Σ) = Tria(Σ)c and thick(RQ•) =
Tria(RQ•)c, and therefore thick(Σ) = thick(RQ•)⊆Dc(R).

Thus DF(P) is the full subcategory ofK b(R-proj) consisting of all those objects which, viewed as
objects ofDc(R), belong to thick(Σ). SinceK b(R-proj) ≃ Dc(R) andΣ ⊆ C b(R-proj), we conclude that
DF(P) is equal to the smallest full triangulated subcategory ofK b(R-proj) containingΣ and being closed
under direct summands. Consequently,P ⊆ R .

HenceP = R as full subcategories ofC b(R-proj). Furthermore, the categoryP , regarded as a Wald-
hausen category defined by the Frobenius pairP, has injective chain maps which are degreewise split as
cofibrations, and has homotopy equivalences as weak equivalences. This implies thatP = R as Waldhausen
categories.

Suppose that all maps inΣ are injective. LetE be the exact category of(R,Σ)-torsion modules. Then, it is
shown in [15, Theorem 0.5] thatK(R )

∼
−→K(E ) asK-theory spaces. SinceP =R as Waldhausen categories,

we obtainK(P) := K(P )
∼
−→K(E ). As λ : R→Sis homological andRShas a finite-type resolution, it follows

from the proof of Proposition 4.7 that

K(R)
∼
−→ K(S)×K(P )

∼
−→ K(S)×K(E ).
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This finishes the proof of Corollary 1.2.�
As a consequence of Proposition 4.7, we have the following result in [27, Lemma 3.1].

Corollary 4.9. If λ : R→S is an injective ring epimorphism such thatRS is projective and finitely generated,
then, for each n∈ N,

Kn(R)≃ Kn(S)⊕Kn
(
EndR(S/R)

)
.

Proof. Under our assumption onλ, we see that Exti
R(S/R,S/R) = 0 for all i > 0. Then the corollary

follows from the second part of Proposition 4.7.�

Remark 4.10. In Theorem 1.1 (2), we assume the existence of a recollement of derived module categories
of rings. For some necessary and sufficient conditions that vouch for the existence of such a recollement, we
refer the interested reader to the preprint [6].

5 Applications to homological exact pairs

In this section, we shall apply our results in the previous sections to homological ring epimorphisms afforded
by exact pairs defined in [3].

5.1 A supplement to algebraic K-theory of recollements

Let R be a ring. Recall thatK(R) is a homotopy-associative pointedH-space with the multiplication map
K(⊔) : K(R)×K(R)→K(R), which is induced from the coproduct functor⊔ : R-proj×R-proj→R-proj (see
Subsection 3.1). For any two mapsf , g : K(R)→ K(R), we denote byf ·g : K(R)→ K(R) the composite of
the following three maps:

K(R)
∆
−→ K(R)×K(R)

f×g
−→ K(R)×K(R)

K(⊔)
−→ K(R),

where∆ is the diagonal mapx 7→ (x,x) for x∈ K(R).
Observe that the shift functor[1] : C b(R-proj)→ C b(R-proj) is also an exact functor of Waldhausen

categories, and that the induced mapK([1]) : K(R)→ K(R) is ahomotopy inverseof K(R) in the sense that
bothK([1]) · IdK(R) andIdK(R) ·K([1]) are pointed-homotopic to the constant mapK(R)→ K(R) defined by
x 7→ e, wheree is the associated point ofK(R). For eachn ∈ N, sinceKn(∆) : Kn(R)→ Kn(R)×Kn(R) is
still the diagonal map, the homomorphismKn([1]) : Kn(R)→ Kn(R) is exactly the minus map of the additive
groupsKn(R) (see also [23, Corollary 1.7.3]).

Let Sbe another ring andN• a bounded complex ofS-R-bimodules. IfSN• ∈ C b(S-proj), then the tensor
functorN•⊗•R− : C b(R-proj)→ C b(S-proj) is an exact functor of Waldhausen categories. In caseλ : R→ S
is a ring homomorphism, we chooseN• = SSR, where the rightR-module structure ofS is induced fromλ,
and denote byK(λ) the mapK(S⊗R−) : K(R)→ K(S).

We first establish the following result onK-theory of recollements.

Lemma 5.1. Let Ri be a ring for1≤ i ≤ 3, and let M• ∈ C (R2⊗Z Rop
1 ) and N• ∈ C (R3⊗Z Rop

2 ) such that

R2M
• ∈ C b(R2-proj) andR3N

• ∈ C b(R3-proj). Define

F := M•⊗•R1
− : C

b(R1-proj)−→ C
b(R2-proj) and G:= N•⊗•R2

− : C
b(R2-proj)−→ C

b(R3-proj).

Suppose that there is a recollement of derived module categories:

D(R3) // D(R2) //
ff

i∗

xx
D(R1)ff

j!
xx
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such that j! = M•⊗L
R1
− and i∗ = N•⊗L

R2
−. Then the sequence of K-theory spaces

K(R1)
K(F)
−→ K(R2)

K(G)
−→ K(R3)

is a weak homotopy fibration, and therefore there is a long exact sequence of K-groups:

· · · −→ Kn+1(R3)−→ Kn(R1)
Kn(F)
−→ Kn(R2)

Kn(G)
−→ Kn(R3)−→ Kn−1(R1)−→

·· · −→ K0(R1)−→ K0(R2)−→ K0(R3)

for all n ∈ N.

Proof. Our proof will use some ideas from the proof of [20, Theorem 9].
It follows from the given recollement and Lemma 2.3 that the following sequence

D(R1)
j! // D(R2)

i∗ // D(R3)

of derived module categories is exact (see Subsection 2.1):
(a) The functor j! is fully faithful and induces an equivalenceD(R1)

≃
−→ Tria(R2M

•).
(b) The composition ofj! with i∗ is zero.
(c) Ker(i∗) = Im( j!) = Tria(R2M

•).

(d) The functori∗ induces an equivalenceΦ : D(R2)/Ker(i∗)
≃
−→D(R3).

Let X be the full subcategory of Ker(i∗) consisting of all compact objects. Then, it follows fromM• ∈
Dc(R2) and Lemma 2.2 (1) thatX ⊆Dc(R2). Now, we defineX to be the full subcategory ofC b(R2-proj)
consisting of the objects which are isomorphic inD(R2) to objects ofX . Note thatC b(R2-proj)-proj =
C b

ac(R2-proj) by Example (b) in Subsection 3.3. Applying Lemma 3.3 to the Frobenius pairC b(R2-proj) to-
gether with the equivalenceK b(R2-proj)

≃
−→Dc(R2), we see thatX is a Frobenius subcategory ofC b(R2-proj)

containing all projective objects ofC b(R2-proj). DefineX =
(
X ,C b

ac(R2-proj)
)

andY = (C b(R2-proj),X ).
Then, by Lemma 3.3 (2),X and Y are Frobenius pairs withX -proj = C b(R2-proj)-proj, and we have a
sequence of Frobenius pairs:

X
� � F2 // C b(R2-proj)

G1 // Y

whereG1 is the identity functor, such that the following diagram of triangulated categories are commutative:

DF(X )
DF (F2)//

≃

��

DF(C b(R2-proj))
DF (G1) //

≃

��

DF(Y)

≃

��
X

� � // Dc(R2) // Dc(R2)/X

SinceX is closed under direct summands inDc(R), the bottom sequence in the above diagram is an exact
sequence of triangulated categories. By Lemma 3.2 (1) and the definition ofK-theory spaces of Frobenius
pairs, we deduce that the following sequence ofK-theory spaces

K(X )
K(F2) // K(R2)

K(G1) // K(Y ).

is a homotopy fibration, whereY is the Waldhausen category defined by the Frobenius pairY, that is,Y
has the same objects, morphisms and cofibrations asC b(R2-proj), but the weak equivalences inY are those
chain maps such that their mapping cones lie inX .
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Observe thatF(C b(R1-proj)) ⊆ X and thatG(U) ∈ C b
ac(R3-proj) for U ∈ X sinceR3N

• ∈ C b(R3-proj)
andG(U) = i∗(U) = 0 in D(R3). Consequently,F andG induce two canonical maps of Frobenius pairs

F1 : C
b(R1-proj)−→ X and G2 : Y−→ C

b(R3-proj)

such thatF = F2F1 andG= G2G1, respectively. This can be illustrated by the following diagram of Frobenius
pairs:

C b(R1-proj)
F //

F1

%%JJJJJJJJJJ
C b(R2-proj)

G //

G1

%%JJJJJJJJJJ
C b(R3-proj)

X
,
�

F2

99tttttttttt
Y

G2

99tttttttttt

Next, we point out that the mapK(F1) : K(R1)→ K(X ) is a homotopy equivalence. Actually, by Lemma
3.2 (2), it suffices to prove that the functorDF(F1) : DF(C b(R1-proj))→ DF(X ) is a triangle equivalence.
This follows from the following commutative diagram:

DF(C b(R1-proj))
DF (F1)//

≃

��

DF(X )

≃

��
Dc(R1)

j!
≃

// X

where the equivalence of the second row is due to(a) and(c).
Consequently, the following sequence ofK-theory spaces

K(R1)
K(F) // K(R2)

K(G1) // K(Y ).

is a homotopy fibration. So, to prove that the sequence ofK-theory spaces

K(R1)
K(F)
−→ K(R2)

K(G)
−→ K(R3)

is a weak homotopy fibration, it is enough to show that the mapK(G2) : K(Y )→ K(R3) gives rise to an
injectionK0(G2) : K0(Y )→ K0(R3) and an isomorphismKn(G2) : Kn(Y )

≃
−→ Kn(R3) for eachn > 0.

In fact, by Lemma 3.2 (3), we only need to check thatDF(G2) : DF(Y) → DF(C b(R3-proj)) is an
equivalence up to factors (see Subsection 2.1 for definition). For this aim, letY be the full subcategory
of D(R2)/Ker(i∗) consisting of all compact objects. Consider the following canonical exact sequence of
triangulated categories:

(†) Ker(i∗) � � // D(R2) // D(R2)/Ker(i∗).

SinceD(R2) and Tria(M•) are triangulated categories with small coproducts and since R2M
• ∈ Dc(R2), we

know from Lemma 2.2 that(†) induces a sequence of the subcategories of compact objects:

X
� � // Dc(R2) // Y

such thatX is closed under direct summands inDc(R2) and that the induced functorH1 : Dc(R2)/X →Y

is an equivalence up to factors. Moreover, the equivalenceΦ in (d) induces a triangle equivalenceΦc : Y
≃
−→

Dc(R3). DefineH2 : Dc(R2)/X → Dc(R3) to be the composite ofH1 with Φc. ThenH2 is an equivalence
up to factors. Since the following diagram

DF(Y)

≃

��

DF (G2) // DF(C b(R3-proj))

≃

��
Dc(R2)/X

H2 // Dc(R3)

is commutative, we see thatDF(G2) is an equivalence up to factors. This finishes the proof of Lemma 5.1.�
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5.2 Long Mayer-Vietoris sequences: Proof of Theorem 1.3

In this section, we shall show Theorem 1.3. Here, we follow the notation introduced in [3].
Throughout this section, we suppose thatλ : R→ Sandµ : R→ T are ring homomorphisms such that the

pair (λ,µ) is exact, that is, the sequence

0−→ R−→ S⊕T

(
µ′

−λ′

)

−→ S⊗RT −→ 0

of R-R-bimodules is exact, where

λ ′ = λ⊗T : t 7→ 1⊗ t, µ′ = S⊗µ : s 7→ s⊗1

for t ∈ T ands∈ S(see [3] for more information).
Let S⊔RT be the coproduct of the ringsSandT overR, and letρ : S→ S⊔RT andφ : T→ S⊔RT be the

defining ring homomorphisms of the coproduct. Then we have the following commutative diagram:

R

µ

��

λ // S

µ′

��
ρ

��

T
λ′ //

φ
,,

S⊗RT

h
$$
S⊔RT

whereh is defined bys⊗ t 7→ (s)ρ(t)φ for t ∈ T ands∈ S. Note that the square in this diagram is both a
push-out and a pull-back. This implies that the mapping coneQ• of λ is quasi-isomorphic to the mapping
coneQ•⊗RT of λ′ as complexes.

Given such a diagram, there is a ring homomorphismθ : B→C defined in [3]:

θ :=

(
ρ h
0 φ

)
: B =

(
S S⊗RT
0 T

)
−→C =

(
S⊔RT S⊔RT
S⊔RT S⊔RT

)
.

Furthermore, we definee1 :=

(
1 0
0 0

)
, e2 :=

(
0 0
0 1

)
∈ B and

ϕ : Be1−→ Be2 :

(
s
0

)
7→

(
s⊗1

0

)
for s∈ S.

Let P• be the complex 0→ Be1
ϕ
−→ Be2→ 0 with Be1 andBe2 in degrees−1 and 0, respectively. Then

P• ∈ C b(B⊗Z R
op
) andBP• ∈ C b(B-proj), whereBe1 andBe2 are regarded as rightR-modules viaλ andµ,

respectively. LetP•∗ := HomB(P•,B) ∈ C b(R⊗Z B
op
), which is isomorphic to the complex 0→ e2B

ϕ∗
−→

e1B→ 0 with e2B ande1B in degrees 0 and 1, respectively.

In case bothλ andφ are homological ring epimorphisms, we say that the exact pair (λ, µ) is homological,
or that the square defined byλ,µ,φ andρ is ahomological Milnor square. For a homological Milnor square,
the following result has been shown in [3, Theorem 1.1 and Corollary 3.11].
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Lemma 5.2. Suppose thatλ is a homological ring epimorphism andTorRi (T,S) = 0 for all i > 0. Then there
is the following ‘pull-back’ of recollements of triangulated categories:

D(S)
[−1]

≃
//

D(τ∗)
��

D(S)

D(λ∗)
��

D(C)
D(θ∗) //

≃e2·

��

D(B)
j ! //

e2·

��

@@
S⊗L

B−
^^

gg

C⊗L
B−

zz
D(R)

j!

xx

hh

''PPPPPPPPPPPP

??

S⊗L
R−

__

D(S⊔RT)
D(φ∗) // D(T)

Be2⊗
L
T−

__AA

''OOOOOOOOOOOOdd

zz
Tria(RQ•)

F1

nn
ZZ

T⊗L
R−

≃wwnnnnnnnnnnnn

Tria(TT⊗RQ•)

F2

oo
ZZ

whereτ : B→ S:= B/(Be2B) is the canonical surjection, Fi is the canonical embedding for i= 1,2, and

j! = BP•⊗L

R− and j! = Hom•B(P•,−)≃ P•∗⊗•B−.

Proof of Theorem 1.3.
(1) By Lemma 5.2, there is a recollement of derived module categories:

(a) D(C)
D(θ∗) // D(B)

j ! //
ee

i∗

||
D(R)

j!
zz

dd

where i∗ := C⊗L
B −. Obviously, P• ∈ C (B⊗Z R

op
), BP• ∈ C b(B-proj), CCB ∈ C (C⊗Z B

op
) and CC ∈

C b(C-proj). By (a) and Lemma 5.1, the following two functors:

P•⊗•R− : C
b(R-proj)−→ C

b(B-proj) and C⊗B− : C
b(B-proj)−→ C

b(C-proj)

induces a weak homotopy fibration ofK-theory spaces:

(b) K(R)
K(P•⊗•R−)

// K(B)
K(C⊗B−) // K(C).

SinceB is a triangular matrix ring, we see that theK-theory spaceK(B) of B is homotopy equivalent to
K(S)×K(T). Thus we get Theorem 1.3 (1) without an explicit descriptionof the maps in the sequence.

In the following, we shall work out the maps in details.
SinceC is Morita equivalent toS⊔R T, the mapK(e2C⊗C−) : K(C)→ K(S⊔R T) induced from the

exact functore2C⊗C : C-proj→ (S⊔RT)-proj is a homotopy equivalence by Lemma 3.2 (2). Thus we obtain
a weak homotopy fibration ofK-theory spaces:

(c) K(R)
K(P•⊗•R−)

// K(B)
K(e2C⊗B−) // K(S⊔RT).

Clearly,e2B≃ T ≃ e2Be2, Be2B≃ Be2 andS≃ B/(Be2B) = Be1. From the triangular structure ofB, we see
that the following two maps

(d) K(B)
α:=

(
K(S⊗B−),K(e2·)

)
// K(S)×K(T)

β:=
(

K(BS⊗S−)

K(Be2⊗T−)

)

// K(B) .
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are mutually inverse homotopy equivalences.
Now, by (c) and(d), we obtain a weak homotopy fibration ofK-theory spaces:

K(R)
K(P•⊗•R−)α // K(S)×K(T)

βK(e2C⊗B−) // K(S⊔RT).

It is trivial to check the following natural isomorphisms offunctors (see the diagram in Lemma 5.2):

(e2C⊗B−)(BS⊗S−)
≃
−→ (e2C⊗B S)⊗S−

≃
−→ (S⊔RT)⊗S− : S-proj−→ (S⊔RT)-proj,

(e2C⊗B−)(Be2⊗T −)
≃
−→ (e2C⊗B Be2)⊗T −

≃
−→ (S⊔RT)⊗T − : T-proj−→ (S⊔RT)-proj,

(e2·)(P
•⊗•R−))

≃
−→ (e2P•)⊗•R−

≃
−→ T⊗R− : R-proj−→ T-proj,

(S⊗B−)(P•⊗•R−))
≃
−→ (S⊗B P•)⊗•R−

≃
−→

(
P•/(Be2B)P•

)
⊗•R−

≃
−→ (S⊗R−)[1] : C

b(R-proj)−→ C
b(S-proj).

Consequently, we have the following homotopic maps

K(P•⊗•R−)α =
(
K(P•⊗•R−)K(S⊗B−), K(P•⊗•R−)K(e2·)

) ∼
−→

(
K((S⊗R−)[1]), K(T⊗R−)

)
=:

(
−K(λ), K(µ)

)

and

βK(e2C⊗B−) =

(
K(BS⊗S−)K(e2C⊗B−)

K(Be2⊗T −)K(e2C⊗B−)

)
∼
−→

(
K((S⊔RT)⊗S−)

K((S⊔RT)⊗T −)

)
=:

(
K(ρ)

K(φ)

)
.

Hence, the sequence ofK-theory spaces:

(e) K(R)

(
−K(λ),K(µ)

)
// K(S)×K(T)

(
K(ρ)
K(φ)

)

// K(S⊔RT)

is a weak homotopy fibration, which yields the long exact sequence ofK-groups in Theorem 1.3 (1).
(2) To prove Theorem 1.3 (2), we first show thatBC∈P<∞(B) if and only if RS∈P<∞(R).
In fact, by Lemma 2.3 (c), the functorD(λ∗) preserves compact objects if and only if so isj !. That

is, BC ∈P<∞(B) if and only if j !(B) ≃ P•∗ ∈ Dc(R). Note thatQ•⊗R T ≃ Q• in D(R) and thatRP•∗ is
isomorphic inC (R) to the direct sum ofS[−1] and (Q•⊗R T)[−1]. ThusRP•∗ ≃ (S⊕Q•)[−1] in D(R).

SinceQ• is the two-term complex 0→ R
λ
−→ S→ 0, we infer thatP•∗ ∈ Dc(R) if and only if RS∈ Dc(R),

and thereforeBC∈P<∞(B) if and only if RS∈P<∞(R).
Next, we show that ifRS∈P<∞(R), then the sequence(e) splits up to homotopy equivalence.
Let X := Tria(BP•)∩Dc(B), and letX be the full subcategory ofC b(B-proj) consisting of those objects

such that they belong toX when viewed as objects ofD(B). ThenX =
(
X ,C b

ac(B-proj)
)

is a Frobenius pair,
and in this way we considerX as a Waldhausen category. SinceBP• ∈ C b(B-proj), we see from Lemma 2.2
(1) thatX is equal to the full subcategory of Ker(i∗) consisting of all compact objects.

Let L1 : C b(R-proj)→ X be the functor induced byP•⊗R− andL2 : X → C b(B-proj) the inclusion.
Then bothL1 andL2 are maps of Frobenius pairs, and therefore we have a sequenceof Frobeniues pairs:

C b(C-proj) C b(B-proj)
C⊗B−oo X? _

L2oo

Now, by the proof of Lemma 5.1, the sequence(b) can be decomposed into the following form:

K(R)
K(P•⊗R−) //

K(L1)

##GGGGGGGG
K(B)

K(C⊗B−) // K(C)

K(X )

K(L2)
;;wwwwwwww

such thatK(L1) is a homotopy equivalence.
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SinceRS∈P<∞(R), we getBC ∈P<∞(B). Further, the recollement (a) implies thatθ : B→ C is a
homological ring epimorphism. Thus it follows from the proof of Proposition 4.7 that the following sequence
of K-theory spaces:

K(X )
K(L2) // K(B)

K(C⊗B−) // K(C)

is a homotopy fibration and thatK(L2) is a homotopy-split injection. Therefore the above sequence of K-
theory spaces splits up to homotopy equivalence. AsK(L1) is a homotopy equivalence, we further deduce
that the mapK(P•⊗R−) : K(R)→ K(B) is a homotopy-split injection. Thus the sequence(b) (and also each
of the sequences(c),(d) and(e)) splits up to homotopy equivalence. Hence

(∗) K(R)×K(S⊔RT)
∼
−→ K(S)×K(T).

Finally, we shall show that(∗) also holds ifTR ∈P<∞(Rop). By Theorem 1.1, it suffices to prove that
TR∈P<∞(Rop) if and only ifCB ∈P<∞(Bop).

Indeed, by(a) and Lemma 2.4, we certainly have Tria(BP•) = Ker(i∗) = Im( j!) = Tria(BW•), where

BP• ∈ C b(B-proj) andW• denotes the mapping cone ofθ. Then one can follow the proof of Lemma 2.5 to
show that the recollement(a) has a dual form:

(ã) D(Cop)
D(θ∗) // D(Bop)

j̃ ! //
dd

{{
D(Rop)

j̃!

||

cc

where
j̃! :=−⊗L

R P•∗ and j̃ ! := Hom•Bop(P•∗,−)≃−⊗•B P•.

By Lemma 2.3 (c), we infer thatP• ∈ Dc(Rop) if and only if CB ∈P<∞(Bop). Note thatP•R is isomorphic

in C (Rop) to the direct sum ofT and the mapping cone Cone(µ′) : 0→ S
µ′
−→ S⊗R T → 0 of µ ′. However,

since(λ,µ) is an exact pair, it is easy to see that Cone(µ′) is actually quasi-isomorphic to the mapping cone
Cone(µ) : 0→R

µ
−→T→ 0 of the chain mapµ. This gives rise toP•≃T⊕Cone(µ) in D(Rop), which implies

thatTR∈P<∞(R
op
) if and only if P• ∈Dc(Rop). ThusTR∈P<∞(Rop) if and only if CB ∈P<∞(Bop). �

As a consequence of Theorem 1.3 (1), we reobtain the following result of Karoubi [25, Chapter V, Propo-
sition 7.5 (2)].

Corollary 5.3. Let A and B be arbitrary rings, and let f: A→ B be a ring homomorphism andΦ a central
multiplicatively closed set of nonzerodivisors in A such that the image ofΦ under f is a central set of
nonzerodivisors in B. Assume that f induces a ring isomorphism A/sA

≃
−→ B/sB for each s∈Φ. Then there

is a Mayer-Vietoris sequence

· · · −→ Kn+1(Φ−1B)−→ Kn(A)−→ Kn(Φ−1A)⊕Kn(B)−→ Kn(Φ−1B)−→ Kn−1(A)−→

·· · −→ K0(A)−→ K0(Φ−1A)⊕K0(B)−→ K0(Φ−1B)

for all n ∈ N, whereΦ−1A stands for the localization of A atΦ.

Proof. Define R := A, S := Φ−1A, T := B and µ := f . Let λ : R→ S be the canonical map of the
localization. By [4, Lemma 6.2], we haveS⊔R T = Φ−1B, which is defined by the canonical mapsρ :
Φ−1A→Φ−1B andφ : B→Φ−1B. SinceΦ and(Φ) f do not contain zerodivisors, bothλ andφ are injective.
As the modulesAΦ−1A andBΦ−1B are flat, bothλ andφ are homological ring epimorphisms.

Now, we claim that(λ,µ) is an exact pair. To show this, we first prove that the following well-defined
map

h : Φ−1A⊗A B−→Φ−1B, a/s⊗b 7→ ((a f)b)/(s f)
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for a∈ A, s∈Φ andb∈ B, is an isomorphism ofΦ−1A-B-bimodules. In fact, sinceΦ−1A = lim
−→
s∈Φ

s−1A, where

s−1A := {a/s | a∈ A} ⊆Φ−1A, we have

Φ−1A⊗A B = (lim
−→
s∈Φ

s−1A)⊗A B
≃
−→ lim
−→
s∈Φ

(s−1A⊗A B)
≃
−→ lim
−→
s∈Φ

(s f)−1B = Φ−1B.

Next, we show that the cokernels ofλ andφ are isomorphic asA-modules. Actually,

Φ−1A/A = (lim
−→
s∈Φ

s−1A)/A
≃
−→ lim
−→
s∈Φ

(s−1A/A)
≃
−→ lim
−→
s∈Φ

(A/sA).

Similarly, Φ−1B/B
≃
−→ lim
−→
s∈Φ

(B/sB). SinceA/sA
≃
−→B/sBfor eachs∈Φ, the mapf induces an isomorphism

of A-modules:Φ−1A/A
≃
−→Φ−1B/B, that is, Coker(λ)≃ Coker(φ).

Finally, we point out that the mapλ′ : B→ Φ−1A⊗A B, defined byb 7→ 1⊗b for b∈ B, is injective and
that Coker(λ)

≃
−→ Coker(λ′). This is due to the equalityφ = λ′h.

Thus

0−→ A
(−λ,µ)
−→ Φ−1A⊕ B

(
µ′

λ ′

)

−→ Φ−1A⊗A B−→ 0

is an exact sequence ofA-modules, whereµ′ : Φ−1A→Φ−1A⊗AB is defined byx 7→ x⊗1 for x∈Φ−1A. By
definition, the pair(λ,µ) is exact.

SinceΦ consists of central, nonzerodivisor elements inA, theA-moduleAΦ−1A is flat. Thus TorAi (B,Φ−1A)
= 0 for all i > 0. Hence all conditions in Theorem 1.3 are satisfied. Now, Corollary 5.3 follows from Theorem
1.3 (1).�

Proof of Corollary 1.4.
(1) Let S := R/I1, T := R/I2, and letλ : R→ S andµ : R→ T be the canonical surjections. Then, it

follows from the proof of [3, Corollary 1.2 (1)] that, under the assumptions of Corollary 1.4 (1), the pair
(λ,µ) is exact, the surjective ring homomorphismλ is homological with TorRi (T,S) = 0 for all i > 0, and
S⊔RT = R/(I1 + I2). Now, (1) is an immediate consequence of Theorem 1.3 (2).

(2) Let T := R⋉ M, and letµ : R→ T be the canonical inclusion fromR into T. Assume thatλ is
a homological ring epimorphism. Then, it follows from the proof of [3, Corollary 1.2 (2)] that(λ,µ) is an
exact pair with TorRi (T,S) = 0 for all i > 0, and thatS⋉M, together withρ : S→֒S⋉M andφ : R⋉M→S⋉M
induced fromλ, is the coproductS⊔R T of the ringsSandT overR. Now, by Theorem 1.3 (1), we have a
long exact sequence ofK-groups:

· · · // Kn+1(S⋉ M) // Kn(R)

(
−Kn(λ),Kn(µ)

)
// Kn(S)⊕Kn(R⋉ M)

(
Kn(ρ)
Kn(φ)

)

// Kn(S⋉ M) // Kn−1(R)

· · · −→ K0(R)−→ K0(S)⊕K0(R⋉ M)−→ K0(S⋉ M)

for all n∈ N.
Let π : R⋉ M→ Rbe the canonical surjection. Thenµπ = IdR. This implies that the composite of

K(µ) : K(R)−→ K(R⋉ M) with K(π) : K(R⋉ M)−→ K(R)

is homotopic to the identity ofK(R), and thereforeKn(µ)Kn(π) = IdKn(R) for all n≥ 0. It follows that the

map
(
−Kn(λ), Kn(µ)

)
is a split injection forn≥ 0. Therefore, forn > 0, the map

(
Kn(ρ)
Kn(φ)

)
is surjective, the

sequence

0 // Kn(R)

(
−Kn(λ),Kn(µ)

)
// Kn(S)⊕Kn(R⋉ M)

(
Kn(ρ)
Kn(φ)

)

// Kn(S⋉ M) // 0
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is split exact andKn(R)⊕Kn(S⋉ M)≃ Kn(S)⊕Kn(R⋉ M).
To check the isomorphism for the casen = 0, we use the following known result: IfA is a ring andI is a

nilpotent ideal ofA, then the canonical surjectionA→ A/I induces an isomorphismK0(A)→ K0(A/I). This
implies that

K0(R⋉ M)
≃
−→ K0(R) and K0(S⋉ M)

≃
−→ K0(S).

Consequently, bothK0(µ) : K0(R)→ K0(R⋉ M) andK0(ρ) : K0(S)→ K0(S⋉ M) are isomorphisms. Hence
K0(R)⊕K0(S⋉ M)≃ K0(S)⊕K0(R⋉ M). This completes the proof of Corollary 1.4.�

6 An example

In the following, we give an example to illustrate the key point, Proposition 4.7, in our proof of the main
result, Theorem 1.1.

Example 1. Let k be a field, and letRbe ak-algebra with the 2×2 matrix ringM2(k) overk as its vector
space, and with the multiplication inRgiven by

(
a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ ab′+bd′

ca′+dc′ dd′

)

for a,a′,b,b′,c,c′,d,d′ ∈ k. Note thatRcan be depicted as the following quiver algebra with relations

(⋆) 1•

α
''
•2

β
gg , αβ = βα = 0.

Let ei be the idempotent element ofRcorresponding to the vertexi for i = 1,2. We consider the universal
localizationλ : R→ Sof Rat the homomorphismϕ : Re2→ Re1 induced byα. This means that, to work out
the new algebraS, we need to add a new arrowα−1 : 2→ 1 and two new relationsαα−1 = e1 andα−1α = e2

to the quiver(⋆). Thus we haveβ = e2β = α−1αβ = 0 in Ssinceαβ = 0. In other words,Scan be expressed
as the following quiver algebra with relations:

1•

α
''
•2

α−1

gg , αα−1 = e1 and α−1α = e2,

which is isomorphic to the usual matrix ringM2(k) overk. Moreover, the ring homomorphismλ : R→ Scan
be given explicitly by

e1 7→ e1, e2 7→ e2, α 7→ α, β 7→ 0.

It is easy to see thatSe2 ≃ Se1 ≃ Re1 andS≃ Se1⊕Se2 ≃ Re1⊕Re1 asR-modules. In particular,RS is a
finitely generated projectiveR-module andλ is a homological ring epimorphism withRS∈P<∞(R).

Now, we define

Q• := 0−→ Re2
ϕ
−→ Re1−→ 0 and P• := 0−→ R

λ
−→ S−→ 0

whereRe2 and R are of degree 0. Clearly,Q• ∈ C b(R-proj) and P•[1] is the mapping cone ofλ. Since
Se2 ≃ Se1 ≃ Re1 asR-modules, we infer thatQ• ≃ P• in C (R) and Tria(Q•) = Tria(RP•) ⊆D(R). Thus all
the assumptions of Proposition 4.7 are satisfied. It followsfrom Proposition 4.7 that

K(R)
∼
−→ K(S)×K(T)
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asK-theory spaces, whereT := End•R(Q•) is the dg endomorphism algebra ofQ• (see Subsection 2.1 for
definition).

It is easy to check that the dg algebraT := (T i)i∈Z is given by the following data:

T−1 = k, T0 = k⊕k, T1 = k,T i = 0 for i 6=−1,0,1,

with the differential:

0−→ T−1 0
−→ T0 ( 1

−1)
−→ T1−→ 0

and the multiplication◦ : T×T→ T (see Subsection 2.1):

T−1◦T−1 = T1◦T1 = 0 = T−1◦T1 = T1◦T−1,

(a,b)◦ (c,d) = (ac,bd), f ◦ (a,b) = f a, (a,b)◦ f = b f, g◦ (a,b) = gb, (a,b)◦g = ag,

where(a,b),(c,d) ∈ T0, f ∈ T−1 andg∈ T1.
SinceH1(T) = 0, we see that the dg algebraT is quasi-isomorphic to the following dg algebraτ≤0(T)

overk:
0−→ T−1 0

−→ Ker(d0)−→ 0

whered0 =
(

1
−1

)
: T0→ T1. Clearly, the latter algebra is isomorphic to the dg algebra

A := 0−→ k
0
−→ k−→ 0

where the firstk is of degree−1 and has ak-k-bimodule structure via multiplication. Thus the algebra
structure ofA (by forgetting its differential) is precisely the trivial extensionk⋉ k of k by the bimodulek.
Now, by Lemma 3.8, we know that

K(T)
∼
−→ K(τ≤0(T))

∼
−→ K(A)

asK-theory spaces. ThusK(R)
∼
−→ K(S)×K(A). In particular,

Kn(R)≃ Kn(S)⊕Kn(A) for all n∈ N.

It is worth noting that we cannot replace the dg algebraA in the above isomorphism by the trivial extension
k⋉k since the algebraicK-theory of dg algebras is different from that of usual rings.In fact, in this example,
K1(R) = K1(k)⊕K1(k) = k× ⊕ k×, K1(S) = k× and K1(A) = k×, but K1(k ⋉ k) = k⊕ k×. So K1(R) 6≃
K1(S)⊕K1(k⋉ k). For information onKn(k) with k a finite field, we refer the reader to [19].
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