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Abstract. In this paper we define a class of stable equivalences, namely, the stable equivalences
of adjoint type, and study the Hochschild cohomology groups of algebras that are linked by a
stable equivalence of adjoint type. This notion of adjoint type is a special case of Morita type,
covers the stable equivalence of Morita type for self-injective algebras, and thus includes the
case where Broué’s conjecture was made (see for instance [5]). The main results in this paper
are: Let A and B be two artin k-algebras such that A and B are projective over k, and let
H nðAÞ and H nðBÞ be the n-th Hochschild cohomology groups of A and B, respectively. (1) If A

and B are stably equivalent of adjoint type, then H nðAÞFH nðBÞ for all nb 1. (2) If A and B

are stably equivalent of Morita type, then the absolute values of Cartan determinants of A and
B are equal. In particular, two cellular algebras over a field have the same Cartan determinant
if they are stably equivalent of Morita type.

2000 Mathematics Subject Classification: 16G10, 16E30; 16G70, 18G05, 20J05.

1 Introduction

Stable equivalences of Morita type are of particular interest in representation theory
of finite groups and associative algebras (see [1, 5, 13, 14, 17, 18, 19, 20, 21]); they
enter into derived equivalences by a result of Rickard [18], which says that any de-
rived equivalence between self-injective algebras (especially, the block algebras of
group algebras) induces a stable equivalence of Morita type. In this way, the notion
of stable equivalence of Morita type is then related to Broué’s abelian defect group
conjecture which says that the module categories of a block algebra A of a finite
group algebra and its Brauer correspondent B should have equivalent derived cate-
gories if their defect group is abelian (see [18]). When starting to understand stable
equivalences of Morita type in general situation, we realize that the stable equiv-
alences of Morita type between self-injective algebras have a special property,
namely, the two bimodules that define the stable equivalences of Morita type supply
us always with two natural adjoint pairs of functors between module categories (see
[14]). Such a stable equivalence will be called a stable equivalence of adjoint type in
this paper. One might think this kind of stable equivalences would be rare. But, in



fact, it is not the case. Surprisingly, even beyond the scope of self-injective algebras
there are many stable equivalences of adjoint type. At moment we do not know any
example of two algebras which are stably equivalent of Morita type, but not of
adjoint type. In [15] one may find a machinery to construct stable equivalences of
adjoint type. Moreover, it was shown in [15] that stable equivalences of adjoint type
preserve self-injective dimension and Gorenstein property. It seems that stable equiv-
alences of adjoint type behavior very nicely in transferring information from one
algebra to the other. To understand the adjoint type, a natural question is: which
possible properties could distinguish the adjoint type from Morita type?

In the present note we shall prove that stable equivalences of adjoint type preserve
Hochschild cohomology groups, and that the absolute value of Cartan determinant
is invariant under stable equivalences of Morita type. The former generalizes a result
in [17] (see also [14]), and the latter extends a result in [16] and in [2] in di¤erent
direction.

Theorem 1.1. Let A and B be two artin k-algebras such that A and B are projective

k-modules, and let H nðAÞ and H nðBÞ be the n-th Hochschild cohomology groups of A

and B, respectively.

(1) If A and B are stably equivalent of adjoint type, then H nðAÞFH nðBÞ for all

nb 1.

(2) If A and B are stably equivalent of Morita type, then the absolute values of

Cartan determinants of A and B are equal. In particular, two cellular algebras have the

same Cartan determinant if they are stably equivalent of Morita type.

The proof of this result is given in Section 4 and Section 5. The main ingredient to
the proof of the first statement is the use of a spectral sequence which provides us a
homological identity.

2 Preliminaries

Throughout this paper, k will stand for a commutative artin ring with identity. All
categories will be k-categories and all functors are k-functors; and all categories are
closed under isomorphisms and direct summands. Furthermore, we assume that all
algebras A considered are artin k-algebras with identity, that is, A is a finitely gen-
erated k-module. Unless stated otherwise, by a module we shall mean a finitely gen-
erated left module. The composition of two morphisms f : X ! Y and g : Y ! Z

between modules will be denoted by fg.
Given an algebra A, we denote by A-mod the category of finitely generated A-

modules. Dually, we denote by mod-A the category of finitely generated right A-
modules. A left A- and right B-bimodule X will be denoted by AXB, or by A�B op X and
XA op�B. The usual dual of artin k-algebras will be denoted by D.

Let us first collect some homological facts which we need in the later proofs.

Lemma 2.1. (1) Let A, B and E be three artin k-algebras and AXB and BYE

bimodules, where XB is projective. Then the natural morphism f : AX nB YE !
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HomBðBX �A; BYEÞ, where X � ¼ HomBðX ;BÞ and fðxn yÞð f Þ ¼ f ðxÞy for x A X,

y A Y and f A X � is an isomorphism of A-E-bimodules.

(2) In the situation ðPA;XB; AUBÞ, if PA is projective, or if XB is projective, then

PnA HomBðXB; AUBÞFHomBðXB;PnA UBÞ:

Dually, in the situation ðAP; BX ; BUAÞ, if AP is projective, or if BX is projective, then

HomBðBX ; BUAÞnA PFHomBðBX ; BU nA PÞ:

(3) In the situation ðAXB; AY Þ, if XB is projective and AY is injective, then

HomAðAXB; AYÞ is an injective B-module. r

As an immediate consequence of Lemma 2.1(1), we have

Corollary 2.2. Let A and B be two artin k-algebras, and let AX and BY be two modules.

Then Y nk DðXÞFHomkðX ;Y Þ as right A- left B-bimodules. r

The following lemma provides a way to get projective bimodules. For a proof we
refer to [3].

Lemma 2.3. Let A, B and C be three artin algebras. Suppose P is a projective A-B-

bimodule.

(1) If M is a C-A-bimodule such that CM and MA are projective modules, then

M nA P is a projective C-B-bimodule. Similarly, if M is a B-C-bimodule such that BM

and MC are projective modules, then PnB M is a projective A-C-bimodule.

(2) HomAðP;X Þ is an injective B-module for any module AX in A-mod. Similarly,

HomBðPB;YBÞ is an injective right A-module for any right B-module Y. r

The following Grothendieck spectral theorem can be found in text books of homo-
logical algebra (see [10, theorem 9.3, p. 299], for example).

Lemma 2.4. Given two additive covariant functors F : A! B and G : B! C between

abelian categories with enough injective objects. Suppose for any injective object I A A,

the object FI is right G-acyclic, that is, for the right derived functor RpðGÞ of G we

have ðRpGÞðFIÞ ¼ 0 for any pb 1, and ðRpGÞðFIÞ ¼ GðFIÞ for p ¼ 0. Then there is a

spectral sequence fEnðAÞg corresponding to each object A of A, such that

E
p;q
1 ¼ ðRpGÞðRqF ÞðAÞ ) RpþqðGF ÞðAÞ;

which converges finitely to the graded object associated with fRpþqðGF ÞðAÞg, suitably

filtered. r

We shall use this to prove the following homological identity.
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Theorem 2.5. Let R, S and T be artin k-algebras. In the situation ðR�SX ;YT�S; RZTÞ
we assume that RX ;YT and YS are projective. Then

Extn
RnkSðR�SX ;HomTðYT�S; RZT ÞÞFExtn

TnkSðYT�S;HomRðR�SX ;ZÞÞ

for all nb 0.

Before starting the proof of this result, we state some facts from [6]. The first state-
ment of the following lemma is [6, exercise 1, p. 360], and the second one is [6, prop-
osition 2.3a, p. 166].

Lemma 2.6. (1) In the situation ðR�SX ;YT�S; RZTÞ, where R, S and T are k-algebras

with k a commutative ring with identity, there is an isomorphism

HomRnkSðX ;HomTðY ;ZÞÞFHomTnkSðY ;HomRðX ;ZÞÞ:

(2) In the situation ðRXS;YT�SÞ assume that RX is a projective R-module and Y is an

injective ðT nk SÞ-module. Then HomSðRXS;YT�SÞ is injective as a right ðRnk TÞ-
module. r

Proof of Theorem 2.5. Let A ¼ ðRnk T opÞ-mod, B ¼ ðRnk SÞ-mod and C ¼
k-mod. We define two additive covariant functors

F ¼ HomTðYT�S;�Þ : A! B; G ¼ HomRnkSðR�SX ;�Þ : B! C:

If RIT is an injective R-T-bimodule, we show that FI ¼ HomTðYT�S; RITÞ is right
G-acyclic, that is, Extp

RnkSðX ;FIÞ ¼ 0 for all pb 1. For this, it is su‰cient to
show that FI is an injective ðRnk SÞ-module if YS is projective. However, this fol-
lows from Lemma 2.6(2) directly. To apply Lemma 2.4, we need to know the right
derived functors of GF . But, by Lemma 2.6(1), it is easy to see that RpðGF ÞF
Extp

TnkSðYT�S;HomRðR�SX ;�ÞÞ since we assume that RX is projective. Now it fol-
lows from Lemma 2.4 that there is a spectral sequence fEnðZÞg for each Z A A such
that

Extp
RnkSðX ;Extq

TðY ; RZT ÞÞ ) Extn
TnkSðYT�S;HomRðR�SX ; RZTÞÞ;

with n ¼ pþ q. Since YT is projective, this spectral sequence collapses. Thus we
have

Extn
RnkSðX ;HomTðY ;ZÞÞFExtn

TnkSðYT�S;HomRðR�SX ; RZT ÞÞ

for all nb 0. This finishes the proof of Theorem 2.5. r

We need also the following result whose proof can be found in [6, theorem 2.8, 2.8a,
p. 167]. Note that the statement (3) below is a dual version of (2) for left modules.
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Lemma 2.7 (see [6, p. 167]). (1) Let L, G and S be three k-algebras that are pro-

jective over k. In the situation ðXL�G; LYS; G�SZÞ assume that TorLn ðX ;Y Þ ¼ 0 ¼
TorSn ðY ;ZÞ for nb 1. Then there is an isomorphism

TorGnkSðX nL Y ;ZÞFTorLnkGðX ;Y nS ZÞ:

(2) Let L, G and S be three k-algebras that are projective over k. In the situation

ðXL�G; LYS;ZG�SÞ assume that TorLn ðX ;YÞ ¼ 0 ¼ Extn
SðY ;ZÞ for nb 1. Then there

is an isomorphism

ExtGnkSðX nL Y ;ZÞFExtLnkGðX ;HomSðY ;ZÞÞ:

(3) Let L, G and S be three k-algebras that are projective over k. In the situation

ðL�GX ; SYL; G�SZÞ assume that TorLn ðY ;XÞ ¼ 0 ¼ Extn
SðY ;ZÞ for nb 1. Then there

is an isomorphism

ExtGnkSðY nL X ; G�SZÞFExtLnkGðL�GX ;HomSðY ;ZÞÞ: r

3 Stable equivalences of adjoint type

In this section we define the notion of a stable equivalence of adjoint type and de-
velop its basic properties. Now let us first recall the definition of a stable equivalence
of Morita type introduced by Broué [5], which is a combination of the notion of a
Morita equivalence with the one of a stable equivalence.

Definition 3.1. Let A and B be two (arbitrary) artin k-algebras. We say that A and B

are stably equivalent of Morita type if there exists an A-B-bimodule AMB and a B-A-
bimodule BNA such that

(1) M and N are projective as one-sided modules, and
(2) M nB N FAlP as A-A-bimodules for some projective A-A-bimodule APA,

and N nA M FBlQ as B-B-bimodules for some projective B-B-bimodule BQB.

In the case of Definition 3.1 we say that M and N define a stable equivalence of
Morita type between two algebras A and B. In [14] we proved that if M and N define
a stable equivalence of Morita type between two self-injective algebras, then one al-
ways has two adjoint pairs ðM 0nB�;N 0nA�Þ and ðN 0nA ;M 0nB�Þ of functors
between module categories over A and B. Motivated by this phenomenon, we intro-
duce the following notion.

Definition 3.2. If a stable equivalence of Morita type between two algebras A and B

defined by M and N satisfies that both ðN nA�;M nB�Þ and ðM nB�;N nA�Þ
are adjoint pairs of functors, then it is called a stable equivalence of adjoint type.

It is clear that a stable equivalence of Morita type defined by M and N is of adjoint
type if and only if N FHomAðM;AÞ and M FHomBðN;BÞ as bimodules. Typical
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examples of stable equivalences of adjoint type are the stable equivalences of Morita
type between self-injective algebras (see [14]). We stress that there are plenty exam-
ples of stable equivalences of adjoint type outside the scope of self-injective algebras,
according to the construction in [15].

The following is an easy property of adjoint type.

Lemma 3.3. Suppose a stable equivalence of Morita type between A and B is defined by

M and N. If ðN nA�;M nB�Þ and ðM nB�;N nA�Þ are adjoint pairs of functors

between A-mod and B-mod, then ð�nA M;�nB NÞ and ð�nB N;�nA MÞ are ad-

joint pairs of functors between mod-A and mod-B. Thus AMB FHomAðBNA; AAAÞ
and BNA FHomBðAMB; BBBÞ.

Proof. Since BN is projective, we have a canonical isomorphism of B-modules:

BN ! HomBðHomBðBN; BBBÞ; BBBÞ. One can check that this is also a right A-
homomorphism. Thus BNA FHomBðAMB; BBBÞ. We shall use dimension shifting and
the projectivity of MB to show that a : X nB HomBðAMB; BBBÞ ! HomBðAMB;XBÞ is
an isomorphism as right A-modules, where a sends xn f to a morphism from M to
X by m 7! xfðmÞ. In fact, the a is an isomorphism for XB ¼ BB, and thus for any
projective right B-module. Now we take a projective presentation of XB:

P1 ! P0 ! XB ! 0:

This gives the following commutative exact diagram:

P1nB HomBðMB; BBBÞ �! P0nB HomBðMB; BBBÞ �!X nB HomBðMB; BBBÞ �! 0

a

???y a

???y a

???y
HomBðMB;P1Þ �! HomBðMB;P0Þ �! HomBðMB;X Þ �! 0;

where the exactness of the lower row follows from the projectivity of MB. Since the
first two vertical maps are isomophisms, this implies that the a in the third column is
also an isomorphism. One can also check that this isomorphism is natural in X . Thus
�nB NA FHomBðAMB;�Þ; and therefore ð�nA M;�nB NÞ is an adjoint pair.
Similarly, we can show that ð�nB N;�nA MÞ is an adjoint pair. r

Proposition 3.4. Suppose k is a perfect field. Let A and B be two k-algebras without

two-sided semisimple direct summands. Suppose AMB and BNA define a stable equiva-

lence of Morita type between A and B, where M and N have no direct summands of

projective bimodules. Then M and N define a stable equivalence of adjoint type be-

tween A and B if and only if HomAðAMB; AMBÞF BBB lQ 0 as bimodules with Q 0 a

projective B-B-bimodule, and HomBðBNA; BNAÞF AAA lP 0 as bimodules with P 0 a

projective A-A-bimodule.

Proof. Suppose that HomAðAMB; AMBÞF BBB lQ 0 as bimodules with Q 0 a pro-
jective B-B-bimodule, and HomBðBNA; BNAÞF AAA lP 0 as bimodules with P 0 a
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projective A-A-bimodule. By these assumptions we have the following bimodule
isomorphisms:

ð*Þ M lP 0nA MB FHomBðBNA; BNAÞnA MB

FHomBðBNA; BN nA MBÞ

FHomBðBNA; BBBÞlHomBðBNA; BQBÞ:

Note that P 0nA M is a projective bimodule by Lemma 2.3. Thus HomBðBN; BBÞ
is a projective A-module, and therefore any direct summand HomBðBNA; BBeÞ,
with e ¼ e2 A B, of HomBðBN; BBÞ is also a projective A-module. This implies
that the bimodule HomBðBNA; BQBÞ is a projective bimodule since if we write
Q ¼

L
iðBei nk fiBÞ for some e2

i ¼ ei, f 2
i ¼ fi A B then HomBðBNA; BQBÞFL

i HomBðBNA; BBei nk fiBÞF
L

i HomBðBNA;BeÞnk fB by Lemma 2.1(2). Now
we show that HomBðBN; BBBÞ has no summands of projective bimodules. Suppose
HomBðBN; BBBÞ ¼ AYB l AY 0B, where Y has no projective summands and Y 0 is a
projective A-B-bimodule. Applying HomBð�;BBÞ to this decomposition, we get

BNA FHomBðAYB; BBBÞlHomBðAY 0B; BBBÞ:

Thus HomBðAY 0B;BBÞ is a projective right A-module since NA is projective. More-
over, we may suppose Y 0 ¼ Aenk fB with e an idempotent in A and f an idempotent
in B. Then we have HomBðAY 0B; BBBÞFHomBðAenk fB; BBBÞFHomkðAe;Bf ÞF
Bf nk DðAeÞ by Lemma 2.2. Thus the right A-projectivity of HomBðAY 0B; BBBÞ
shows that DðAeÞ is also projective. Thus HomBðAY 0B; BBBÞ is a projective B-A-
bimodule since it is a direct sum of modules of the form Bf nk DðAeÞ with DðAeÞ
a projective right A-module. But this contradicts to the assumption for N, thus
HomBðAY 0B; BBBÞ ¼ 0, that is, Y 0 ¼ 0. By comparison of the non-projective part of
the both sides in (*), we have that M FHomBðBN; BBÞ as bimodules.

Similarly, we can show that N FHomAðAM; AAÞ as bimodules. Thus M and N

define a stable equivalence of adjoint type.
Conversely, if M and N define a stable equivalence of adjoint type, then

BNA FHomAðAMB; AAAÞ and M FHomBðBNA; BBBÞ. Hence HomAðAMB; AMBÞF
HomAðAMB; AAAÞnA MB by Lemma 2.1(2), which is then isomorphic to BN nA

MB FBlQ as bimodules. Similarly, HomBðBN; BNÞFAlP as bimodules. This
finishes the proof. r

Proposition 3.5. Suppose k is a perfect field. Let A and B be two k-algebras without

two-sided semisimple direct summands. Suppose AMB and BNA define a stable equiva-

lence of Morita type between A and B, where M and N have no direct summands

of projective bimodules. If M nB N FM nB HomAðAM; AAÞ and N nA MB FN nA

HomBðBN; BBÞ as bimodules, then M and N define a stable equivalence of adjoint

type.
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Proof. We have that HomAðAM; AAÞnA M FHomAðM;MÞ as B-B-bimodules by
Lemma 2.1(2). It follows from the assumption that

N nB M nB HomAðM;AÞnA M FN nA M nB N nA M:

From this we get the following isomorphisms of bimodules:

HomAðM;MÞlQnB HomAðM;MÞ

F ðBlQÞnB ðBlQÞFBlQlQlQnB Q:

Thus HomAðM;MÞ is projective as one-sided modules since the right hand side
of the above isomorphism is projective as one-sided modules. This implies that
QnB HomAðM;MÞ is a projective bimodule by Lemma 2.3. Hence we have a bimod-
ule isomorphism: HomAðM;MÞFBlQ 0 with Q 0 a projective B-B-bimodule. Simi-
larly, we can show that HomBðN;NÞFAlP 0 with P 0 a projective A-A-bimodule.
Then, by Proposition 3.4, M and N define a stable equivalence of Morita type. r

Proposition 3.6. Suppose k is a perfect field. Let A and B be two k-algebras with-

out two-sided semisimple direct summands. Suppose AMB and BNA define a stable

equivalence of Morita type between A and B, where M and N have no direct summands

of projective bimodules, such that M nB N FHomBðBN; BBÞnB HomAðAM; AAÞ and

N nA MB FHomAðAMB; AAÞnA HomBðBN; BBÞ as bimodules. If the evaluation maps

M nB HomðM;AÞ ! A and N nA HomðN;BÞ ! B are split as an A-A-bimodule and

a B-B-bimodule homomorphism, respectively, then M and N define a stable equivalence

of adjoint type.

Proof. As in the proof of 3.4, we can show that HomBðBN; BBÞ and HomAðAM;AÞ
contain no projective bimodules as a direct summand.

Since the evaluation map ev : M nB HomðM;AÞ ! A is a split A-A-bimodule ho-
momorphism, we know that the induced map M nB HomðM;AÞnA HomBðN;BÞ !
AnA HomBðN;BÞ is a split A-B-bimodule homomorphism. Thus HomBðN;BÞ is a
direct summand of M nB HomðM;AÞnA HomBðN;BÞFM lM nB Q. We know
that M nB Q is a projective A-B-bimodule. This implies that HomBðN;BÞ is a
direct summand of M. Similarly, HomAðM;AÞ is a direct summand of N. We may
assume that M ¼ HomBðN;BÞlX and N ¼ HomAðM;AÞlY . Then M nB N ¼
HomBðN;BÞnB HomAðM;AÞlHomðN;BÞnB Y lHomAðM;AÞnA X lX nB Y .
By assumption, we must have HomAðM;XÞFHomAðM;AÞnA X ¼ 0 ¼
HomBðN;BÞnB Y FHomBðN;Y Þ. Since AM and BN are generators for A-mod
and B-mod, respectively, we get that X ¼ 0 ¼ Y . Thus N FHomAðAM;AÞ and
M FHomBðBN; BBÞ as bimodules. This implies that M and N define a stable
equivalence of adjoint type. r

Related to stable equivalences of adjoint type, we have the following unsolved basic
question.
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Question 1. Are there any two algebras A and B such that they are stably equivalent
of Morita type, but between them there is not any stable equivalence of adjoint
type?

4 Hochschild cohomologies

In this section we shall use Theorem 2.5 to prove that a stable equivalence of adjoint
type preserves the higher Hochschild cohomology groups. For self-injective algebras
this was first proved in [17], and then in [14] by a di¤erent method. However, both
proofs depend heavily on the self-injectivity of the given algebras. Our proof here
does not use any self-injectivity; and our result generalizes the one for self-injective
algebras.

Now, let us first recall the definition of Hochschild cohomology.

Definition 4.1. Let L be an artin k-algebra. If X is a L-L-bimodule, then the
Hochschild homology of L with coe‰cients in X is defined as

HnðL;XÞ ¼ TorL
e

n ðX ;LÞ

for all nb 0, where Le ¼ Lnk L
op is the enveloping algebra of L. If X ¼ L we

obtain the Hochschild homology of L : H�ðLÞ ¼ TorL
e

� ðL;LÞ.
Dually, the Hochschild cohomology of L with coe‰cients in X is defined as

H nðL;X Þ ¼ Extn
L eðL;XÞ

for all nb 0. If X ¼ L we obtain the Hochschild cohomology of L : H �ðLÞ ¼
Ext�L eðL;LÞ.

Note that the low-dimensional Hochschild homology and cohomology have a sim-
ple interpretation, namely, for a k-algebra A, H 0ðAÞ is the center of A, that is,
H 0ðAÞ ¼ fa A A j ax ¼ xa for all x A Ag; and H 1ðAÞ is isomorphic to DerðAÞ/InnðAÞ,
where DerðAÞ stands for the set of all k-linear derivations on A, and InnðAÞ stands
for the set of all inner derivations of A. H0ðAÞ is the quotient of A modulo the k-
space ½A;A� spanned by all elements of the form xa� ax, with a; x A A.

It was proved that the Hochschild homology groups Hn (for nb 1) are invariant
under stable equivalences of Morita type; while it is open in general whether the
Hochschild cohomology groups H n are invariant under stable equivalences of Mor-
ita type. However, we show the following

Theorem 4.2. Let A and B be two artin k-algebras such that A and B are k-projective.

If A and B are stably equivalent of adjoint type, then H nðAÞFH nðBÞ for all nb 1.

Proof. Suppose that the stable equivalence of adjoint type between A and B is defined
by the bimodule AMB and BNA such that both ðN nA�;M nB�Þ and ðM nB�;
N nA�Þ are adjoint pairs of functors. Then we know from Lemma 3.3 that
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BNA FHomAðAMB; AAAÞ, BNA FHomBðAMB; BBBÞ, AMB FHomBðBNA; BBBÞ, and

AMB FHomAðBNA; AAAÞ.
To prove Theorem 4.2, we shall show the following three claims:

(1) Ext i
BnkA opðN;NÞFExt i

AnkB opðM;MÞ for all ib 0.

In fact, we may apply Theorem 2.5 to deduce this: In Theorem 2.5 we define R ¼ A,
S ¼ Bop, T ¼ A, R�SX ¼ A�B op M, YS�T ¼ NBop�A and RZT ¼ AAA. Then RX ¼ AM

is projective, YS�T F BNA is projective as a left module and as a right module. Thus
we get from Theorem 2.5 that for nb 0,

Extn
AnkBopðAMB; AMBÞ ¼ Extn

AnkBopðM;HomAðBNA; AAAÞÞ

¼ Extn
RnkSðR�SX ;HomT ðYS�T ; RZTÞÞFExtn

TnkSðYT�S;HomRðR�SX ; RZTÞÞ

¼ Extn
BnkA opðBNA;HomAðAMB; AAAÞÞFExtn

BnkA opðBNA; BNAÞ:

(2) As in [14, theorem 4.7], we show that Ext i
BnkBopðN nA M;BÞF

Ext i
AnkBopðM;MÞ, and Ext i

AnkA opðM nB N;AÞFExt i
BnkA opðN;N) for all i b 0.

In fact, we let L ¼ A, S ¼ B and G ¼ Bop, and define X ¼ AMB ¼L�G M, Y ¼
BNA ¼ SNL and Z ¼ BBB ¼ G�SB in Lemma 2.7(3). By the definition of a stable
equivalence of Morita type, the modules BN and NA are projective, that is, SY and YL

are projective. Thus TorLi ðY ;X Þ ¼ 0 ¼ Ext i
SðY ;ZÞ for i b 1. Hence there is an iso-

morphism Ext i
BnkB opðN nA M;BÞFExt i

AnkB opðM;HomBðN;BÞ). Since HomBðN;BÞ
FM, we have Ext i

BnkBopðN nA M;BÞFExt i
AnkBopðM;M). Similarly, we have

Ext i
AnkA opðM nB N;AÞFExt i

BnkA opðN;N) for all ib 0.

(3) We have the following isomorphism identities: for all nb 1,

H nðAÞ ¼ Extn
A eðA;AÞFExtn

AeðAlP;AÞFExtn
A eðM nB N;AÞ

FExtn
BnkA opðN;NÞ ðby ð2ÞÞ

FExtn
AnkBopðM;MÞ ðby ð1ÞÞ

FExtn
BeðN nA M;BÞ ðby ð2ÞÞ

FExtn
BeðBlQ;BÞFExtn

BeðB;BÞ ¼ H nðBÞ:

This finishes the proof of Theorem 4.2. r

As a consequence, we re-obtained the following result in [17] (see also [14]).

Corollary 4.3. Let A and B be finite-dimensional self-injective k-algebras with k a field.

If there is a stable equivalence of Morita type between A and B, then for any nb 1,

H nðAÞFH nðBÞ. r
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In general, we have the following

Proposition 4.4. Let A and B be two artin k-algebras such that A and B are

projective k-modules. If A and B are stably equivalent of adjoint type, which is

defined by AMB and BNA, then, for any A-A-bimodule X and any integer nb 1,

H nðB;N nA X nA MÞFH nðA;XÞlH nðA;PnA X Þ. In particular, if X ¼ A, we

have H nðA;PÞFH nðB;QÞ.

Proof. Since M and N define a stable equivalence of adjoint type between A and B,
we know that X nA MB FHomAðBNA;XAÞ. Note that if NA is projective, then Aop N

is also projective, and EndðA op AÞFAop. We claim that if X is a C-A-bimodule then
X nA MB FHomAðBNA;XAÞ as left C-modules. This follows from the following
isomorphisms of modules:

CX nA M ¼ CX nA HomAðNA; AAAÞ

FHomAopðA op N; A op AA opÞnA op XC op

FHomAopðA op N; A op XC opÞ ðby ½22; lemma 2:1ð2Þ�Þ

FHomAðNA; CXAÞ:

Now we compute the Hochschild cohomology for nb 1:

H nðB;N nA X nA MÞ

¼ Extn
BeðB;N nA X nA MÞ ¼ Extn

BeðN nA M;N nA X nA MÞ

FExtn
AnK B opðM;M nB N nA X nA MÞ

FExtn
AnkBopðM;HomAðN;M nB N nA XÞÞ

FExtn
A eðM nB N;M nB N nA X ÞFH nðA;XÞlH nðA;PnA XÞ:

The last statement follows from Theorem 4.2. r

Remark. If k is a perfect field, then there is a short proof of Theorem 4.2, which is a
direct consequence of Proposition 4.4 and the following lemma.

Lemma 4.5. Let A and B be two finite-dimensional k-algebras with k a perfect field.

Suppose that AMB and BNA define a stable equivalence of adjoint type between A and

B. Let P and Q be given in Definition 3.1. Then APA and BQB are projective-injective

bimodules.
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Proof. It follows from

AAA lPF AM nB NA FHomBðBNA; BBBÞnB N FHomBðBNA; BNAÞ

FHomBðBNA;HomAðAMB; AAAÞÞFHomAðAM nB NA; AAÞ

F AAA lHomAðAP; AAÞ

that APA FHomAðAP; AAÞ as A-A-bimodules. Similarly,

AAA lPF AM nB NA FM nB HomBðMB;BBÞFHomBðMB;MBÞ

FHomBðMB;HomAðBNA;AAÞÞFHomAðM nB N;AAÞ

FAlHomAðPA;AAÞ

and APA FHomAðPA;AAÞ as bimodules. By Lemma 2.3(2), AP and PA are injective.
Since k is a perfect field, we may write P ¼

Ln
i¼1 Aei nk fiA with ei and fi idempo-

tents in A. Thus all Aei are injective, and all fiA are injective right A-modules, and
therefore all Aei and all fiA are projective-injective. Hence P is a projective-injective
A-A-bimodule. Similarly, we know that Q is a projective-injective B-B-bimodule. r

Concerning the invariance of self-injective dimension and Gorenstein property under
stable equivalences of adjoint type (or Morita type) we refer to [15] and [4].

Finally, let us mention the following question.

Question 2. Suppose two artin k-algebras A and B are stably equivalent of Morita
type. Is H nðAÞ isomorphic to H nðBÞ for all nb 1?

5 Cartan determinants

In this section we consider the behavior of Cartan determinants of algebras which are
stably equivalent of Morita type. Here by Cartan determinant we mean the determi-
nant of Cartan matrix.

Let A be an artin k-algebra. We denote by K0ðAÞ the Grothendieck group of A,
that is, it is a quotient group of the free abelian group generated by isomorphism
classes [X ] of all A-modules X in A-mod modulo the subgroup generated by all ele-
ments of the form ½Y � � ½X � � ½Z�, where 0! X ! Y ! Z ! 0 is an exact sequence
in A-mod. Thus K0ðAÞ is the free abelian group generated by the isomorphism classes
½Ei� of simple A-modules Ei with i ¼ 1; 2; . . . ; n. We denote ½Ei� by ei. The Cartan
matrix CA of the algebra A is given by the map sA : K0ðAÞ ! K0ðAÞ, ei 7! pi ¼ ½Pi�
with Pi the projective cover of Ei. By elementary divisor theory (see [7, Chapter III,
p. 91–95]), we may choose two bases for K0ðAÞ such that the map sA with respect
to these bases corresponds to a diagonal matrix diagfd1; d2; . . . ; dr; 0; . . . ; 0g, with
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di positive integers such that dijdiþ1, and r the rank of CA. That is, there are two
modular matrices X and Y over Z such that CA ¼ X diagfd1; d2; . . . ; dr; 0; . . . ; 0gY .
Recall that a matrix X over Z is called modular if detðXÞ is a unit in Z. Thus
the cokernel cokðsAÞ of sA is isomorphic to Z=ðd1Þl � � �lZ=ðdrÞlZn�r. So,
detðCAÞ0 0 if and only if cokðsAÞ is a finite abelian group. In this case, detðCAÞ ¼
Gd1 � � � dn.

If there is a stable equivalence of Morita type between A and B defined by AMB

and BNA, then we may define a function fN : K0ðAÞ ! K0ðBÞ, ei 7! ½N nA Ei�. Since
the image of pi under fN lies in the image of the map sB, the function induces a Z-
linear map f 0N : cokðsAÞ ! cokðsBÞ. Similarly, we have a function fM : K0ðBÞ !
K0ðAÞ which induces a Z-linear map f 0M : cokðsBÞ ! cokðsAÞ. By Definition 3.1(2),
we see that the composition of f 0N with f 0M is the identity map on cokðsAÞ, and the
composition of f 0M with f 0N is the identity map on cokðsBÞ. Thus f 0N is an iso-
morphism. This shows that detðCAÞ0 0 if and only if detðCBÞ0 0. Thus we have the
following proposition which drops the condition ‘‘no node and no semisimple sum-
mands’’ in [16].

Proposition 5.1. If there is a stable equivalence of Morita type between two artin

k-algebras A and B, then the Cartan determinants of A and B have the same absolute

values.

Proof. Under the assumption, we may assume that detðCAÞ0 00 detðCBÞ. We have
seen that cokðsAÞF cokðsBÞ as abelian groups. Suppose cokðsAÞ ¼ Z=ðd1Þl � � �l
Z=ðdnÞ and cokðsBÞ ¼ Z=ðt1Þl � � �lZ=ðtmÞ where di and tj are positive integers.
Let SA be the collection of elementary divisors d of diagfd1; . . . ; dng with d 0 1. The
isomorphism of the abelian groups shows that SA ¼ SB. Since the product of all
numbers in SA is d1 � � � dn, we get that d1 � � � dn ¼ t1 � � � tm. This implies that detðCAÞ
and detðCBÞ have the same absolute values. r

Corollary 5.2. Let k be a field, and let G and H be two finite groups. If there is a stable

equivalence of Morita type between a block A of the group algebra kG and a block B of

the group algebra kH, then A and B have the same Cartan determinant.

Proof. By Proposition 5.1, the Cartan determinants of A and B have the same abso-
lute value. Since we know that any block of a group algebra has always the positive
Cartan determinant, the corollary follows. r

Similarly, we have the following corollary for cellular algebras. For convenience of
the reader, we recall the definition of cellular algebras. For a basis-free definition and
some basic facts of cellular algebras we refer to [9] and [11]. For the definition of
standardly stratified algebras we may refer to [8], for example.

Definition 5.3 (Graham and Lehrer, [9]). An associative algebra A over a field k is
called a cellular algebra with cell datum ðI ;M;C; iÞ if the following conditions are
satisfied:
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(C1) The finite set I is partially ordered. Associated with each l A I there is a finite
set MðlÞ. The algebra A has a k-basis C l

S;T where ðS;TÞ runs through all elements of
MðlÞ �MðlÞ for all l A I .

(C2) The map i is a k-linear anti-automorphism of A with i2 ¼ id which sends C l
S;T

to C l
T ;S.

(C3) For each l A I and S;T A MðlÞ and each a A A the product aC l
S;T can be

written as ð
P

U AMðlÞ raðU ;SÞC l
U ;TÞ þ r 0 where r 0 is a linear combination of basis

elements with upper index m strictly smaller than l, and where the coe‰cients
raðU ;SÞ A k do not depend on T .

Typical examples of cellular algebras include Brauer algebras, Temperley-Lieb alge-
bras, partition algebras, q-Schur algebras and many others.

Corollary 5.4. Let A and B be two k-algebras with k a field. Suppose there is a stable

equivalence of Morita type between A and B.

(1) If A and B are cellular, then A and B have the same Cartan determinant.

(2) If A and B are standardly stratified, then A and B have the same Cartan deter-

minant.

Proof. By [12], the Cartan matrix of an arbitrary cellular algebra is positive definite.
By [8], the Cartan determinant of a standardly stratified algebra is the product of the
dimensions of the endomorphism algebras of standard modules. Thus the corollary
follows now from Proposition 5.1 immediately. r

One should note that Proposition 5.1 could be wrong for stable equivalences in gen-
eral. An easy example is that k½x�=ðx2Þ is stably equivalent to the path algebra over k

of the quiver � ! �. Clearly, the former algebra has Cartan determinant equal to 2,
and the latter algebra has Cartan determinant equal to 1.

Finally, we point out that for the so-called ‘‘self-injectively free’’ algebras without
nodes and semi-simple summands it was shown in [16] that the Cartan matrices are
invariant under stable equivalences. The following example shows that even when
two indecomposable algebras are stably equivalent of adjoint type, they may have
di¤erent Cartan matrices.

Example. Let us consider the algebras in [13, Example 1]. Let A be the algebra given
by the quiver

‘: 1 ����!a
2

g ����
!

 �
���b

3

with relations

abg ¼ bgab ¼ 0:
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Then the Cartan matrix of A is

1 1 1

1 2 1

1 1 2

0
B@

1
CA:

Let B be the algebra given by the quiver

D: 1 T
r

r 0
2 T

d

d 0
3

with relations

rd ¼ rr 0 ¼ d 0r 0 ¼ r 0r� dd 0 ¼ 0:

Then the Cartan matrix of B is

1 1 0

1 2 1

0 1 2

0
B@

1
CA:

It was proved that there is a stable equivalence of Morita type between A and B.
Since this stable equivalence is obtained from a stable equivalence of adjoint type by
quotients, we know from [15, proposition 3.8] that there is a stable equivalence of
adjoint type between A and B. Note that A and B do not contain nodes and semi-
simple summands, and do not have the same Cartan matrix, but the same Cartan
determinant.

We remark that even for those stable equivalences of adjoint type, which are ob-
tained from derived equivalences between blocks of group algebras, we cannot get
the same Cartan matrices, though derived equivalences preserve Cartan determinants
for arbitrary algebras. For an example, see [14]. On the other hand, suggested by the
above results and many examples, the following question seems to have a positive
answer.

Question 3. If there is a stable equivalence of Morita type between A and B, are the
determinants of the Cartan matrices of A and B equal?
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Added in Proof (August 20, 2006). More recently, I learn from Martinez-Villa that in
a paper ‘‘A note on stable equivalences of Morita type’’ by Dugas and Martinez-Villa
the following result is proved: Let A and B are finite-dimensional algebras over a field
such that A and B are indecomposable and that A/rad(A) and B/rad(B) are separa-
ble. If A and B are stably equivalent of Morita type, then they are stably equivalent
of adjoint type. Thus our result on Hochschild cohomology includes this situation.
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