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Abstract. In this paper we define a class of stable equivalences, namely, the stable equivalences
of adjoint type, and study the Hochschild cohomology groups of algebras that are linked by a
stable equivalence of adjoint type. This notion of adjoint type is a special case of Morita type,
covers the stable equivalence of Morita type for self-injective algebras, and thus includes the
case where Broué’s conjecture was made (see for instance [5]). The main results in this paper
are: Let 4 and B be two artin k-algebras such that 4 and B are projective over k, and let
H"(A) and H"(B) be the n-th Hochschild cohomology groups of A and B, respectively. (1) If A4
and B are stably equivalent of adjoint type, then H"(4) ~ H"(B) for alln > 1. (2) If 4 and B
are stably equivalent of Morita type, then the absolute values of Cartan determinants of 4 and
B are equal. In particular, two cellular algebras over a field have the same Cartan determinant
if they are stably equivalent of Morita type.
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1 Introduction

Stable equivalences of Morita type are of particular interest in representation theory
of finite groups and associative algebras (see [1, 5, 13, 14, 17, 18, 19, 20, 21]); they
enter into derived equivalences by a result of Rickard [18], which says that any de-
rived equivalence between self-injective algebras (especially, the block algebras of
group algebras) induces a stable equivalence of Morita type. In this way, the notion
of stable equivalence of Morita type is then related to Broué’s abelian defect group
conjecture which says that the module categories of a block algebra 4 of a finite
group algebra and its Brauer correspondent B should have equivalent derived cate-
gories if their defect group is abelian (see [18]). When starting to understand stable
equivalences of Morita type in general situation, we realize that the stable equiv-
alences of Morita type between self-injective algebras have a special property,
namely, the two bimodules that define the stable equivalences of Morita type supply
us always with two natural adjoint pairs of functors between module categories (see
[14]). Such a stable equivalence will be called a stable equivalence of adjoint type in
this paper. One might think this kind of stable equivalences would be rare. But, in
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fact, it is not the case. Surprisingly, even beyond the scope of self-injective algebras
there are many stable equivalences of adjoint type. At moment we do not know any
example of two algebras which are stably equivalent of Morita type, but not of
adjoint type. In [15] one may find a machinery to construct stable equivalences of
adjoint type. Moreover, it was shown in [15] that stable equivalences of adjoint type
preserve self-injective dimension and Gorenstein property. It seems that stable equiv-
alences of adjoint type behavior very nicely in transferring information from one
algebra to the other. To understand the adjoint type, a natural question is: which
possible properties could distinguish the adjoint type from Morita type?

In the present note we shall prove that stable equivalences of adjoint type preserve
Hochschild cohomology groups, and that the absolute value of Cartan determinant
is invariant under stable equivalences of Morita type. The former generalizes a result
in [17] (see also [14]), and the latter extends a result in [16] and in [2] in different
direction.

Theorem 1.1. Let A and B be two artin k-algebras such that A and B are projective
k-modules, and let H"(A) and H"(B) be the n-th Hochschild cohomology groups of A
and B, respectively.

(1) If A and B are stably equivalent of adjoint type, then H"(A) ~ H"(B) for all
n>1

(2) If A and B are stably equivalent of Morita type, then the absolute values of
Cartan determinants of A and B are equal. In particular, two cellular algebras have the
same Cartan determinant if they are stably equivalent of Morita type.

The proof of this result is given in Section 4 and Section 5. The main ingredient to
the proof of the first statement is the use of a spectral sequence which provides us a
homological identity.

2 Preliminaries

Throughout this paper, k& will stand for a commutative artin ring with identity. All
categories will be k-categories and all functors are k-functors; and all categories are
closed under isomorphisms and direct summands. Furthermore, we assume that all
algebras A considered are artin k-algebras with identity, that is, 4 is a finitely gen-
erated k-module. Unless stated otherwise, by a module we shall mean a finitely gen-
erated left module. The composition of two morphisms f: X — Yandg: Y — Z
between modules will be denoted by fg.

Given an algebra 4, we denote by 4-mod the category of finitely generated A-
modules. Dually, we denote by mod-A4 the category of finitely generated right A-
modules. A left A- and right B-bimodule X will be denoted by 4 X, or by 4_po»X and
X4oo_p. The usual dual of artin k-algebras will be denoted by D.

Let us first collect some homological facts which we need in the later proofs.

Lemma 2.1. (1) Let A, B and E be three artin k-algebras and 4Xp and pYg
bimodules, where Xg is projective. Then the natural morphism ¢: 4X Qg Yg —
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Homg(gX ™" 4, YE), where X* = Homg(X, B) and ¢(x® y)(f) = f(x)y for xe€ X,
yveYand f € X* is an isomorphism of A-E-bimodules.

(2) In the situation (P4, Xg, 4Ug), if P4 is projective, or if Xp is projective, then
P ®,Homp(Xp, 4Up) ~ Homp(Xp, P ®, Us).

Dually, in the situation (4P, pX, pUy4), if 4P is projective, or if gX is projective, then
Homp(pX, pU4) ®,4 P ~ Homp(pX, gU ®4 P).

(3) In the situation (4Xp,4Y), if Xp is projective and 4Y is injective, then
Homy (4 Xp, 4Y) is an injective B-module. O

As an immediate consequence of Lemma 2.1(1), we have

Corollary 2.2. Let A and B be two artin k-algebras, and let 4 X and gY be two modules.
Then Y ®, D(X) ~ Homy (X, Y) as right A- left B-bimodules. O

The following lemma provides a way to get projective bimodules. For a proof we
refer to [3].

Lemma 2.3. Let A, B and C be three artin algebras. Suppose P is a projective A-B-
bimodule.

() If M is a C-A-bimodule such that ¢ M and M, are projective modules, then
M ®, P is a projective C-B-bimodule. Similarly, if M is a B-C-bimodule such that gM
and M ¢ are projective modules, then P ®g M is a projective A-C-bimodule.

(2) Homy (P, X) is an injective B-module for any module 4X in A-mod. Similarly,
Hompg(Pg, Y3) is an injective right A-module for any right B-module Y. O

The following Grothendieck spectral theorem can be found in text books of homo-
logical algebra (see [10, theorem 9.3, p. 299], for example).

Lemma 2.4. Given two additive covariant functors F : of — % and G : B — € between
abelian categories with enough injective objects. Suppose for any injective object I € </,
the object FI is right G-acyclic, that is, for the right derived functor R”(G) of G we
have (R?G)(FI) = 0 for any p > 1, and (R’ G)(FI) = G(FI) for p = 0. Then there is a
spectral sequence {E,(A)} corresponding to each object A of </, such that

E{'" = (RPG)(RIF)(A) = R"™I(GF)(4),

which converges finitely to the graded object associated with {RPT1(GF)(A)}, suitably
filtered. [

We shall use this to prove the following homological identity.
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Theorem 2.5. Let R, S and T be artin k-algebras. In the situation (r_sX, Yr_s, rZ7)
we assume that g X, Yr and Yg are projective. Then

Extre,s(r-sX,Homy(Yr_s, rZr)) ~ Extrg (Y75, Homg(z-sX, Z))
foralln > 0.

Before starting the proof of this result, we state some facts from [6]. The first state-
ment of the following lemma is [6, exercise 1, p. 360], and the second one is [6, prop-
osition 2.3a, p. 166].

Lemma 2.6. (1) In the situation (r_sX, Yr_s,rZr), where R, S and T are k-algebras
with k a commutative ring with identity, there is an isomorphism

Homgg,s(X,Homyz (Y, Z)) ~ Homyzg,s(Y, Homg(X, Z)).

(2) In the situation (rXs, Yr_s) assume that rX is a projective R-module and Y is an
injective (T ®y, S)-module. Then Homg(rXs, Yr_5s) is injective as a right (R ®; T)-
module. |

Proof of Theorem 2.5. Let o/ = (R®; T°P)-mod, % = (R®; S)-mod and % =
k-mod. We define two additive covariant functors

F = HOIIlT(YTfs, 7) of — ﬂ; G= HOHlR®k5(R75X, 7) B — F.

If gI7 is an injective R-T-bimodule, we show that FI = Homy(Y7_gs, rl7) is right
G-acyclic, that is, Extf{@/cS(X ,FI) =0 for all p>1. For this, it is sufficient to
show that FI is an injective (R ®; S)-module if Y is projective. However, this fol-
lows from Lemma 2.6(2) directly. To apply Lemma 2.4, we need to know the right
derived functors of GF. But, by Lemma 2.6(1), it is easy to see that R?(GF) ~
Ext§®k5( Yr_s,Homg(gr_sX,—)) since we assume that g X is projective. Now it fol-
lows from Lemma 2.4 that there is a spectral sequence {E,(Z)} for each Z € .o/ such
that

EXt§®kS(X7 EXt%(Y, rZ7)) = EXt?@,(s(YTfSa Homg(r-sX, rZ7)),

with n = p+¢. Since Y7 is projective, this spectral sequence collapses. Thus we
have

EX‘[;;®](S(X, HOIl’lT( Y, Z)) ~ Eth"®kS( Yr_s, HOIIlR(R,_gX, RZT))
for all n > 0. This finishes the proof of Theorem 2.5. O

We need also the following result whose proof can be found in [6, theorem 2.8, 2.8a,
p. 167]. Note that the statement (3) below is a dual version of (2) for left modules.
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Lemma 2.7 (see [6, p. 167]). (1) Let A, T and X be three k-algebras that are pro-
Jjective over k. In the situation (Xa_r,aYs,r-sZ) assume that Toré\(X, Y)=0=
Torf(Y7 Z) for n > 1. Then there is an isomorphism

Tor"®*(X ®, ¥, Z) ~ Tor*® (X, ¥ ®5 2).

(2) Let A, T and X be three k-algebras that are projective over k. In the situation
(Xa_r,AYs, Zr_x) assume that Tor>(X,Y) =0 = Ext}(Y,Z) for n > 1. Then there
is an isomorphism

Extreg, (X ® Y, Z) ~ Extpg,r(X, Homg(Y, Z)).

(3) Let A, T and X be three k-algebras that are projective over k. In the situation
(A-TX,5 YA, r_sZ) assume that Tor™(Y,X) =0 = Ext}(Y, Z) for n > 1. Then there
is an isomorphism

EXtr®k2( Y @) X, F—ZZ) ~ EXt/\®kr(/\_rX, HOn’l):( Y, Z)) O

3 Stable equivalences of adjoint type

In this section we define the notion of a stable equivalence of adjoint type and de-
velop its basic properties. Now let us first recall the definition of a stable equivalence
of Morita type introduced by Broué [5], which is a combination of the notion of a
Morita equivalence with the one of a stable equivalence.

Definition 3.1. Let 4 and B be two (arbitrary) artin k-algebras. We say that 4 and B
are stably equivalent of Morita type if there exists an A-B-bimodule 4Mp and a B-A4-
bimodule 3N 4 such that

(1) M and N are projective as one-sided modules, and

(2) M ®3 N ~ A @ P as A-A-bimodules for some projective 4-A-bimodule 4Py,
and N ®, M ~ B® Q as B-B-bimodules for some projective B-B-bimodule zQ0p.

In the case of Definition 3.1 we say that M and N define a stable equivalence of
Morita type between two algebras 4 and B. In [14] we proved that if M and N define
a stable equivalence of Morita type between two self-injective algebras, then one al-
ways has two adjoint pairs (M’ ®p —, N' ®,—) and (N' ®,, M’ ®z—) of functors
between module categories over 4 and B. Motivated by this phenomenon, we intro-
duce the following notion.

Definition 3.2. If a stable equivalence of Morita type between two algebras 4 and B
defined by M and N satisfies that both (N ®, —, M ®z—) and (M ®z—, N ®, —)
are adjoint pairs of functors, then it is called a stable equivalence of adjoint type.

It is clear that a stable equivalence of Morita type defined by M and N is of adjoint
type if and only if N ~ Hom, (M, A4) and M ~ Homg(N, B) as bimodules. Typical
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examples of stable equivalences of adjoint type are the stable equivalences of Morita
type between self-injective algebras (see [14]). We stress that there are plenty exam-
ples of stable equivalences of adjoint type outside the scope of self-injective algebras,
according to the construction in [15].

The following is an easy property of adjoint type.

Lemma 3.3. Suppose a stable equivalence of Morita type between A and B is defined by
Mand N. If (N®,—, M ®g—) and (M ®g—, N ®, —) are adjoint pairs of functors
between A-mod and B-mod, then (— ®4 M,— ®zN) and (— @z N, — ®, M) are ad-
Jjoint pairs of functors between mod-A and mod-B. Thus 4Mpg ~ Homy(pN4, 444)
and BNA ~ HOI’I’IB(AMB,BBB).

Proof. Since gN is projective, we have a canonical isomorphism of B-modules:
sN — Homg(Hompg(sN, gBg), sBg). One can check that this is also a right A-
homomorphism. Thus g N4 ~ Homp(4Mp, gBg). We shall use dimension shifting and
the projectivity of Mg to show that o : X ® g Hompg(4Mp, sBp) — Homg(,Mp, Xp) is
an isomorphism as right 4-modules, where « sends x ® ¢ to a morphism from M to
X by m— x¢(m). In fact, the o is an isomorphism for Xz = Bg, and thus for any
projective right B-module. Now we take a projective presentation of Xp:

P — Py— Xz — 0.
This gives the following commutative exact diagram:

Pl ®B HOl’l'lB(AJB7 BBB) — P() ®B HOIT[lB(Z‘JB7 BBB) — X®B HOI’l’lB(Z‘JB7 BBB) —0

| | |

HomB(MB,Pl) —_ HOInB(MB,P()) — HOIIIB(MB,X) — 0,

where the exactness of the lower row follows from the projectivity of Mp. Since the
first two vertical maps are isomophisms, this implies that the « in the third column is
also an isomorphism. One can also check that this isomorphism is natural in X. Thus
— ®p Ny ~Homg(4Mp,—); and therefore (— ®, M,— ®p N) is an adjoint pair.
Similarly, we can show that (— ®z N,— ®, M) is an adjoint pair. O

Proposition 3.4. Suppose k is a perfect field. Let A and B be two k-algebras without
two-sided semisimple direct summands. Suppose 4Mp and pN 4 define a stable equiva-
lence of Morita type between A and B, where M and N have no direct summands of
projective bimodules. Then M and N define a stable equivalence of adjoint type be-
tween A and B if and only if Homy (4 Mp, 4Mp) ~ B @® Q' as bimodules with Q' a
projective B-B-bimodule, and Homp(gN 4, pN4) ~ 444 ® P’ as bimodules with P’ a
projective A-A-bimodule.

Proof. Suppose that Hom,(4Mp, 4Mp) ~ pBp ® Q' as bimodules with Q' a pro-
jective B-B-bimodule, and Hompg(gN4, gN4) ~ 444 @ P’ as bimodules with P’ a
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projective A-A-bimodule. By these assumptions we have the following bimodule
isomorphisms:

(*) M(—BP’@AMBZHOI’IlB(BNA,BNA)®AMB
~ HOIl’lB(BNA,BN ®A MB)
~ Homp(sN 4, sBp) ® Homp(sN4, 505).

Note that P’ ®, M is a projective bimodule by Lemma 2.3. Thus Homg(gN, B)
is a projective A-module, and therefore any direct summand Hompg(gN4, gBe),
with e = e? € B, of Homp(gN, gB) is also a projective A-module. This implies
that the bimodule Homp(gN4, 5Qp) is a projective bimodule since if we write
0 = @;(Be; ® f;B) for some e?=e¢;, f>=feB then Homg(sN4,p0p) ~
@, Homg(pN 4, pBe; ®;, fiB) ~ @, Homp(gN4, Be) ®; fB by Lemma 2.1(2). Now
we show that Hompg(gN, pBg) has no summands of projective bimodules. Suppose
Homp(gN, pBg) = 4Yp @ 4Yj, where Y has no projective summands and Y’ is a
projective A-B-bimodule. Applying Homg(—, Bg) to this decomposition, we get

N4 ~ Homp(4Yp, sBs) ® Homp(4 Yy, 5Bs).

Thus Homg(4Y}, Bp) is a projective right A-module since N, is projective. More-
over, we may suppose Y’ = Ae ®,, /B with e an idempotent in 4 and f an idempotent
in B. Then we have Homp(4Y}, pBs) ~ Homp(Ae ®, fB, pBp) ~ Homy(Ae, Bf ) ~
Bf ®,D(Ae) by Lemma 2.2. Thus the right A-projectivity of Hompg(4Y}, sBg)
shows that D(A4e) is also projective. Thus Homp(4Yy, pBg) is a projective B-A-
bimodule since it is a direct sum of modules of the form Bf ®; D(Ae) with D(Ae)
a projective right 4-module. But this contradicts to the assumption for N, thus
Hompg(4Y}, sBg) = 0, that is, Y’ = 0. By comparison of the non-projective part of
the both sides in (x), we have that M ~ Homp(sN, pB) as bimodules.

Similarly, we can show that N ~ Hom,4(4M, 44) as bimodules. Thus M and N
define a stable equivalence of adjoint type.

Conversely, if M and N define a stable equivalence of adjoint type, then
BNA ~ HomA(AMB,AAA) and M ~ HomB(BNA,BBB). Hence HomA(AMB,AMB) ad
Hom,(4Mp, 4A4) ®4 Mp by Lemma 2.1(2), which is then isomorphic to zN ®,
Mg ~ B® Q as bimodules. Similarly, Homp(gN, gN) ~ A @ P as bimodules. This
finishes the proof. O

Proposition 3.5. Suppose k is a perfect field. Let A and B be two k-algebras without
two-sided semisimple direct summands. Suppose 4Mp and gN 4 define a stable equiva-
lence of Morita type between A and B, where M and N have no direct summands
of projective bimodules. If M ®p N ~ M ®zHomy(4M, 4A) and N @ Mg ~ N ®,
Hompg(gN, gB) as bimodules, then M and N define a stable equivalence of adjoint
type.
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Proof. We have that Homy (4 M, 4A) ®4 M ~ Hom4(M, M) as B-B-bimodules by
Lemma 2.1(2). It follows from the assumption that

N®BM®BHOmA(M,A) ®AM ~ N@AM®BN®A M
From this we get the following isomorphisms of bimodules:
Homy (M, M) ® Q ®z Hom (M, M)

~BOO)@BO®O)~BOODO®O®0.

Thus Hom, (M, M) is projective as one-sided modules since the right hand side
of the above isomorphism is projective as one-sided modules. This implies that
O ®zHom4 (M, M) is a projective bimodule by Lemma 2.3. Hence we have a bimod-
ule isomorphism: Hom (M, M) ~ B@® Q' with Q' a projective B-B-bimodule. Simi-
larly, we can show that Homg(N, N) ~ A @ P’ with P’ a projective 4-A-bimodule.
Then, by Proposition 3.4, M and N define a stable equivalence of Morita type. []

Proposition 3.6. Suppose k is a perfect field. Let A and B be two k-algebras with-
out two-sided semisimple direct summands. Suppose 4Mp and gN 4 define a stable
equivalence of Morita type between A and B, where M and N have no direct summands
of projective bimodules, such that M ®z N ~ Hompg(gN, pB) @ Hom (4 M, 4A) and
N ®, Mp ~Homy(4Mp, 4A) ®,Hompg(gN, gB) as bimodules. If the evaluation maps
M ®zHom(M,A) — A and N ®,Hom(N, B) — B are split as an A-A-bimodule and
a B-B-bimodule homomorphism, respectively, then M and N define a stable equivalence
of adjoint type.

Proof. As in the proof of 3.4, we can show that Homp(gN, gB) and Hom,(4M, A)
contain no projective bimodules as a direct summand.

Since the evaluation map ev : M ® Hom(M, A) — A is a split A-A-bimodule ho-
momorphism, we know that the induced map M ®z Hom(M, 4) ®, Homg(N, B) —
A ®,Hompg(N, B) is a split A-B-bimodule homomorphism. Thus Homg(N, B) is a
direct summand of M ®z Hom(M, 4) ®,Homg(N,B) ~ M & M ®z Q. We know
that M ®5 Q is a projective A-B-bimodule. This implies that Homg(N, B) is a
direct summand of M. Similarly, Hom4(M, A) is a direct summand of N. We may
assume that M = Homg(N,B) ® X and N = Hom,(M,4) ® Y. Then M ®z N =
Homg(N, B) ® Hom (M, A) ® Hom(N, B) ®z Y ® Hom, (M, 4) ®, X ® X ®p Y.
By assumption, we must have Homy(M,X)~Hom,(M,4)®,X=0=
Homg(N, B) ®p Y ~ Homg(N, Y). Since 4M and gN are generators for A-mod
and B-mod, respectively, we get that X =0=Y. Thus N ~ Hom,(4M, A) and
M ~ Hompg(gN, gB) as bimodules. This implies that M and N define a stable
equivalence of adjoint type. O

Related to stable equivalences of adjoint type, we have the following unsolved basic
question.
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Question 1. Are there any two algebras 4 and B such that they are stably equivalent
of Morita type, but between them there is not any stable equivalence of adjoint

type?

4 Hochschild cohomologies

In this section we shall use Theorem 2.5 to prove that a stable equivalence of adjoint
type preserves the higher Hochschild cohomology groups. For self-injective algebras
this was first proved in [17], and then in [14] by a different method. However, both
proofs depend heavily on the self-injectivity of the given algebras. Our proof here
does not use any self-injectivity; and our result generalizes the one for self-injective
algebras.

Now, let us first recall the definition of Hochschild cohomology.

Definition 4.1. Let A be an artin k-algebra. If X is a A-A-bimodule, then the
Hochschild homology of A with coefficients in X is defined as

H,(A, X) = Tor™ (X,A)

for all n >0, where A° = A ®, A" is the enveloping algebra of A. If X = A we
obtain the Hochschild homology of A : H.(A) = Tor™ (A, A).
Dually, the Hochschild cohomology of A with coefficients in X is defined as

H"(A, X) = Ext’.(A, X)

for all n>0. If X = A we obtain the Hochschild cohomology of A: H*(A) =
Extyc(A, A).

Note that the low-dimensional Hochschild homology and cohomology have a sim-
ple interpretation, namely, for a k-algebra A, H°(A) is the center of A, that is,
H(A) = {ae A|ax = xafor all x e A}; and H'(A) is isomorphic to Der(4)/Inn(A4),
where Der(A4) stands for the set of all k-linear derivations on 4, and Inn(A4) stands
for the set of all inner derivations of 4. Hy(A) is the quotient of 4 modulo the k-
space [A4, A] spanned by all elements of the form xa — ax, with a, x € 4.

It was proved that the Hochschild homology groups H, (for n > 1) are invariant
under stable equivalences of Morita type; while it is open in general whether the
Hochschild cohomology groups H” are invariant under stable equivalences of Mor-
ita type. However, we show the following

Theorem 4.2. Let A and B be two artin k-algebras such that A and B are k-projective.
If A and B are stably equivalent of adjoint type, then H"(A) ~ H"(B) for all n > 1.

Proof. Suppose that the stable equivalence of adjoint type between 4 and B is defined
by the bimodule 4Mp and gN4 such that both (N ®, —, M ®z—) and (M ®p—,
N ®, —) are adjoint pairs of functors. Then we know from Lemma 3.3 that
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8N4 ~ Homy(4Mp, 4A44), 8N4 ~ Homp(4Mp, pBp), 4Mp ~ Homp(pN 4, pBp), and
AMp ~ Homy(pN4, 44.4).
To prove Theorem 4.2, we shall show the following three claims:

(1) Extpg, so0 (N, N) =~ Extlyg po(M, M) for all i > 0.

In fact, we may apply Theorem 2.5 to deduce this: In Theorem 2.5 we define R = A4,
S = BOp, T = A, R—SX = A_BopM, YS—T = NBop_A and RZT = AAA~ Then RX = AM
is projective, Ys_7 ~ pN 4 is projective as a left module and as a right module. Thus
we get from Theorem 2.5 that for n > 0,

EXtZ@kBop(AMB,AMB) = EXtZ@kBop(M7 HomA(BNA,AAA))
= EXIZ@(S(R,SX, HomT(YS,T, RZT)) ~ EXt;@(S(YT,_g, HOl’l’lR(R,S)(7 RZT))

= Extpe, qon (8N4, Homy (4 Mp, 4A4)) > Extie yon (8N4, N4).

(2) As in [l4, theorem 4.7, we show that Extpg go(N ®4M,B) =~
Extly g gor (M, M), and Ext)yg 400 (M ®p N, A) ~ Extyg 4o (N, N) for all i > 0.

In fact, we let A=A, =B and I' = B°?, and define X = ;Mp=p_r M, Y =
sN4=3xNx and Z = pBgp = r_yB in Lemma 2.7(3). By the definition of a stable
equivalence of Morita type the modules g N and N4 are projective, thatis, s ¥ and Y
are projective. Thus Tor(¥,X) =0 = Extz(Y Z) for i > 1. Hence there is an iso-
morphism ExtB® g (V ®AM B) ~ Extyq poo(M,Hompg(N, B)). Since Homp(N, B)
~ M, we have ExtB® poo (N ®4 M, B) ~ Ext)yg por(M, M). Similarly, we have
Extyg 4o (M ®p N, A) ~ Extpe 4o (N, N) for all i > 0.

(3) We have the following isomorphism identities: for all n > 1,
H"(A) = Extj.(4,4) ~ Ext/|.(A ® P,A) ~ Ext/|.(M ®p N, A)
~ Extpe 400 (N, N)  (by (2))
~ Extlg, g (M, M) (by (1))
~ Extj.(N ®4 M,B) (by (2))
~ Ext}.(B® Q, B) ~ Ext..(B, B) = H"(B).
This finishes the proof of Theorem 4.2. |
As a consequence, we re-obtained the following result in [17] (see also [14]).
Corollary 4.3. Let A and B be finite-dimensional self-injective k-algebras with k a field.

If there is a stable equivalence of Morita type between A and B, then for any n > 1,
H"(A) ~ H"(B). O
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In general, we have the following

Proposition 4.4. Let A and B be two artin k-algebras such that A and B are
projective k-modules. If A and B are stably equivalent of adjoint type, which is
defined by 4Mp and gN,, then, for any A-A-bimodule X and any integer n > 1,
H"(B.N QX M)~ H"(A,X)®H"(A,P®,X). In particular, if X = A, we
have H"(A,P) ~ H"(B, Q).

Proof. Since M and N define a stable equivalence of adjoint type between A and B,
we know that X ® , Mp ~ Hom,(pN4, X4). Note that if N4 is projective, then 4o N
is also projective, and End(404) ~ A°P. We claim that if X is a C-A-bimodule then

X ®4 Mp ~Homy(gN4,X,) as left C-modules. This follows from the following
isomorphisms of modules:

cX ®yM=cX®,,Homy (N4, 444)
~ Hom o (40 N, 4o A gor) @gop Xcon
~ Hom o (4o N, g0 Xcor)  (by [22, lemma 2.1(2)])
~ Homu(Ny, cXy).
Now we compute the Hochschild cohomology for n > 1:
H"(BLN®,X ®4 M)
= Ext}..(B,N ®, X ®, M) = Ext},(N @, M,N @, X @, M)
~ Extljg, poo (M, M @3N ®, X ®4 M)
~ Ext'j, gon(M,Hom, (N, M ®; N ®, X))
~ Ext".(M @y N,M QN ®, X) ~ H"(4,X) ® H"(4,P Q, X).
The last statement follows from Theorem 4.2. ]
Remark. If k is a perfect field, then there is a short proof of Theorem 4.2, which is a
direct consequence of Proposition 4.4 and the following lemma.
Lemma 4.5. Let A and B be two finite-dimensional k-algebras with k a perfect field.
Suppose that 4 Mg and gN 4 define a stable equivalence of adjoint type between A and

B. Let P and Q be given in Definition 3.1. Then 4P4 and gQp are projective-injective
bimodules.
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Proof. 1t follows from
4A4 @ P~ 4M @3Ny ~Homp(gN4, pBg) @ N ~ Homp(gN4, sN4)
~ Homp(gN4, Hom, (4 Mp, 444)) ~ Hom (4 M ®p N4, 4A4)
~ 444 ® Homy (4P, 4A)
that 4Py ~ Homy (4P, 4A) as A-A-bimodules. Similarly,

AAA (—BP ~ AM®BNA ~ M@BHOIHB(MB,BB> ~ HOIHB(MB,MB)
~ HOInB(MB,HOH’IA(BNA,AA)) ~ HomA(M ®BN,AA)
:A@HOIHA<PA,AA>

and 4P4 ~ Homy(Py, A4) as bimodules. By Lemma 2.3(2), 4P and P4 are injective.
Since k is a perfect field, we may write P = @;_, Ae; ®; fiA with ¢; and f; idempo-
tents in A. Thus all Ae; are injective, and all f;A4 are injective right 4-modules, and
therefore all Ae; and all f;4 are projective-injective. Hence P is a projective-injective
A-A-bimodule. Similarly, we know that Q is a projective-injective B-B-bimodule. ]

Concerning the invariance of self-injective dimension and Gorenstein property under
stable equivalences of adjoint type (or Morita type) we refer to [15] and [4].

Finally, let us mention the following question.

Question 2. Suppose two artin k-algebras 4 and B are stably equivalent of Morita
type. Is H"(A) isomorphic to H"(B) for all n > 1?

5 Cartan determinants

In this section we consider the behavior of Cartan determinants of algebras which are
stably equivalent of Morita type. Here by Cartan determinant we mean the determi-
nant of Cartan matrix.

Let A be an artin k-algebra. We denote by Ky(A) the Grothendieck group of 4,
that is, it is a quotient group of the free abelian group generated by isomorphism
classes [X] of all A-modules X in A-mod modulo the subgroup generated by all ele-
ments of the form [Y] — [X] — [Z], where 0 — X — Y — Z — 0 is an exact sequence
in A-mod. Thus K(A4) is the free abelian group generated by the isomorphism classes
[E;] of simple A-modules E; with i =1,2,... n. We denote [E;] by ¢;. The Cartan
matrix C4 of the algebra A is given by the map o4 : Ko(A) — Ko(A4), e; — p; = [P}]
with P; the projective cover of E;. By elementary divisor theory (see [7, Chapter III,
p. 91-95]), we may choose two bases for Ky(A) such that the map o4 with respect
to these bases corresponds to a diagonal matrix diag{d;,d,...,d,,0,...,0}, with
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d; positive integers such that d;0;1, and r the rank of C,. That is, there are two
modular matrices X and Y over Z such that Cy = X diag{d;,0,,...,0,,0,...,0}Y.
Recall that a matrix X over Z is called modular if det(X) is a unit in Z. Thus
the cokernel cok(g,) of a4 is isomorphic to Z/(6,) @ ---®Z/(,) ®Z"". So,
det(Cy4) # 0 if and only if cok(o,) is a finite abelian group. In this case, det(Cy) =
101+ 0n.

If there is a stable equivalence of Morita type between A and B defined by 4M3p
and pN4, then we may define a function fy : Ko(4) — Ko(B), e; — [N ®, E;]. Since
the image of p; under fy lies in the image of the map g, the function induces a Z-
linear map fy, : cok(g4) — cok(op). Similarly, we have a function fy : Ko(B) —
Ky (A) which induces a Z-linear map f}, : cok(ag) — cok(a4). By Definition 3.1(2),
we see that the composition of fy with f}, is the identity map on cok(o,4), and the
composition of f;, with fy is the identity map on cok(op). Thus fy is an iso-
morphism. This shows that det(C4) # 0 if and only if det(Cg) # 0. Thus we have the
following proposition which drops the condition “no node and no semisimple sum-
mands” in [16].

Proposition 5.1. If there is a stable equivalence of Morita type between two artin
k-algebras A and B, then the Cartan determinants of A and B have the same absolute
values.

Proof. Under the assumption, we may assume that det(Cy4) # 0 # det(Cp). We have
seen that cok(o4) ~ cok(og) as abelian groups. Suppose cok(a4) =Z/(0)) @ - D
Z/(6,) and cok(op) =Z/(11) ®--- ® Z/(t,») Where 6; and t; are positive integers.
Let %4 be the collection of elementary divisors d of diag{di,...,0,} with d # 1. The
isomorphism of the abelian groups shows that &, = 5. Since the product of all
numbers in %y is J - - -J,, we get that d; ---J, = 71 - - - T,,. This implies that det(Cy)
and det(Cp) have the same absolute values. O

Corollary 5.2. Let k be a field, and let G and H be two finite groups. If there is a stable
equivalence of Morita type between a block A of the group algebra kG and a block B of
the group algebra kH, then A and B have the same Cartan determinant.

Proof. By Proposition 5.1, the Cartan determinants of 4 and B have the same abso-
lute value. Since we know that any block of a group algebra has always the positive
Cartan determinant, the corollary follows. O

Similarly, we have the following corollary for cellular algebras. For convenience of
the reader, we recall the definition of cellular algebras. For a basis-free definition and
some basic facts of cellular algebras we refer to [9] and [11]. For the definition of
standardly stratified algebras we may refer to [8], for example.

Definition 5.3 (Graham and Lehrer, [9]). An associative algebra A over a field k is
called a cellular algebra with cell datum (I, M, C,i) if the following conditions are
satisfied:
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(C1) The finite set [ is partially ordered. Associated with each A € I there is a finite
set M (Z). The algebra 4 has a k-basis C{ , where (S, T) runs through all elements of
M(2) x M(Z) forall Lel.

(C2) The map i is a k-linear anti-automorphism of 4 with i> = id which sends C § T
to C% s

(C3) For each A€l and S, T € M(A) and each a € 4 the product ani‘T can be
written as (3_y ¢y Fa(U ,8)Cf ) + 1’ where 1’ is a linear combination of basis
elements with upper index u strictly smaller than A, and where the coefficients
r,(U,S) € k do not depend on T.

Typical examples of cellular algebras include Brauer algebras, Temperley-Lieb alge-
bras, partition algebras, ¢g-Schur algebras and many others.

Corollary 5.4. Let A and B be two k-algebras with k a field. Suppose there is a stable
equivalence of Morita type between A and B.

(1) If A and B are cellular, then A and B have the same Cartan determinant.

(2) If A and B are standardly stratified, then A and B have the same Cartan deter-
minant.

Proof. By [12], the Cartan matrix of an arbitrary cellular algebra is positive definite.
By [8], the Cartan determinant of a standardly stratified algebra is the product of the
dimensions of the endomorphism algebras of standard modules. Thus the corollary
follows now from Proposition 5.1 immediately. O

One should note that Proposition 5.1 could be wrong for stable equivalences in gen-
eral. An easy example is that k[x]/(x?) is stably equivalent to the path algebra over k
of the quiver o — o. Clearly, the former algebra has Cartan determinant equal to 2,
and the latter algebra has Cartan determinant equal to 1.

Finally, we point out that for the so-called “‘self-injectively free” algebras without
nodes and semi-simple summands it was shown in [16] that the Cartan matrices are
invariant under stable equivalences. The following example shows that even when
two indecomposable algebras are stably equivalent of adjoint type, they may have
different Cartan matrices.

Example. Let us consider the algebras in [13, Example 1]. Let 4 be the algebra given
by the quiver

with relations

affy = Byaf = 0.
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Then the Cartan matrix of A4 is

I 1 1
1 21
1 1 2

Let B be the algebra given by the quiver

Ar 12223

~fls
e

with relations
pd=pp' =0'p' =p'p—06"=0.

Then the Cartan matrix of B is

O = =
—_— N =
N = O

It was proved that there is a stable equivalence of Morita type between 4 and B.
Since this stable equivalence is obtained from a stable equivalence of adjoint type by
quotients, we know from [15, proposition 3.8] that there is a stable equivalence of
adjoint type between 4 and B. Note that 4 and B do not contain nodes and semi-
simple summands, and do not have the same Cartan matrix, but the same Cartan
determinant.

We remark that even for those stable equivalences of adjoint type, which are ob-
tained from derived equivalences between blocks of group algebras, we cannot get
the same Cartan matrices, though derived equivalences preserve Cartan determinants
for arbitrary algebras. For an example, see [14]. On the other hand, suggested by the
above results and many examples, the following question seems to have a positive
answer.

Question 3. If there is a stable equivalence of Morita type between 4 and B, are the
determinants of the Cartan matrices of 4 and B equal?
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Added in Proof (August 20, 2006). More recently, I learn from Martinez-Villa that in
a paper “A note on stable equivalences of Morita type” by Dugas and Martinez-Villa
the following result is proved: Let 4 and B are finite-dimensional algebras over a field
such that 4 and B are indecomposable and that 4/rad(A4) and B/rad(B) are separa-
ble. If 4 and B are stably equivalent of Morita type, then they are stably equivalent
of adjoint type. Thus our result on Hochschild cohomology includes this situation.
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