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Abstract. In this paper, we consider the endomorphism algebra of an infinitely generated
tilting module of the form Rq; & Rq/R over a tame hereditary k-algebra R with k an
arbitrary field, where Ry is the universal localization of R at an arbitrary set U of sim-
ple regular R-modules. We show that the derived module category of this endomorphism
algebra is a recollement of the derived module category Z(R) of R and the derived mod-
ule category Z(Aq) of the adele ring Aq; associated with U. When k is an algebraically
closed field, the ring A q can be precisely described in terms of Laurent power series ring
k((x)) over k. Moreover, if U is a union of finitely many cliques, we give two different
stratifications of the derived category of this endomorphism algebra by derived categories
of rings such that the two stratifications are of different finite lengths.
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1 Introduction

Tilting modules over tame hereditary algebras have played a special role in the
development of the representation theory of algebras: Finite-dimensional tilting
modules provide a class of minimal representation-infinite algebras which can be
used together with the covering techniques in [4] to decide whether an algebra is
of finite representation type, while infinite-dimensional tilting modules involve the
generic modules discovered by Ringel in [26], Priifer modules and adic modules.
Very recently, Angeleri-Hiigel and Sanchez have classified all tilting modules over
tame hereditary algebras up to equivalence in [3]. One of the main ingredients of
their classification involves the universal localizations at simple regular modules,
which were already studied by Crawley-Boevey in [14]. It is worth noting that
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Krause and Stovicek have recently shown in [20] that over hereditary rings uni-
versal localizations and ring epimorphisms coincide. For finite-dimensional tilt-
ing modules over tame hereditary algebras, their endomorphism algebras are well
understood from the point of view of torsion theory and derived categories (see
[7,17,18,27] and others). For example, by Happel’s general theorem, the given
tame hereditary algebras and the endomorphism algebras of their tilting modules
are derived equivalent. However, for infinite-dimensional tilting modules, one can-
not get such derived equivalences anymore (see [5]). Nevertheless, if they are good
tilting modules, then the derived module categories of their endomorphism alge-
bras admit recollements by derived module categories of the given tame hereditary
algebras themselves on the one side, and of certain universal localizations of their
endomorphism algebras on the other side, as shown by a general result in [8]. Here,
not much is known about the precise structures of these universal localizations as
well as the derived composition factors of these recollements. In fact, it seems to
be very difficult to describe them in general.

In the present paper, we will study these new recollements arising from a class
of good tilting modules over tame hereditary algebras more explicitly. In this spe-
cial situation, we can describe precisely the universal localizations appearing in
the recollements in terms of adele rings which occur often in algebraic number
theory (see [23, Chapter V]), determine their derived composition factors, and
provide two completely different stratifications of the derived module categories
of the endomorphism algebras of these tilting modules.

Let R be an indecomposable finite-dimensional tame hereditary algebra over
an arbitrary field k. Of our interest are simple regular R-modules. Now, we fix
a complete set . of all non-isomorphic simple regular R-modules, and consider
the equivalence relation ~ on . generated by

Ly~ Ly forLy, Ly € .7 if Exth(Li, L2) # 0.

The equivalence classes of this relation are called cliques (see [14]). It is well
known that all cliques are finite, and all but at most three cliques consist of only
one simple regular module.

Let € be a clique of R and V' € €. Then there is a unique Priifer R-module,
denoted by V' [oc], such that its regular socle is equal to V' (see [26]). Moreover, for
any two non-isomorphic simple regular modules in €, the endomorphism algebras
of the Priifer modules corresponding to them are isomorphic (see, for instance,
Lemma 3.1 (3)). Hence we define D(€) to be Endg(V [oc]) for an arbitrary but
fixed module V' € €. It is shown that this ring is a (not necessarily commutative)
discrete valuation ring. Therefore, the so-called division ring Q (€) of fractions of
D(€) exists, which is the “smallest” division ring containing D(€) as a subring
up to isomorphism.
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Let U € .7 be a set of simple regular modules, and let Rq; stand for the uni-
versal localization of R at U in the sense of Schofield and Crawley-Boevey. Then
it is proved in [2] that the R-module Tq; := Ry, & Ry /R is a tilting module. Fol-
lowing [3, Example 1.3], if U is a union of cliques, the R-module T4, is called the
Reiten—Ringel tilting module associated with U. This class of modules was studied
first in [26] and generalized then in [24]. As a main objective of the present paper,
we will concentrate on the derived categories of the endomorphism algebras of
tilting modules 74, for arbitrary subsets U of .7

Let k[[x]] and k((x)) be the algebras of formal and Laurent power series over
k in one variable x, respectively. For an index set /, we define the /-adele ring of

k((x)) by

Ay = {(f,-),'eI € l—[k((x)) | fi € k[[x]] for almostall i € I},
iel
where [ [;<; k((x)) stands for the direct product of / copies of k((x)). In particu-
lar, if 7 is a finite set, then A; = k((x))!7l.
Our main result in this paper is the following theorem which provides us with
a class of new recollements different from the one obtained by the structure of
triangular matrix rings.

Theorem 1.1. Let R be an indecomposable finite-dimensional tame hereditary al-
gebra over an arbitrary field k. Let U be a nonempty set of simple regular R-mod-
ules with {€;}icy, the set of all cliques contained in U where I is an index set,
and let B be the endomorphism algebra of Ry ® Ry /R, where Ry stands for
the universal localization of R at U. Then there is the following recollement of
derived module categories:

e e T~
P(Ay) — D(B) — D(R)
T~ ~

where Aq is the I -adele ring with respect to the rings Q(€;) fori € I, that is,

Ag = {(fi),-e[ e[]oce) | fi € D(&) foralmostall i € 1}

iel

and is Morita equivalent to a universal localization of B. In particular, if k is
algebraically closed, then Aq is isomorphic to the I -adéle ring A of the Laurent
power series ring k((x)).

For more details on the six functors and relationship of the rings in the above
recollement, we refer the reader to the explanation after Proposition 2.11.
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As a consequence of Theorem 1.1, we obtain new stratifications of the derived
categories of the endomorphism algebras of tilting modules arising from universal
localizations at simple regular modules.

Corollary 1.2. Let R be an indecomposable finite-dimensional tame hereditary al-
gebra over an algebraically closed field k. Let r be the number of non-isomorphic
simple R-modules. Suppose that U is a non-empty finite subset of . consisting of
s cliques. Let B be the endomorphism algebra of the Reiten—Ringel tilting R-mod-
ule associated with U. Then P (B) admits two stratifications by derived module
categories:

e one is of length r + s with the following composition factors: r copies of the
ring k and s copies of the ring k((x)),

* the other is of length r + s — 1 with the following composition factors: r — 2
copies of the ring k, s copies of the ring k[[x]] and one copy of a Dedekind
integral domain contained in the field k(x) of fractions of the polynomial
algebra k[x].

It follows from Corollary 1.2 that a derived module category may have two strat-
ifications with different lengths and different sets of derived composition factors.
This gives a negative answer to a general question whether Jordan—Holder’s theo-
rem holds true for stratifications of derived module categories by derived module
categories (see [1]).

Observe that if R is the Kronecker algebra and U consists of only one simple
regular module, then we re-obtain the stratifications, shown in the example of
[8, Section 8], from Corollary 1.2.

Now, let us describe the structure of this paper. In Section 2, we fix notation
and recall some definitions and basic facts which will be used throughout the pa-
per. In Section 3, we consider Priifer modules and their endomorphism algebras.
In Section 4, we make several preparations for proofs of our main results in the
paper. First, we consider universal localizations at simple regular modules over
tame hereditary algebras and establish a crucial result, Corollary 4.9. Second, we
discuss the endomorphism algebras of tilting modules over arbitrary tame hered-
itary algebras. Finally, we reduce our consideration of universal localizations of
arbitrary tame hereditary algebras to the special case of universal localizations of
the Kronecker algebra at simple regular modules. In Section 5, we first apply the
results in the previous sections to prove Theorem 1.1, and then, by using Theo-
rem 1.1 together with a result in [19], determine the derived composition factors
of the derived categories of the endomorphism algebras of Reiten—Ringel tilting
modules, and therefore get a proof of Corollary 1.2. At the end of this section we
mention a few questions related to the results in this paper.
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2 Preliminaries

In this section, we first recall some standard notation which will be used through-
out this paper, and then develop some properties on universal localizations and
recollements. Finally, we collect some homological facts which are useful for our
proofs.

2.1 Notation

All rings considered are assumed to be associative and with identity, all ring ho-
momorphisms preserve identity, and all full subcategories O of a given category
€ are closed under isomorphic images, that is, if X and Y are objects in €, then
Y € © whenever Y ~ X with X € D.

Let R be a ring.

We denote by R-Mod the category of all unitary left R-modules, and by R-mod
the category of finitely generated unitary left R-modules. Unless stated otherwise,
by an R-module we mean a left R-module. For an R-module M, we denote by
add(M) (respectively, Add(M)) the full subcategory of R-Mod consisting of all
direct summands of finite (respectively, arbitrary) direct sums of copies of M. If 1
is an index set, we denote by M () the direct sum of I copies of M.

If f: M — N is a homomorphism of R-modules, then the image of x € M
under f is denoted by (x) f instead of f(x). Also, for any R-module X, the in-
duced morphisms

Hompg (X, f) : Homg (X, M) — Homg (X, N)

and
Hompg(f, X) : Homg (N, X) — Homg(M, X)

are denoted by f* and f, respectively.
Given a class U of R-modules, we denote by ¥ (U) the full subcategory of
R-Mod consisting of all those R-modules M which have a finite filtration

O=MyCMyC---CMy=M

such that M; /M;_, is isomorphic to a module in U for each i. We say that M is a
direct union of finite extensions of modules in U if M is the direct limit of a direct
system of submodules in & (U) of M (with respect to the inclusion ordering).
Note that if M is the direct limit of a direct system of submodules {My }ye; of M
(with respect to the inclusion ordering), then M = | J,c; M. In addition, if M is
finitely generated, then M = M, for some o € I.

Let Z(R) be the (unbounded) derived category of R-Mod, which is the localiza-
tion of the homotopy category of R-Mod at all quasi-isomorphisms. Furthermore,
we always identify R-Mod with the subcategory of Z(R) consisting of all stalk
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complexes concentrated on degree zero. It is well known that
Homgg)(X,Y [n]) >~ ExtR(X.Y)

for any X,Y € R-Mod and n € N, where [n] stands for the n-th shift functor
of Z(R), and that the triangulated category Z(R) has small coproducts, that is,
coproducts indexed by sets exist in Z(R).

Let S be a ring and let M ® be a complex of R-S-bimodules. We shall denote
by M*® ®]E§ —: 2(S) — Z(R) the total left-derived functor of M* ®% —, while
RHomg(M*®,—) : Z(R) — 2(S) is defined to be the total right-derived functor
of Hom%(M*,—). Note that (M *® ®H§ —,RHomg(M*®,—)) is an adjoint pair of
triangle functors.

If R is an Artin k-algebra over a commutative Artin ring k, we denote by D the
usual duality, and by 7 the Auslander—Reiten translation of R.

2.2 Ore localizations and universal localizations

In this subsection, we shall recall the definition of universal localizations, and
mention two special cases of universal localizations: Ore localizations and univer-
sal localizations at a set of modules of projective dimension at most 1.

First of all, we have the following known result on universal localizations.

Lemma 2.1 ([28, Theorem 4.1]). Let R be a ring and X be a set of homomor-
phisms between finitely generated projective R-modules. Then there is a ring Ry,
and a homomorphism A : R — Ry of rings with the following properties:

(1) Ais Z-inverting, that is, if ¢ : P — Q belongs to %, then
Ry ®pa : Rx Qg P — Ry ®r O
is an isomorphism of Rx-modules.

(2) A is universal X-inverting, that is, if S is a ring such that there exists a X-in-
verting homomorphism ¢ : R — S, then there exists a unique homomorphism
¥ . Ry — S of rings such that ¢ = Ar.

(3) The homomorphism A : R — Ry is a ring epimorphism with

TorR(Rx. Rx) = 0.

We call A : R — Ry in Lemma 2.1 the universal localization of R at X. If the
R-module Ry has projective dimension at most 1, then A is homological. Recall
that a ring epimorphism R — S is said to be homological if Tor,lf (S,S) =0 for
every n > 0. Of our particular interest are the following two kinds of universal
localizations.

The first one is associated with subsets of elements in rings.
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Let @ be a non-empty subset of R. Then we consider the universal localization
of R at all homomorphisms p, with r € ®, where p; is the right multiplication
map R — R defined by x — xr for x € R. For simplicity, we write R¢ for this
universal localization, and say that Rg is the universal localization of R at ®.
Note that, by the property of universal localizations, Rg is also isomorphic to the
“right” universal localization of R at all left multiplication maps o, : R — Rg
defined by x +— rx for x € ®, which are regarded as homomorphisms of right
R-modules. Clearly, if 0 € @, then Rg = 0. If 0 ¢ @, then we consider the small-
est multiplicative subset ®; of R containing ®, and get R¢ = Ro,. Recall that a
subset ® of R is said to be multiplicative if 0 ¢ ®, 1 € ®, and it is closed under
multiplication.

From now on, we assume that ® is a multiplicative subset of R.

Under some extra assumptions on ®, the ring Rg can be characterized by Ore
localizations which generalizes the notion of localizations in commutative rings.
To explain this point in detail, we first recall some relevant definitions about Ore
localizations. For more details, we refer to [22, Chapter 4].

Definition 2.2. A subset ® of R is called a left denominator subset of R if ®
satisfies the following two conditions:

(i) Forany a € R and s € ®, there holds ®a N Rs # 0.

(ii) Forany r € R, if rt = 0 for some ¢ € ®, then there exists some ¢’ € ® such
that t'r = 0.

If @ satisfies only the condition (i), then @ is called a left Ore subset of R.

Similarly, we can define the notions of right denominator sets and right Ore sets,
respectively. Clearly, if R is commutative, then every multiplicative subset of R is
a left and right denominator set. Furthermore, if R is a domain, that is, R is a (not
necessarily commutative) ring without left or right zero-divisors, then R \ {0} is a
left denominator set if and only if it is a left Ore set if and only if Rr; N Rrp # {0}
for any non-zero elements r1, 7, € R. We say that R is a left Ore domain if R is a
domain and R \ {0} is a left denominator set.

The following lemma explains how left Ore localizations arise, and establishes
a relationship between left Ore localizations and universal localizations.

Lemma 2.3 ([22, Theorem 10.6, Corollary 10.11]). Let ® be a left denominator

subset of R and A : R — Rg be the universal localization of R at ®. Then there

is a ring, denoted by ®~' R, and a ring homomorphism i : R — ®~! R such that

(1) uis ®-invertible, that is, (s)ju is a unit in ®~'R for each s € .

(2) Every element of ®~' R has the form ((t)p) ™ (r)p for some t € ® and some
r € R
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(3) ker(i) = {r € R | sr =0 for some s € ®}.
(4) There is a unique isomorphism
v:® 'R — Ry
of rings such that A = uv.

The ring ®~ 'R in Lemma 2.3 is called a left ring of fractions of R (with re-
spect to ® C R), or alternatively, a left Ore localization of R at ®. Clearly, for
commutative rings, Ore localizations and the usual localizations at multiplicative
subsets coincide.

Similarly, when & is a right denominator subset of R, we can define a right
ring R®~! of fractions of R. If ® is a left and right denominator subset of R,
then @1 R is called the ring of fractions of R, or the Ore localization of R at ®.
Actually, in this case, both ® 'R and RO~ ! are isomorphic to R¢. Furthermore,
if R is a left and right Ore domain, then the ring of fractions of R with respect
to R \ {0} is usually denoted by Q(R). Notice that, up to isomorphism, Q(R) is
the smallest division ring containing R as a subring. So we call Q(R) the division
ring of fractions of R.

Now, we introduce a class of Ore domains, that is, discrete valuation rings.

Definition 2.4. A ring R is called a discrete valuation ring (which may not be
commutative) if the following conditions hold true:

(1) R is alocal ring, that is, R has a unique maximal left ideal m,
(3) m = pR = Rp, where p is some non-nilpotent element of R.

We remark that an equivalent definition of discrete valuation rings is the follow-
ing: A non-division ring R is called a discrete valuation ring if it is a local domain
with m the unique maximal ideal of R such that the only left ideals and the only
right ideals of R are of the form m’ fori € N.

The element p in the above condition (3) is called a prime element of R. Clearly,
for each invertible element v of R, both vp and pv are prime elements. A discrete
valuation ring is said to be complete if the canonical map

R —> lim R/m’
N
is an isomorphism. Note that every discrete valuation ring can be embedded into a
complete discrete valuation ring.

The following lemma collects some basic properties of discrete valuation rings,

which will be frequently used in our proofs.
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Lemma 2.5 ([21, Chapter 1], [22]). Let R be a discrete valuation ring, m be the
unique maximal ideal of R, and p be a prime element of R. Then the following
statements are true:

(1) The ideals w', with i € N, are the only left ideals and the only right ideals
of R.

(2) For any non-zero element x € R, there is a unique subset {x1,x2} € R\ m
such that x = x1 p" = p"x; for some n € N.

(3) R is a left and right Ore domain. In particular, the division ring Q(R) of
fractions of R exists.

(4) Q(R) is isomorphic to the universal localization of R at the map pp : R — R
defined by r — rp for eachr € R.

The other kind of universal localizations is provided by universal localizations
at injective homomorphisms between finitely generated projective modules, and
therefore related to finitely presented modules of projective dimension at most 1.

Suppose that U is a set of finitely presented R-modules of projective dimension
at most 1. For each U € U, there is an exact sequence of R-modules

O—>P1£>P0—>U—>O,
such that P and Py are finitely generated and projective. Set
L:={fu|UelUj,

and let Ry be the universal localization of R at 3. If f{; : Q1 — Qo is another
such a sequence of U, then the universal localization of R at X' := { f/, | U € U}
is isomorphic to Rq;. Hence Rq does not depend on the choices of the injective
homomorphisms fr7, and we may say that Ry, is the universal localization of R
at U.

Clearly, we have TorlR(Ru, U)=0foralli >0and U € U, and therefore
Tor®(Ry, X) = 0foralli > 0and X € ¥(U).

Now, we recall the following property of universal localizations, which states
that iterated universal localizations are again universal localizations.

Lemma 2.6 ([28, Theorem 4.6]). Let ¥ and T" be sets of homomorphisms between
finitely generated projective R-modules. Set T := {Rx ®pg f | f € T'}. Then the
universal localization of R at ¥ U T is isomorphic to the universal localization of
Rs at T, that is, Rsur ~ (Rx)F as rings.

Finally, we point out a special case of universal localizations which arise from
ring epimorphisms.
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Lemma 2.7. Let A : R — S be a ring epimorphism. If the R-module S is finitely
generated and projective, then A is the universal localization of R at the homo-
morphism A.

Proof. Suppose that gS is finitely generated and projective. Then A : R — S is
a homomorphism of finitely generated projective R-modules. Let ¥ := {A}. To
show that A is the universal localization of R at X, we shall check the condi-
tions (1) and (2) in Lemma 2.1. Actually, since A is a ring epimorphism, we know
that S @A : SQ®r R — S ®pg S is an isomorphism of S-modules. Thus A is X-in-
verting and verifies Lemma 2.1 (1). Suppose that ¢ : R — T is a ring homomor-
phism such that
TOA:TArR—T ®rS

is an isomorphism of 7'-modules. Clearly, the homomorphism u : T — T ®r R,
given by t =t ® 1 for t € T, is an isomorphism of 7'-R-bimodules. Now, we
define

S —T, s— (1) (u(T®1)"

for each s € S. Clearly, ¥ is well defined and can be illustrated by the following
commutative diagram of homomorphisms of 7'- R-bimodules:

" TQRA
T —— TQRrRR — T ®RrS

'(S)Wl lT®(-s)
T®A

1% ®
T — TQRrRR —T QRS

where -(s)y : T — T and -s : S — § stand for the right multiplication maps by
(s)y and s, respectively. From this diagram, we see that ¥ is a ring homomor-
phism such that ¢ = Ay. Further, since A is a ring epimorphism, we know that
if there exists another ring homomorphism v’ : S — T such that ¢ = Ay, then
Y’ = . Consequently, A is universal Z-inverting and satisfies Lemma 2.1 (2).
Thus A is the universal localization of R at X. o

2.3 Recollements induced by tilting modules

Now, let us recall the definition of recollements of triangulated categories. This
notion was first introduced by Beilinson, Bernstein and Deligne in [6] to study
the triangulated categories of perverse sheaves over singular spaces, and later was
used by Cline, Parshall and Scott in [11] to stratify the derived categories of quasi-
hereditary algebras arising from the representation theory of semisimple Lie alge-
bras and algebraic groups.

Let O be a triangulated category. We denote the shift functor of O by [1].
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Definition 2.8 ([6]). Let D’ and D" be triangulated categories. We say that D is a
recollement of D' and D" if there are six triangle functors ix,i*,i', j', j« and Ji
as in the diagram

i* J

D' — D —— D

such that

(1) (i*,ix), (h.i"), Gy, j') and (j*, j«) are adjoint pairs,
(2) ix. jx and jy are fully faithful,

(3) i'j+ = 0 (and thus also j'iy = 0 and i * j, = 0),

(4) for each object C € D, there are two triangles in D:
ii'(C) —> C —> ju j*(C) — i (C)[1]

and
J171(C) — C — ixi*(C) — jij ' (O)[1],

where i1i'(C) — C and jyj'(C) — C are counit adjunction morphisms, and
where C — j4j*(C) and C — i4i*(C) are unit adjunction morphisms.

In the following, if D is a recollement of O’ and D”, we also say that there is
arecollement among ', D and D", or very briefly, that D admits a recollement.

A well-known example of recollements of derived categories of rings is given by
triangular matrix rings: Suppose that A, B are rings and M is an A-B-bimodule.
Let R = (61 Ag ), the triangular matrix ring associated with A, B and M. Then
there is a recollement of derived categories:

L T~ T~
2(A) 2(R) 2(B).
~ Y~

A generalization of this situation is the so-called stratifying ideals defined by
Cline, Parshall and Scott, and can be found in [11].

Another type of examples of recollements of derived categories of rings ap-
pears in the tilting theory of infinitely generated tilting modules over arbitrary
rings (see [8]). Before we state this kind of examples, we first recall the definition
of tilting modules over arbitrary rings from [13], and then construct tilting modules
from universal localizations.
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Definition 2.9. An R-module T is called a tilting module (of projective dimension
at most 1) if the following conditions are satisfied:

(T1) The projective dimension of 7 is at most 1, that is, there exists an exact
sequence
00— P — Py—T —0

with P; projective fori = 0, 1.
(T2) Ext’IR(T, T@) = 0 for each i > 1 and each index set o

(T3) There exists an exact sequence
0— rRR—Tp—T1 — 0
of R-modules such that 7; € Add(T) fori =0, 1.

A tilting R-module T is called good if Ty and T in (T3) lie in add(T"), and clas-
sical if T is good and finitely presented.

A special kind of good tilting modules can be constructed from certain universal
localizations.

Lemma 2.10 ([2, Theorem 3.5, Theorem 2.6]). Let R be a ring and X be a set
of homomorphisms between finitely generated projective R-modules. If the uni-
versal localization A : R — Ry is injective and the R-module Ry has projective
dimension at most 1, then Ry, & Ry /R is a tilting R-module with

Hompg(Rx/R, Rx) = 0.

Now, we state the promised example of recollements as a proposition which
is a consequence of [8, Lemma 6.2, Corollary 6.6]. It is worth noticing that the
recollement in this proposition is, in general, different from the one obtained from
the structure of triangular matrix rings.

Proposition 2.11. Let R be a ring and let U denote a set of finitely presented
R-modules of projective dimension at most 1. Suppose that the universal local-
ization A : R — Ry of R at U is injective and that the R-module Ry has pro-
Jective dimension at most 1. Set B := Endg(Ry ® Ry /R), S := Endg(Ry/R)
and X :={S ®r fu | U € U}. Then there is a recollement of derived module

categories
T~ T~
Z(Sx) 7(B) Z(R)
Y Y~
where Sy is the universal localization of S at X, and where the right R-module
structure on S is induced by the ring homomorphism sending r € R to the right
multiplication map -r : Ryy/R — Ry /R.
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Let us give an explicit description of the six functors appearing in the above
recollement.

Let u : R — S be the right multiplication map defined by r — (y — yr) for
r € Rand y € Ry /R. Clearly, this is a ring homomorphism and endows S with
a natural R-R-bimodule structure. Further, let ¢ : S — Sy be the universal local-
ization of S at X. Then, by Lemma 2.1 (2), there exists a unique ring homomor-
phism p : Ry — Sy such that the following diagram of ring homomorphisms is
commutative:

A
R—>R<u

L

S—)SE.

Moreover, by [8, Lemma 6.4 (2) and Lemma 6.5 (2)], the ring B can be identified
with the triangular matrix ring (RO‘u R‘“?R S ) up to isomorphism. Now, we define
a homomorphism ¢ between finitely generated projective B-modules

R R S 1
@ Ul U ®r , * — re for x € Ry.
0 S 0 0

Since Rqy and S are R-R-bimodules via A and pu, respectively, the map ¢ can be
regarded as a homomorphism of B-R-bimodule. This implies that the mapping
cone P°® of ¢ between stalk complexes is actually a complex of B-R-bimodule.
Moreover, Homp (P ®[—1], B) is quasi-isomorphic to T := Ry, &® Ry /R as com-
plexes of R-B-bimodules. By [8, Lemmas 6.1 and 6.2], the universal localization
of B at ¢ is given by

R R
0:B= u UBRS — C := Sz Sz ,
0 S Sy Sz

X2 ®s2) (xp)p  (x2)p(s2)¢9
0 S1 0 (s1)¢

for x; € Ry ands; € S withi = 1, 2. Furthermore, by [8, Theorem 1.1], the map
# is homological, and induces a recollement of derived module categories

e
2(C) 2(B) 2(R)
~_ ~_

i! Jx
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where
i* :=C®% -, i :=C®]Ié —, i':=RHomp(C,-),
Jii= P°[—1] ®]I1§ - jl=T ®H§ —, Jjx := RHom g(T, —).

Observe that C is Morita equivalent to Sx. So, we can replace Z(C) by Z(Syx) in
the recollement, and obtain a recollement of derived module categories in Propo-
sition 2.11.

For a systematic investigation on the recollements induced from pairs of ring
homomorphisms, we refer the reader to the recent preprint [9].

2.4 Homological facts
Finally, we prepare several homological results for our later proofs.

Lemma 2.12. Let R be a ring and let

0—-x%vaz w0

be an exact sequence of R-modules. Assume that f : X — Y is injective and that
there is a homomorphism g : Y — Z with

g=fg: X —> Z.

Then there exists an automorphism y of the module Y & Z and an isomorphism
¥ : W — Coker(f) & Z such that the following diagram commutes:

(f.8) h
0O— X —YdZ w 0

H ) ly (59) lw

00— X — Y®HZ —— Coker(f)8Z —— 0

where 7w . Y — Coker( f) stands for the canonical surjection.

Proof. Sety := ((1) _1§ ) Then y is an automorphism of the module ¥ & Z. Since
g = f g, wehave

(f.8)y = (1. 0).
Thus there exists a unique homomorphism ¥ : W — Coker( f) @ Z such that the
above diagram is commutative. Clearly, ¥ is an isomorphism. This completes the
proof. i

The following homological facts can be found in the literature. For example,
see [16, Lemma 3.1.6, Lemma 3.3.4] for proofs of (1, ii) and (1, iii).
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Lemma 2.13. Let R be a ring.
(1) If{Xa}aer is a direct system of R-modules, then:

(i) We have
HomR(liar_>nXa,M) ~ l%_nHomR(Xa, M)

for any R-module M.

(ii) Letn > 0. If M is an R-module with a projective resolution
---—)Pn+1—>---—>P1—>PQ—>M—>O
such that all Pj, with 0 < j < n 4+ 1, are finitely generated, then

Exts (M, lim Xg) = lim Exts (M, Xo)
o o
foralli < n. In particular, if M is a finitely presented R-module, then
Hompg (M, lil_)nXa) ~ lir_>nH0mR(M, Xo).

o o
(iii) If M is a pure-injective R-module (for example, M is of finite length

over its endomorphism ring), then

Ext;(n_r)n Xo. M) ~ LiLnExt"R(Xa, M)
o o

for all i > 0. Conversely, if this isomorphism is true for i = 1 and for
every directed system X, then M is pure-injective.

(2) If {Yq}aer is an inverse system of R-modules, then, for any R-module M,

Hompg (M, I(%n Yo) >~ L%lHomR(M, Yo).

Remark. (1) The statement (1, iii) is due to Maurice Auslander.

(2) The class of all pure-injective R-modules is closed under products, direct sum-
mands and finite direct sums. In general, it is not closed under extensions.

Lemma 2.14. Let A be a finite-dimensional k-algebra over a field k, M be a finite-
dimensional A-module and N be an arbitrary A-module.

(1) Ifproj.dim(M) < 1, then
DExt} (M, N) ~ Homu (N, tM),

where proj.dim(M ) stands for the projective dimension of M.
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(2) Ifinj.dim(M) < 1, then
Exty (N, M) ~ DHomy(z"'M, N),
where inj.dim(M ) stands for the injective dimension of M.

Proof. 1t is known that every A-module N is a direct limit of finitely presented
A-modules { Xy }qer (see [16, Lemma 1.2.3]) and that (1) and (2) hold true for
finitely generated modules N . Then, it follows from Lemma 2.13 that

DExty(M, N) ~ DExt} (M, lim Xo) = D h_r)nExt}l(M, Xq)
o o
~ LiLnDExt}l(M, Xo) == lim Homy (Xo. TM)
o o
~ HomA(li_r)nXa, tM) = Homy (N, tM).

o

This proves (1). The statement (2) can be shown similarly. O

3 Priifer modules and their endomorphism algebras

In this section, we shall consider the endomorphism algebra of the direct sum of
all Priifer modules obtained from a given tube. This ring was calculated already
in [26]. For convenience of the reader and also for the later proofs of our main
results, we include here some details of this calculation.

Unless stated otherwise, we assume from now on that R is an indecomposable
finite-dimensional tame hereditary k-algebra over an arbitrary but fixed field k.

Let . := ¥ (R) be a fixed complete set of isomorphism classes of all simple
regular R-modules. For each U € .% and n > 0, we denote by U [r] the R-module
of regular length n on the ray

U=U[llcUR]Cc---cUnlcUn+1]1C---,
and define the Priifer module corresponding to U as

Uloo] := lir_>nU[n].
n

Note that U[oo] has a unique regular submodule U [n] of regular length n, and
therefore admits a unique chain of regular submodules, and that each endomor-
phism of U [oo] restricts to an endomorphism of U [1] for any n > 0. For further
information on regular modules and Priifer modules over tame hereditary algebras,
we refer the reader to [26, Sections 4 and 5] and [15].

Recall that we have defined an equivalence relation ~ on .% in Section 1. It is
known that two simple regular modules lie in the same clique if and only if they
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lie in the same tube. Thus a clique is just the set of all simple regular modules
belonging to a fixed tube.

Let U € & and U C .. We denote by €' (U) the clique containing U, and
by ¢(U) the cardinality of %’ (U). Similarly, we denote by & (U) the union of all
cliques € (U) with U € U, and by c¢(U) the cardinality of € (U). As mentioned
before, c(U) is always finite, and furthermore, ¢(U) = 1 for almost all U € ..
In fact, there are at most three cliques consisting of more than one element. Also,
we know that R has only two isomorphism classes of simple modules if and only
if every clique of R consists of one simple regular R-module. If the field k is
algebraically closed, this is equivalent to the statement that R is Morita equivalent
to the Kronecker algebra.

Throughout this section, let € be a clique of R, U be an element in €, and
t be the tube of rank m > 1 containing €. Set U; := t==DU fori € Z. Then
U ~ U and € = {U;,Us,...,Upn—1, Uy} which is a complete set of non-
isomorphic simple regular modules in t. Since U; >~ Uj 1, for any j € Z, the
subscript of U; is always modulo m in our discussion below. It is well known that
Endg(U;) is a division algebra and Homg(U;,U;) = 0for 1 <i # j <m, and
that DExt}z (Ui, Uj) ~ Endg(U;) if j =i — 1, and zero otherwise. Furthermore,
t is an exact abelian subcategory of R-mod, and every indecomposable module
in t is serial, that is, it has a unique regular composition series in t. For example,
foranyi € Z and j > 0, the module U; [j] admits successive regular composition
factors U;, Uj 41, . .., Ui+ j—1 with U; as its unique regular socle and with U; 1 ;1
as its unique regular top. For details, see [27, Section 3.1].

Now, we collect some properties of Priifer modules.

Lemma 3.1. The following statements hold true for the tube t.
(1) Forany 1 <i < m and for any regular module X in t, we have
Homg (U;[o<], X) = 0 = Exth(X, U;[o0]).
Further, if1 <i < j <m, thenHompg(U;[n], Uj[oc]) =0forl <n < j—i,
and Hompg (Uj[n], Uj[oo]) = Ofor 1 <n <m—j +1.

(2) Leti,j € N with 1 <i < j. Then, for any n > j — i, there is a canonical
exact sequence of R-modules

0 — Ui[j —i] — U] S22 Uiln — (j — )] —> 0.

In particular, we get a canonical exact sequence
. &ij
0 — U;[j —i] — Ui[oo] — Uj[oo] — 0,
where g; j :=1im ¢&; j[n]. Moreover, we have
. g,

Ei,j = &i+m,j+m and &i,j€j,p = €i,p foranyp > j



1866 H.X. Chen and C.C. Xi

B3) Ifi,j eNwith 1 < j—i<m, then & j induces an isomorphism of left
Endg (U; [00])-modules

(Si,j)* . EndR(Ui [OO]) ;> HomR(Ui [OO], Uj [OO]),
and an isomorphism of right End g (U} [oo])-modules

(1,7)« : Endg(U;[00]) — Homg (U;[0c], U;[o0)).
In particular, we get a ring isomorphism

¢i,j : Endg(Ui[o0]) —> Endgr(Uj[oc]),  f+— f'

Jor f € Endg(Uj[0c0]) and f/ S EndR(Uj [00]), with fei,j = ¢&i,j f/.
(4) Suppose 1 <r,s,t < m. Set

S
and define
Tr,s = &rs+A,om € HOMR(Ur[00], Us A, ym[00]).
Then

)T lfAr,s + As,t = Ar,ty
Ty,s st = .
T rre  Otherwise.

In particular, we have (w; ;)i ; = 7j,j forany 1 <i < j <m.

(5) The ring Endg(U;[o0]) is a complete discrete valuation ring with m; ; as a
prime element. If k is an algebraically closed field, then there is a ring iso-
morphism @; : Endg(U;[00]) — k[[x]] which sends 7; ; to x.

Proof. (1) Note that we have DExt}e(X, Ui[oo]) >~ Hompg (Uj[oc], TX) for any
X €t by Lemma 2.14 (1), and that every indecomposable module in t is serial.
Thus, to prove the first statement in (1), it suffices to show Hom g (U; [o0], U;) = 0
forall 1 < j < m. In fact, since the inclusion map U;[n] — U;[n + 1] induces a
zero map from Homg (U;[n + 1], U;) to Homg (U;[n], U;) for all n. This implies
that

HomR(Ui[oo], Uj) = HomR(h_;)n Ui [n], Uj) ~ I(%H HomR(Ui[n], Uj) =0.

The last statement in (1) follows from the fact that the abelian category t is
serial.
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(2) For any n > j — i, we can easily see from the structure of the tube t that
there is an exact commutative diagram of R-modules

&i.j[nl

0 —— Ui[j —i] Ui [n] Uiln—=( —i))] —— 0

H 1 g;,j[n+1] 1

0 —— Ui[j —i] — Uiln + 1] —>Uj[n—(j—i)+1]—>0

where the map ¢; ;[n] is induced by the canonical inclusion U;[j —i] < U;[n].
Thus, by taking the direct limit of the above diagram, we obtain the canonical
exact sequence

0 —> Uilj —i] — Us[oo] 2% Ujoo] —> 0 (%)

where &; ; = h_r)nn &i,j[n]. This is the first assertion in (2). In the following, we
shall show that &; ; = &;4m,j+m and & j&j p = &;,p for any p > j. In fact, the
former clearly follows from ¢; j[n] = & 4m,j+m[n] for any n > j —i since we
have U; = U; 1y and U; = Uj 1, by our convention. As for the latter, it follows
that, for any u > p — i, the composite of

gijul: Uilu] — Ujlu — (j —1i)].
and
ejplu — (G =D Ujlu = (j =] — Uplu — (p —1)]
coincides with &; p[u] : Ui[u] — Up[u — (p —i)]. So
&i,jlulejplu — (G —1)] = €iplu].
By taking the direct limit of the two sides of this equality, we have ¢; j&; » = & p
for any p > j. This completes the proof of (2).

(3) If we apply Hompg (U;[o0], —) to the sequence () in the proof of (2), then
we get the following exact sequence:
0 — Hompg (U;[oo], Ui[j —i]) — Hompg (U;[o<], Ui [o0])
(ei.j)"
sk Hompg (U;[o0], Uj[o0])
— Extg(Ui[oo], Ui [j —i]).
Note that Homg (U; [oo], U;[j —i]) = 0 by (1). Thus, to prove that (&; ;)* is an
isomorphism, it suffices to show Ext}e(Ul- [00], Ui[j —i]) = 0. In fact, this follows
from

Extg (Uiloo]. Ui[j —i1) = DHomp(z™ (U;[j —il). Ui[oo))
>~ DHomg (Ui +1[j —i]. Ui[oo]) = 0,
where the last equality holds for 1 < j —i < m by (1).
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Next, by applying Hompg (—, U; [00]) to the sequence (), we get the following
exact sequence:

(&1 )

0 — Endg(Uj[o0]) — Hompg(U;[o0], Ui [00]) — Hompg (U;[j —i], Uj[o0]).

Since 1 < j —i < m, we have Homg (U;[j —i], U;[o0]) = 0 by (1), and there-
fore (g;, )+ is an isomorphism.
Now, it follows from the isomorphisms (&;,;)* and (&;, )« that the map
¢i,j - Endg(U;[o0]) —> Endg(Uj [o0])

in (3) is well defined and thus a ring isomorphism.
(4) By definition, for 1 < r,s,¢ < m, one can check

Tr,sTs,t = Ers+Ap smEs,t+Ag m
8rsS+Ar_smSS+Ar.5m,l‘+(A5,[+Ar'3)m

= Ert+(Ars+As)m-

On the one hand, for any p > r and ¢ > r, we infer from (2) that &, , = &, 4 if
and only if p = ¢. On the other hand, we always have A, s + As; — A, € {0, 1}.
Consequently, the first statement in (4) follows. In particular, this implies that

T j,j = i

for 1 <i < j < m. By the definition of ¢; ; in (3), the second statement in (4)
follows.

(5) Set D; := Endg(U;[oc]). It follows from [26, Section 4.4] that D; is a com-
plete discrete valuation ring. Let mt be the unique maximal ideal of D;. We shall
prove that 7r; ; is a prime element of D;, that is, m = n; ; D; = D;m; ;. Indeed,
by applying Hompg (—, U;[o0]) to the exact sequence

0 —> U;i[m] — Uj[q] Ty Ui[oo] — 0,
we obtain another exact sequence of right D;-modules:

0— D; (”’—’3* D; — Hompg (U;[m], Uj[oc]) —> O,
due to Ext}e (Ui [00], Ui [00]) = 0, which follows from [26, Section 4.5]. To show
m = m;; D;, we first claim that

Homg (U;[m], Ui [o0]) ~ Hompg(U;, Uj[o0]) =~ D; /m

as right D;-modules.
Let

&ii1[m]
0— Ui — Uiim] ——— Ujy1[m -1 —0
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be the exact sequence defined in (2). Then we get the following exact sequence of
k-modules:

Hompg (Ui 41[m — 1], Ui [oo]) —> Hompg (U; [m], U;[o<])
— Homg (U, Uj[o0])
— Extp (Ur1[m — 1), Ui o).
Since Homg (Uj 41[m — 1], U [00]) = 0 = Exty(Uj+1[m — 1], U;[00]) by (1), we
have Homg (U; [m], U;[00]) >~ Homg (U;, U;j[o0]) as right D;-modules.
It remains to show Hompg (U;, Uj[o0]) >~ D;/m as right D;-modules. Let

0—> U = Ui[oo] =5 Uy 41]00] —> 0

be the exact sequence defined in (2) with ¢ the canonical inclusion. Since
Ext (Ui +1[00], Ui[oo]) = 0

by [26, Section 4.5], we infer that, for any f : U; — U;[o<], there is a g € D;
such that f = ¢g. This means Homg (U;, U;j[oo]) = ¢D;. Clearly, {D; ~ D; /N
as right D;-modules, where N := {h € D; | {h = 0}. As the canonical ring ho-
momorphism from D; to Endg(U;) via the map ¢ induces a ring isomorphism
from D;/m to Endg(U;), we have {m = 0, that is, u € N. Since D; is a local
ring and N € D;, we get N = m, and therefore Hompg (U;, U;[00]) >~ D; /m as
right D;-modules. This finishes the claim.

From the above claim, we conclude that m coincides with the image of (7; ;) «,
that is, mt = m; ; D;. Similarly, we have mt = D;m; ;. This means that m; ; is a
prime element of D;. As for the second statement in (5), we note that, for any
p € Nand 1 < ¢ < m, the canonical inclusion map

Uilpm + q] — Ui[pm 4+ q + 1]
induces an isomorphism
Homg (Ui[pm + q + 1]. U;[00]) — Homg (U; [pm + ¢]. U;[o0]).
Consequently, we have the following isomorphisms of abelian groups:

D; = Homg(lim U;[n], Ui [o0])

n

[

g5

lim Homg (U; [1], U; [00])

=15

[

1<i_1l1H0mR(Ui [(n — Dm + 1], Ui[o0])

12

Ta

klx]/(x") = k[[x]].
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Here we need the assumption that k is an algebraically closed field. Now, one
can check directly that the composite of the above isomorphisms yields a ring
isomorphism ¢; : D; — k[[x]], which sends 7; ; to x. This finishes the proof. O

By Lemma 3.1 (3), the rings End g (U; [00]), with 1 <i < m, are all isomorphic.
From now on, we always identify these rings, and simply denote them by D(€).
Further, we write mi(€) and Q(€) for the maximal ideal of D(€) and the division
ring of fractions of D(€), respectively. In particular,

wm(€) = m;; D(C) = D(C)r; ;.

Suppose that C is a Z-module and ¢ € C. For 1 <i, j < m, we denote by
E; j(c) the m x m matrix which has the (i, j)-entry ¢, and the other entries 0. For
simplicity, we write E; ; for E; ;(1) if C is a ring with the identity 1. Moreover,
let 7r;, ; be the homomorphisms defined in Lemma 3.1 (4).

Lemma 3.2. There exists a ring isomorphism

D(€) D) --- D(€)
p : Endg (EB U; [oo]) L Te) = wm(€) D(C€)
i=1 : pe)

which sends the matrix Ey, 1 (7t ,1) t0 Ep 1 (7t m) and the matrix Ey p 4 1(7Tr r+1)
to Eyry1 for 1 <r < m, where the maximal ideal w(€) of the ring D(€) is
generated by the element 1y, .

Proof. For any 1 <i < m, by Lemmas 3.1(2) and (4), we have the following
exact sequence of R-modules:

0 —> Ui[m — i] —> Us[00] 2% Up[oo] —> 0.

Summing up these sequences, we can get the following exact sequence:
m—1 m £
0— @ Uilm —i] — @Uj[oo] —5 Upoo]™ —s 0,
i=1 j=1
where & := diag(7w1,m, T2,m., - .., Tm—1,m. 1) is the m x m diagonal matrix with
7Ti,m in the (i, i)-position for 1 <i < m, and with 1 in the (m, m)-position.
Let D := Endg(U,[o0]), and let m be the unique maximal ideal of D. Set

A := Endp (@ U; [oo]).

J=1
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Since Homg (U;[m — i], Uy [oo]) = 0 for 1 <i < m, we see that, for any g € A,
there exists a unique homomorphism f and a unique homomorphism / such that
the following diagram is commutative:

m—1 m
&
0 —— @ Uilm —i] — P Ujloc] —— Unloc]™ —— 0
i=1 j=1 [
[ [
S gJ/ hl
4 |
m—1 m £ +
0 —— @ Uilm —i] — @ Ujloc] —— Unloo]™ — 0.
i=1 j=1
This yields a ring homomorphism p : A — M, (D) defined by g +— h. More pre-
cisely, if g = (gu,v)1<u,v<m € A with gy, € Homg(Uy[oco], Uy[o0]), then we
have h = (hy v)1<u,v<m € Mpu (D) with by, 5, € D satisfying
(@) guvTv,m = Tumhu,p ifu <mandv < m,
) hmy = gmumymifu =mandv < m,
©) gu.m = Tumhumifu <mandv =m,
(d) hm,m = 8m,m-
In particular, the map p sends Ey, 5 in A to Ey , in My, (D). In this sense, we may
write p = (Pu,v)1<u,v<m, Where

Pu, : Hompg (Uy[oo], Uy[oc]) —> D

is defined by gy,» = hy,p.
Clearly, p is injective since

Hompg (Uj[oc], Ui[m —i]) =0

forl1 < j <mand1 <i < mbyLemma 3.1 (1). In the following, we shall deter-
mine the image of p, which is clearly a subring of M, (D).

On the one hand, for any a € Endg (Uy[00]), b € Hompg (Uy[o<], Uy[oo]) and
¢ € Endg(Uy[o0]), we have

(abc)pu,y = (a)pu,u(b)pu,v(c)pv,v-

On the other hand, it follows from Lemma 3.1 (3) that p, , is always a ring iso-
morphism, and the left Endg (U, [0c])-module Hompg (Uy[o0], Uy[o<]) is freely
generated by my , for 1 <u # v < m. This implies that the image of p coin-
cides with the m x m matrix ring having D(7my 4)py,y in the (u, v)-position if
1 <u s v <m, and D otherwise. By Lemma 3.1 (3) and (4), if 1 <s <t <m
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and 1 < w < m, we can form the following commutative diagrams:

Us[oo] —2% Up[oc] Uy[00] — Up[oc]
FoT R T
Ut[oo] —— Up[oo], Us[oo] —— Up[oc],
Unloo] —— Unmloo]  Un[o0] — Upn[oo]
o e e ]
Uyloo] —— Uploc], Up|oo] == Up[ox].

In other words, we have

(”s,t)Ps,t =1= (”w,m),ow,m and (nz,s),ot,s = TTm,m = (”m,w)Pm,uw

Thus, the image of p is equal to the m x m matrix ring having Dy, as the
(p,q)-entry for 1 < g < p <m, and D as the other entries. By Lemma 3.1 (5),
we know that mt = Dy, . Now, by identifying D with D(€) and m with m(€),
we infer that the image of p coincides with the ring I"(€) defined in Lemma 3.2.
Therefore, we conclude that p : A — I'(€) is a ring isomorphism which sends
Em,l(nm,l) to Em,l(”m,m) and Er,r+1(nr,r+1) to Eypq1 for 1 <r < m. This
completes the proof. o

Combining Lemma 3.2 with Lemma 3.1 (5), we then obtain the following result
which will be used for the calculation of stratifications of derived module cate-
gories in the last section.

Corollary 3.3. Assume that k is an algebraically closed field. Then there exists a
ring isomorphism
k{lx]l kllx]] - K[lx]]
o EndR(@ Ui[oo]) — I'(m) := ().C) Kli) : ,
i=1 : e KX
(x) - () Kk[lx]]

which sends Ep 1 (7tm,1) t0 Em 1 (x) and Er p41(7trp41) t0 Ep i1 forl <r <m.

mxm

As another consequence of Lemma 3.2, we have the following description of
the universal localization of the endomorphism algebra of the direct sum of all
Priifer modules from a given tube.
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Lemma 3.4. Define M := @]~ Ui[00], A := Endg(M) and
= {Homgr(M, 7wrr+1) | 1 <1 <m} U {Homg(M, 1}

Then the universal localization A1 of A at T1 is isomorphic to My, (Q(€)), the
m x m matrix ring over Q(€).

Proof. By Lemma 3.2, there is a ring isomorphism p : A — ' := ['(€), which
sends Ey;. 1(7m,1) t0 Ep 1 (Tm,m) and Ey p1(rp41) to Eppyg for 1 <r <m.
Letgy : T'Epm — 'Er1 and ¢ : T'E, , — I'E; 41 41 be the canonical homo-
morphisms induced by multiplying on the right by E,; 1(tm,m) and Ey 41, re-
spectively, and define ® := {¢, | | <r < m} U {@n}. Then, under the isomor-
phism p, we see that Ay >~ I'g as rings. It remains to prove I'g >~ M, (Q(€)).

We first claim that the inclusion f : T <> T := M,,(D(€)) is the universal
localization of T" at the set X¢ := {¢r | | <r < m}.

Indeed, let 9>, := @r@r41 - Om—1, and let ¢ : I'E} , — FE% be the com-
posite of ¢, with the right multiplication map -Ey, » : TEp m — I'E; . We de-
fine

S1:={g>r |1 <r<m} and Zp:={y, |1l <r <m}.
Clearly, ¢>, : 'E,; — I'Ep p is the right multiplication map by E; ,,, and we
have
s, =Tx, and TEpm =T Emnm.

Thus FF is isomorphic to the direct sum of m copies of I'Ey, ;. This implies
that pF is a finitely generated projective I'-module and the multiplication map
T ®r T —>Tisan isomorphism, that is, the inclusion map f is a ring epimor-
phism. By Lemma 2.7, f is the universal localization of I" at f". Moreover, due to
the isomorphism T E i =~ TE r,s Of T-modules, we have

I's, =T's,.

Since E;mEm,r = Erp, it is easy to see that ¥/, is the right multiplication map
by E;, and coincides with the inclusion I'E}, < T'E, ;. Hence I's, is the same
as the universal localization I'y of I" at f', and consequently

s, =Ty.
This completes the proof of the claim.

By Lemma 2.5 (4), the universal localization D(€)x,, ,, of D(C) at my m is
equal to Q(€). Let ¢, : FEm m —>TE 1,1 be the right multiplication map by
En 1 (5tm,m). Now, combining Lemma 2.6 with Corollary [8, Corollary 3.5], we
have "

Fe ~Ty =~ My (D(C)r,, ) = M (Q(C)).
Thus Ay ~ T'e ~ M (Q(€)) as rings. |
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4 Universal localizations of tame hereditary algebras

In this section, we shall consider universal localizations of tame hereditary alge-
bras at simple regular modules, and the endomorphism algebras of tilting modules
produced by these localizations.

Throughout this section, we fix a nonempty subset U of ., where .% is a
complete set of isomorphism classes of all simple regular R-modules. Recall that
A : R — Rq is the universal localization of R at U. It follows from [28, Theo-
rems 4.9, 5.1 and 5.3] that A is injective and Rq is hereditary. By Lemma 2.10,
the R-module

Ty := Ry ® Ry /R

is a tilting module with Homg (R /R, Ry) = 0. Note that we always have an
exact sequence

A
0—>R—>R‘ui>Ru/R—>O

of R-modules with 7 the canonical surjection.

Set B := Endg(Ty;) and S := Endg(Rq/R). Recall that the right multipli-
cation map i : R — S, defined by r +— (y — yr) forr € Rand y € Ry /R, is
a ring homomorphism, which endows S with a natural R-R-bimodule structure.
Further, for each U € U, we choose a finitely generated projective resolution of
R-modules

0—>P1£>P0—>U—>0

and define ¥ :={S ®g fu | U € U}. Then, by Proposition 2.11, we obtain a
recollement of derived module categories
T L
7(Sx%) 7(B) Z(R)
~ Y~

where Sy is the universal localization of S at X.
From now on, we always assume in this section that U = Uy UU; € .¥ such
that Ug contains no cliques and U is a union of cliques.

4.1 Universal localizations at simple regular modules

In this subsection, we shall calculate Sy, concretely and show Corollary 4.9. This
will play an important role in proving our main results.
Let U™ be the full subcategory of R-Mod, defined by

UT := {X € R-Mod | ExtR(U,X) = 0forall U € U and all i € N}.
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By Lemma 3.1 (1), U™ contains the Priifer module V[oo] for V € . \ U. Fur-
ther, we have Uy C ‘MT and U; C ‘L(Sr . This follows from the fact that if U € U
and V' € U, then they belong to different tubes.

The subcategory U™ has the following property, due to [2, Proposition 4.8].

Lemma 4.1. The subcategory U™ coincides with the image of the restriction func-
tor A« : Ry-Mod — R-Mod. In particular, for any Y € U™, the unit adjunction
ny : Y — Ry ®RrY, defined by y — 1Qy for y €Y, is an isomorphism of
R-modules.

Thus, for an R-module Y € UT, we may endow it with an Rq;-module struc-
ture via the isomorphism 7y, and in this way, we consider the R-module Y as an
Rq;-module. Note that this Rq;-module structure on Y extending the R-module
structure of Y is unique.

Concerning the universal localization Rq; of R at U, there are the following
facts (see [3, Proposition 1.11], [28] and [14]).

Lemma 4.2. The following statements hold.:

(1) Suppose that U contains no cliques. Then Ry is a finite-dimensional tame he-
reditary k-algebra. In particular, the tilting R-module Ty is classical. More-
over, {Ry QrV |V € S\U} is a complete set of non-isomorphic simple
regular Ry -modules, and (Ry @ gr V)[oo] >~ V[oo] as Ry -modules for each
Ve \U

(2) Suppose that U contains cliques. Then Ry is a hereditary order. Moreover,
{RyQRrV | V € S\U} is a complete set of non-isomorphic simple Ry -mod-
ules, and the injective envelope of the Ry -module Ry ® r V is isomorphic to
V{oo] for each V € #\U.

(3) Suppose V < S\U. Then
Ryuy = (Ru)v,

where V := {Ry ®r V | V € V). In particular, there are injective ring epi-
morphisms Ry — Ryuvy and Ryyy — Ro.

As remarked in [14, Section 4], in the case of Lemma 4.2 (1), the set of simple
regular Rq;-modules in a clique is of the form

{Ry®rV |V et V&Ul,

where € is a clique of R. Further, by Lemma 4.2 (1), foreach V' € €\ U, the Priifer
modules corresponding to Ryy ® g V' and to V are isomorphic. In particular, they
have the isomorphic endomorphism algebra.
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Thus, if €1, €;, ..., € are all cliques from non-homogeneous tubes of R and
if U is a union of ¢(€;) — 1 simple regular R-modules from each €;, then each
clique of Rq; consists of only one single element. This implies that Rq; has only
two isomorphism classes of simple modules. If, in addition, the field k is alge-
braically closed, then Rq; is Morita equivalent to the Kronecker algebra. In this
case, since the set of cliques of the Kronecker algebra are parameterized by P! (k),
we see that the set of cliques of an arbitrary tame hereditary k-algebra can be in-
dexed by P! (k).

A description of the structure of the module Ry;/R was first given in [29], and
a further substantial discussion has been carried out recently in [3]. Especially, the
following lemma is proved in [3, Propositions 1.7 (6) and 1.10].

Lemma 4.3. The following statements hold.:

(1) The R-module Ry, /R is a direct union of finite extensions of modules in U.
(2) Let t C R-mod be a tube of rank m > 1, and let U = {Uy,U,, ..., Up—1}
be a set of m — 1 simple regular modules in t such that U; 1 = t~U; for all
1<i<m-—1.Then
Ry /R =~ Uim — 11000 @ Us[m — 21902 & .. & Uy [1]CUm—1)
with 8y, := dimgga,(U)) Ext}e(U-, R) for1 < j <m — 1. Moreover,
Ry @R Uy =~ Up[m]
as Rq-modules.

(3) If U is a union of cliques, then, for any finitely generated projective R-mod-
ule P,
R(Ry/R) ®r P = P Uloo] @),
UeU

where 8y, p := dimpyq () Exth (U, P).
Next, we shall show that Rqy and Endg (R /R) can be interpreted as the tensor
product and direct sum of some rings, respectively.
Lemma 4.4. Let V = Vo U'Vy C .7 such that Vo contains no cliques and such
that Vy C 'V(T . Then the following statements are true:
(1) We have
Ry >~ Ry, QR Ry,
as Ry, -Ry,-bimodules, and
Ry/Ry, >~ Ry, ®r (Ry,/R)
as Ry, -R-bimodules.
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2) If'Vy C Vl'", then Ry /R ~ Ry,/R ® Ry/Rv, as R-modules and there is a
ring isomorphism

Endg (Rv/R) — Endpg (R'VO/R) X Endeo (R'V/R'Vo)'

Proof. (1) By assumption, we have V| C "V(;r . It follows from Lemma 4.1 that
the unit adjunction ny : V' — Ry, g V is an isomorphism of R-modules for
any V' € V). This implies that every module in V; can be endowed with a unique
Rv,-module structure that preserves the given R-module structure via the univer-
sal localization g : R — Rv,. Consequently, Ry = (Rvy,)y, by Lemma 4.2 (3).
Now, we construct the following exact commutative diagram of R-modules:

0 0
Ao 0
0 R Ry, Ry,/R — 0
|
0 R Ry Ry/R —— 0 ()
T b1
Ry /Ry, == Ry /Ry,
0 0

where A1 is the universal localization of Ry, at V1, and A, is the canonical injec-
tion induced by A1, and where g, 71 and 75 are canonical surjections.

Clearly, R, is a finite-dimensional tame hereditary algebra by Lemma 4.2 (1).
From Ry = (Ry,)y, we see that Ry /Ry, is a direct union of finite extensions
of modules in V; by Lemma 4.3 (1). Since Rvy, is the universal localization of
R at Vi, we have ToriR(RVl, V) =0 for any i > 0 and V € V;. Note that the
i-th left derived functor Torl-R(va ,—) : R-Mod — Z-Mod commutes with direct
limits. Thus

Tor®(Ry,, Ry/Ry,) = 0

for any i > 0. This implies that the homomorphisms Ry, ® g A1 and Ry, @ A2
are isomorphisms. Moreover, by Lemma 4.2 (3), we have Ry = (va)v with
Vo := {Ry, ®R V | V € Vy}, and therefore Ry can be regarded as an R, -mod—
ule. Since we have a ring epimorphism R — Rv,, the canonical multiplication
map vz : Ry, ® g Ry — Ry is an isomorphism.
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Now we apply the tensor functor Ry, ® g — to the diagram (%) and get the
following exact commutative diagram of R+, -R-bimodules:

Ry, ®rAo Ry, ®rmo
va ®R R —_— RV] ®R RV() E— va ®R (R'V()/R) — 0

H :lRw@RM :lRw@Rlz
Ry, ®g R ———— Ry, R Ry ———— Ry, Qr (Ry/R) — 0

|
:lvl '_Vlvz |
34

0—— R'v] R'v R'v/R'v] — 0

where v is the multiplication map, and where the exactness of the last row fol-
lows from Lemma 4.2 (3). Thus Ry >~ Ry, ® g Ry, as Ry, -Rvy,-bimodules and
R'V/R'Vl >~ Ry, Qr (R'VO/R) as Ry, -R-bimodules.

(2) Since Ry,/R is a finite-dimensional k-space and a direct union of finite
extensions of modules in Vo by Lemma 4.3 (1), we have Ry, /R € ¥ (Vp). Thanks
to Lemmas 4.2 (1) and 4.3 (1), we can write

R'V/RV() = h_r)nXae
o

with Xy € F(V1). Then, by Lemma 2.13 (1,ii) and the inclusion V; C 'V(;", we
have

Exth(Ry,/R, Ry/Ry,) ~ li_n>1Ext§(R1;O/R,Xa) =0 forj>0. (a)
o

Similarly, it follows from Lemma 2.13 (1, iii) and the inclusion Vy C 'V1+ that

Extg(Ry/Ryy, Ryy/R) ~ lim Extg (Xa, Ry,/R) =0 forj = 0. (b)

o

Particularly, the canonical exact sequence

0 — Ry, /R 2% Ry/R "> Ry/Ry, —> 0 ©
splits in R-Mod, that is,
Ry/R =~ Ry,/R @ Ry/Ry,
as R-modules. Since R — Rvy, is a ring epimorphism, we have
Endg(Ry/Rv,) = Endry, (Ry/Ry,).
It follows from (a) and (b) for j = 0 that
Endgr(Rvy/R) ~ Endr(Ry,/R) x Endg,, (Ry/Ry,).
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This isomorphism can be described as follows: For f € Endg(Rvy/R), it follows
from (c) that there is a unique endomorphism f; € Endg(Rv,/R) and a unique
endomorphism f> € Endg(Ry/Rvy,) such that A5 f = fiA> and 72 fo = fra,
and therefore the map

(/0 EndR(R'v/R) —> EndR(R'VO/R) X EndR(Rv/R'VO), f > (fl, fz)
is the desired isomorphism of rings. This completes the proof of (2). o

As an obvious consequence of Lemma 4.4, we have the following result.

Corollary 4.5. The following statements are true for U:

(1) We have
Ry >~ Ry, ®r Ry,

as Ry, -Ry,,-bimodules, and
Ry/Ru, =~ Ry, ®r (Ry,/R)

as Ry, -R-bimodules.

(2) There is a ring isomorphism
EndR(Ru/R) — EndR(Ruo/R) X EndRuo (Ru/RuO).

Remark. We should point out that U; can be regarded as a set of simple regular
Rqy,-modules, and is a union of cliques of Rq,. In fact, it follows from U, C ‘U(')"
and Lemma 4.1 that Ry, ® g V >~ V' as R-modules for V' € Uy, and therefore
each V in U can be viewed as an Rq;,-module. Hence, by the statements pointed
out after Lemma 4.2, we infer that U is a union of cliques of Rqy,,.

The following result reduces the calculation of Sy, to the consideration of the
cliques contained in U.

Lemma 4.6. Define
A= EndRuo (Ru/Ruo)

and

O 1= {A QRy, (Ruy ®r fv) |V € Ur}.

Then Sy, is isomorphic to the universal localization Ag of A at ©.

Proof. Note that the Rq;,-module structure on A is given by the ring homomor-
phism Rq;, — A, which is defined by the right multiplication map.
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By Lemma 4.2 (1), we know that Rqy, is a finite-dimensional tame hereditary
k-algebra. Moreover, from the remark following Corollary 4.5, we know that U
can be seen as a set of simple regular Rq;,-modules. Thus Rq; = (Rq;,)u, by
Lemma 4.2 (3). More precisely, for each V' € U;, we fix a minimal projective
presentation

0—)P1ﬂ>P0—>V—>0

of V' in R-mod, and get a projective presentation of V' in Rq;,-mod

Ry, ®r fv
0—>RuO®R P 4)R‘u0®RPO—)V—)O.

This is due to the fact that
R
Torf(RuO, V) ~ Torf(R‘uo, Ry, ®r V) >~ Tor, Yo (Ryy, Ru, ®r V) =0.

Therefore, Rqy is the universal localization of Ry, at {Ry, ®r fv | V € U1}
Recall that

A= EndRuo(Ru/RuO) and O :={A ®R‘u0 (R‘uo ®r fr) |V e Uy}

In the following, we shall show that Sy, is isomorphic to Ag.

Let I' := Endgr(Ry,/R) and ¢ = (go.¢1) : S — I' x A, where @9 : § — I
and ¢; : § — A are the ring homomorphisms given in the proof of Lemma 4.4 (2).
Recall that u : R — S is the right multiplication map. Set g = o : R — I' and
n1 = pney : R — A. Clearly, both p¢ and p; are ring homomorphisms, through
which both A and I" have a right R-module structure. Now, we write

T:={S®r fulUceclU
as ¥ = ® x W with
O ={'®r fu|U €U} and V:={AQr fu|U € U}.

Consequently, the ring isomorphism ¢ implies that Sy, >~ I'¢ x Ay. To finish the
proof, it suffices to prove that ' = 0 and Ay >~ Ag.
Indeed, we write ® = g U ®; with

Do :={T'®r fu |U € Up} and ®; :={T ®r fu | U € Uy}
Then, by Lemma 2.6, we have
e >~ (I‘%)51,

where B
@1 :={Tp, ®r fu | U € Uy}.
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To prove I'p = 0, it suffices to prove I'g, = 0. Consider the canonical exact se-
quence of R-modules

A
0—> R =% Ry, —> Ryy/R —> 0.

By Lemma 4.2 (1), the module T4y, := Ry, ® R, /R is aclassical tilting R-mod-
ule, and therefore Z(R) is triangle equivalent to Z(Endg(7Tyy,)) in the recolle-
ment of Z(R), Z(Endg(Ty,)) and Z(I's,) by Proposition 2.11. Thus I', = 0
and I'p = 0.

It remains to show Ay ~ Ag. Let 2 : Ry, — A denote the right multiplica-
tion map defined by r — (x +— xr) for r € Ry, and x € Ry /Ry, . Then, along
the diagram (*) in the proof of Lemma 4.4, one can check that the following dia-
gram of ring homomorphisms commutes:

R 2 Ry,

l“ luz
®1
S —— A.
Now, we write ¥ = Wy U W with
Wo = {A®g fu |U cUp} and W;:={A®g fy|V e U

and claim Ay, = A. It suffices to show that A ® g fy is an isomorphism for any
U € Up. However, this follows from A Qg fuy ~ A ® Ry, (Ru, ®r fu) and
Ry, ®Rr fu being an isomorphism by the definition of universal localizations.
Hence Ag, = A.

Now, we have ¥ := {Ay, ®a h | h € U1} = ;. It follows from Lemma 2.6
that Ay ~ (A‘I’O)WI ~ A\pl. Further, A Qg fyr ~ A ®R‘u0 (R‘uo ®Rr fv) for
any V € U;. By comparing the elements in ® with the ones in W, one knows
immediately that Ay ~ A @, and therefore Sy, >~ A @, finishing the proof. O

To proceed with our discussion, let us now introduce some notation.

Let € be a clique of R. Recall that D(€) stands for the endomorphism algebra
of a Priifer module V [oco] with V' € €. Then D(€) is a discrete valuation ring with
the division ring Q(€) of fractions of D(€). Clearly, D(€) is a subring of Q(€).

For U € €, let

0—U g) U [o0] LN (t7U)[oo] — 0

be the canonical exact sequence defined in Lemma 3.1(2), where {y is the canon-
ical inclusion.

We write € = {Uy,Us,...,Uy—1,Uy} with m > 1 such that U+ = t7U;
for 1 <i < m, where the subscript of U; is modulo m. If we have U = U; for
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some 1 < j < m,then gy is definedtobe 7; j 1 : Uj[oo] —> Uj41[o0] in Lem-
ma 3.1 (4), where 7y 41 := 7,1 by our convention.

To calculate Sy efficiently, we first simplify the homomorphisms appearing
in 2.

Lemma 4.7. If U is a union of cliques, then, for each U € U, there exists an exact
commutative diagram of R-modules

(Ru/R)®RrR fU
00— U —— (Ry/R)@r P ————— (Ry/R) ®r Pp —— 0

H (0. 0) l_ (¥ 9) l_

0 U U] E ———— (T U)[oo] E —— 0

where E is an R-module.

Proof. Recall that we have a projective resolution of U,

O—>P1£>P0—>U—>O

where Py and Py are finitely generated projective R-modules. As A : R — Rqq is
the universal localization of R at U, the homomorphism

Ry ®r fu : Ry ®r Pt — Ry ®Rr Po
is an isomorphism. This yields the exact commutative diagram of R-modules:

0

0 U

14

A®RP; TR
0 —— P —— Ry ®r P —)(Ru/R)(X)RPl — 0

fu :lR‘u®RfU (Ry/R)®R fU

A®RPo
0 —— Pp —— Ry ®Rr Py —) (Ru/R)(X)RPo — 0
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which provides the following short exact sequence of R-modules:

Ry /R
0— v - (Ry/R) ®r P1 Ru/B&rTu, (Ry/R) ®r Po —> 0. (a)

Suppose that U is a union of cliques, say U = Uie 7€ with I an index set. By
Lemma 4.3 (3), we have

(Ry/R) ®g P1 ~ @ @ V[oo]®)  for some ny € N,
iel Vet

where ny is non-zero since U can be embedded into (R /R) ® g P1 and since
Hompg (U, W]oco]) = 0 for W € U with W 22 U. So we may write

(Ry/R) ®@r Py =Uloo] ® E
with £ an R-module and
V=1,8:U—Ulx]®E

with 0 # Y1 € Homg (U, U[o¢]) and g € Homg (U, E). Let D := Endg (U [00]).
Then D is a local ring with a maximal ideal m. Moreover, it follows from the
proof of Lemma 3.1 (5) that there is an exact sequence

@u)*
0 — m — D — Homg(U, UJoc]) — 0.

This means that, for any @ : U — U [o0], there is a homomorphism 8 € D such
that o = {y B, and that if the homomorphism « is non-zero, then 8 must be an au-
tomorphism. In particular, there is an automorphism 8 € D such that Y; = {yf.
Thus we can form the following commutative diagram:

v

U —— (R‘u/R) QR P1

H :l (b)
Cu.g)

U —"%, Ul @ E.

Note that g : U — E factorizes through 7. Then, by applying Lemma 2.12 to (a)
with the property (b), we obtain the following exact commutative diagram:

¥ (Ru/R)®Rr fU
0 —— U —— (Ry/R)@r P ———— (Ry/R) ®gr Pp —— 0

H (t0.0) l_ (¥ ) l_

0 U U] E ———— (7 U)[oo] ® E —— 0.

This finishes the proof. |
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Next, we show that the universal localizations in Lemma 4.6, which are of in-
terest for us, take actually the form of adele rings in the algebraic number theory
(see [23, Chapter V, Section 1]).

Lemma 4.8. If U C . is a union of cliques, say U = Uielei with I an index
set, then the following statements are true:

(1) The ring S is Morita equivalent to [ |;; T (€;), where the ring T (€) is defined
in Lemma 3.2 for each clique € of R.

(2) The ring Sy, is Morita equivalent to the adele ring
Aq = {(f,')l-eI € 1_[ 00€) | fi € D(€;) foralmost all i € I}.
iel
Proof. (1) By Lemma 4.3 (3), we have
Ry /R =~ @ @ V[o0] @)
iel Vet
as R-modules, where
Sy = dimpya, () Exti(V, R) = dimgpg . 1yor (V) # O.

We claim that there is a natural number d such that 5y < d forall V € U.

In fact, let {S; | 1 < j < r} beacomplete set of isomorphism classes of simple
R-modules with r a natural number. For each X € R-mod, denote by dim X € N”"
the dimension vector of X. Now, let (—, —) : N” x N” — Z be the Euler form of
the tame hereditary k-algebra R, that is,

(dim Y, dim Z) := dimy Homg(Y, Z) — dimy Extk (Y, Z)

with Y, Z € R-mod, and further, let ¢ : N” — Z be the quadratic form of R, that
is, ¢(dimY) := (dim Y, dim Y'), and let & = (h;)1<i<, be the minimal positive
radical vector of ¢. It is known that / is equal to the sum of the dimension vectors
of all simple regular R-modules in t’ for an arbitrary tube t" of R. Therefore, we

have
Sy < dimg(zU) < (Zhi)(Zdimk Sj) < 00
i J

for U € .. In particular, if we take
d = (Zhi)(Zdimk s,.),
i J

then §yy < d forall V € U, as claimed.
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Set

N:=@P & Vicc] and T :=Endg(N).

iel Vet

The above claim implies that Hompg(Rq; /R, N) is a finitely generated, projective
generator for S-Mod, and therefore S is Morita equivalent to T".

Note thatif i, j € I withi # j, then Homg (U [o0], V[oo]) = O forall U € €;
and V' € €;. Thus, by Lemma 3.2, we get the following isomorphisms:

I~ HEndR( P V[oo]) ~ []rcen.

iel Vet; iel

Thus S is Morita equivalent to [ [;; I'(€;). This finishes the proof of (1).
(2) For any finitely generated projective R-module P, we have

S ®g P = Homg(Ry/R, Ry/R) ®g P >~ Homg(Ry /R, (Ry/R) ®R P)
as S-modules. So, we can rewrite
¥ = {Homg(Ry/R,(Ry/R) ®r fv) |V € U}.

It follows from Lemma 4.7 that Sy, is the same as the universal localization of S
at ¥’ := {Homg(Ry /R, my) | V € U}. Since Morita equivalences preserve uni-
versal localizations by [8, Corollary 3.5], we know that Sy (and also Sx) is Morita
equivalent to I'g with

® := {Homg (N, y) | V € U}.

Let U = £ U W be a decomposition such that &£ is a union of cliques €; with
i in an index set /o and that ‘W is a union of cliques €; with j in an index set /.
Since I = Iy U I, we obtain the following isomorphisms of rings:

T~ ]‘[EndR(@ V[oo]) ~[[reE) ~J]re)x [[reE). o

iel Vet; iel iely i€l

First of all, we define I'o := [[;¢;, ['(€;) and I'y := [[;¢;, I'(€;), and decom-
pose ® = &y U & where

®p := {Homg(N,ny) |V € £} and &y := {Homg(N,ww) | W € W}.

Then I' >~ T’y x I'1 as rings. Note that if two Priifer modules belong to different
tubes of R, then there are no nonzero homomorphisms between them. So, un-
der these isomorphisms (*), we can regard ®¢ (respectively, ®1) as the set of
homomorphisms between finitely generated projective I'g-modules (respectively,
I'1-modules), and therefore the calculation of I'g can be done along the blocks I'g
and I'y of the ring I". In other words, I'¢ >~ (I'o), x (I'1)®, as rings.
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Next, we assume that each clique in ‘W is of rank 1, and each clique L in &£ is
of rank greater than 1. It is known that £ is a finite set. Thus the calculation of
(Fo)®, is reduced to each block I'(€;) of I'g. It follows from Lemma 3.4 that

(To)ay = [ ] Mece(Q(€)).
iely
Clearly, I'y = [[;¢;, D(€;). Since Iy is not necessarily a finite set, we cannot
express (I'1) g, as a direct product of corresponding universal localization of each
block of I'1. Nevertheless, we claim (I'1)g, ~ Ay as rings, where

Ay = {(ﬁ),-ell e [] o) | fi € D(€) for almost all i € 11}.
i€l
Actually, for each i € Iy, the clique €; consists of only one simple regular
module. Hence we write D(€;) = Endgr(€;), which is a discrete valuation ring
with a unique maximal ideal generated by ;.
Define e; := (Bj)jer, € T'1by Bi = 1and B; = 0if j # i, and let

@i e — e

be the right multiplication map defined by g +— gmu; for every g € D(€;). Under
those isomorphisms (), we can identify ®1 with {¢; | j € I1}. Further, we define
g :=(0j)jer, € '1 by 0; = m; and 0; = 1if j # i. Then, the right multiplica-
tion map ¢; defined by ¢; has the following form:

g = <(p01 (1)) T Tl —e) — Tie; @I (1 —¢;).
Consequently, we have (I'1)o, >~ (I't)y with W := {g; | j € I1}.

Now, let T be the minimal multiplicative subset of I'y containing all &; for
j € I. It follows that (I'y )y is also the universal localization (I'y)y of I'; at the
set T, that is, the universal localization of I'; at the set of all right multiplication
maps induced by the elements of T (see Section 2.2). Moreover,

T = {(fi)ie]l € l_[{(m)" |n e N} | fi = 1foralmostalli e 11} c Iy,

iel

where (7;)? := 1. Next, we show that Y is a left and right denominator subset
of I'y (see Definition 2.2).

Indeed, leta = (a;)ier, € I'1 and s = (n;”),-e[l € T withn; € N. As D(€;)
is a discrete valuation ring for each i € /1, we have D(t’i)nf = 711." "D(€;), and
therefore

Ts = [[ peennl = [ =/ D(ey).

iely iely
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This means sa € Ya N I'ys # @, which verifies condition (i) in Definition 2.2.
Moreover, if as = 0, then ainf[ =0 for i € I;. Since nini # 0and D(€;) is a
domain for i € I, we have a; = 0, and so a = 0, which verifies condition (ii) in
Definition 2.2. Thus, T is a left denominator subset of I'y. Similarly, we can prove
that Y is also a right denominator subset of I';.

By Lemma 2.3, the Ore localization YIT; of T'; at Y does exist and is iso-
morphic to (I'y)y. Thus

(Mo, = (M)w =~ Ty ~ Y7 'Ty

as rings. Hence, to prove (I'1)p, =~ A1y, it is sufficient to prove YT ~ A4y as
rings. However, by Lemma 2.3, it is enough to show that the canonical inclusion
i T't — A4qp is an Ore localization of 'y at Y.

Recall that Q(€;) denotes the division ring of fractions of the domain D(€;)
for j € Iy. This implies that p satisfies both Lemma 2.3 (1) and Lemma 2.3 (3).
Now, suppose f := (fj)jer, € Aw. By definition, there is a finite subset A of
I1 such that f; € Q(€;) if j € A, and that f; € D(€;) if j & A. Note that
Q(€;) is the Ore localization of D(€;) at the subset S; := {(7;)" | n € N}, due
to Lemma 2.5. It follows from Lemma 2.3 (2) that each x € Q(€;) has the form
t/s witht € D(€;) and s € §;. So, if j € A, then we can write f; = ¢;/s; with
tj € D(€;) and s; € S;. Define g := (gj)jer, by

t;  ifj € A,
& = e
fi ifj €A,
and h := (hj)jell by
s; ifj € A,
hj = o
1 ifj €A.
Then g€y, heY and f = g/h € Ag. Thus p fulfills Lemma 2.3 (2), and
therefore is the Ore localization of I'y at Y. This shows

(Mo, ~ YT ~ Ay,
Summing up what we have proved, we obtain
Fq) ad (FO)(I)() X (F1)<1>1 >~ (1_[ Mc(f,)(Q(El))) X A’W,
iely

where the last ring is Morita equivalent to Aq;. As Sy is Morita equivalent to ',
we see that Sy, is Morita equivalent to Aq;. This completes the proof of (2). O

Finally, we give a description of Sy, up to Morita equivalence for an arbitrary U.
This will be used for the proof of Theorem 1.1.
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Corollary 4.9. Let {€; }icy be the set of all cliques contained in U, where I is an
index set. Then Sy, is Morita equivalent to the adele ring

Aq = {(f,»),»e, ce[]oce) | fi € D(G) foralmostall i € 1}.
iel
Proof. We write U = Uy U U1 € & such that Uy contains no cliques and U is
aunion of cliques €; withi € I. It follows from Lemma 4.6 that Sy, is isomorphic
to the universal localization Ag of A at ® with

A :=Endgy, (Ru/Ry,) and ©:={A Qpy, (Ru, ®r fv) |V € Ui}

By Lemma 4.2(1), Ry, is a finite-dimensional tame hereditary k-algebra, and
the endomorphism algebra of the Priifer module corresponding to a simple regular
module in U is preserved (up to isomorphism). Furthermore, by the remark fol-
lowing Corollary 4.5, we can regard U as a set of simple regular Rq;,-modules.
In this case, U1 is a union of cliques of Rqy,,, and each V' € U admits a projective
presentation

Ry, ®r fv
0— Ry, ®R P ———> Ry, ®r Po—V —0

in Rq,-mod (see the proof of Lemma 4.6). Now, we can pass from R to Ry, and
apply Lemma 4.8 (2) to Rqy, and U1, and deduce that Ag is Morita equivalent
to Aq;. Hence, Sy is Morita equivalent to Aqy. O

4.2 Endomorphism algebras of tilting modules

In this subsection, we shall discuss the endomorphism algebras of tilting modules
obtained by universal localizations of tame hereditary algebras at simple regular
modules. The consideration here will serve as a part of preparations for the proof
of Corollary 1.2.

First of all, we mention a relationship between universal localizations of an
arbitrary tame hereditary algebra and the ones of the Kronecker algebra.

Lemma 4.10. For the given U C ., there existsaV C . with U NV = 0 such
that, for W := U U 'V, the following statements are true:

(1) There is a finite-dimensional tame hereditary k-algebra A with only two non-
isomorphic simple modules, and a set 8 of simple regular A-modules such
that Ry coincides with the universal localization A g of A at §.

(2) The Ry-module T := Ry @ Ry /Ry is a classical tilting module. In partic-
ular, Ry and Endg,,(T) are derived equivalent.
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Proof. Write U = Uo U U; € .7 such that Uy contains no cliques and U is a
union of cliques. Observe that we may assume Ug = @. In fact, if Ug is not empty,
we can replace R by Ry, and U by U, since Ry, is a tame hereditary algebra
and U can be seen as a set of simple regular Rq;,-modules.

Now, we suppose Uy = @, that is, U is a union of cliques. Let V be a maximal
subset of .’ with respect to the following properties: V N U = @ and 'V contains
no cliques. In other words, from each clique € not contained in U, we choose
¢(€) — 1 elements, and let 'V be the union of all these elements. Clearly, the choice
of 'V is not unique in general.

Let W:= UUV, and let U~ be the union of all cliques €;c; in U of rank
greater than one, where [ is a finite set. We choose ¢(€;) — 1 elements from each
€; for i € I, and let 'V’ be the set consisting of all of these elements. Now, we
define £ := VUV and write W = £ U M.

We claim that statement (1) holds true. Indeed, it follows from Lemma 4.2 (1)
that R is a tame hereditary algebra such that all cliques of R¢ consist of only one
simple regular module. This means that Ry has exactly two isomorphism classes
of simple modules. By Lemma 4.2 (3), we have

Rw = (Re)ye

with M :={Rg ®g L | L € M}. Thus, setting A := Ry and § := M, we get
statement (1).

In the following, we shall show statement (2). Note that 'V contains no cliques.
Thus, it follows from Lemma 4.2 (1) that Ry is a finite-dimensional tame heredi-
tary k-algebra and Ry /R is a finitely presented R-module. By Corollary 4.5 (1),
Ry /Ry ~ Ry ®Rr (Ry/R) as Ry-R-bimodules. This implies that Ry /Rq is
a finitely presented Rq;-module, and therefore so are the Rq;-modules Ry and T'.
Hence T is a classical Rq;-module. O

As a consequence of Lemma 4.10, we obtain the following result which de-
scribes Rqq (up to derived equivalence) by a triangular matrix ring with the rings
in the diagonal being relatively simple.

Corollary 4.11. Suppose that U C .7 is a union of cliques €;cy with I an index
set. Let 'V be a maximal subset of . such that V N U = @ and 'V contains no
cligues, and let € (V) = Uje]fj with J an index set. Define W := U UV and
Ty := Ry ® Ry /R. Then the following statements hold true:

(1) There is a canonical ring isomorphism:

Ry Hompg(Ry, R‘u/R))

Endg(Ty) =~ ( 0 Endg(Ry/R)
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(2) Ry is derived equivalent to the triangular matrix ring

Ry H Ry, Ry/R
EndRu(R’W@R’W/R‘u)=( w Hompg, (Rw. R/ ‘u))

0 Endg,, (Rw/Ry)

such that:

(a) Ry is the universal localization A g of a finite-dimensional tame heredi-
tary k-algebra A, which has two isomorphism classes of simple modules,
at a set 8 of simple regular A-modules,

(b) Endgy, (Rw/Ry) is Morita equivalent to ;¢ Tee;)—1(Endr(V))),

where Vi € €; is a fixed element for each j € J, and T,(A) stands for
the n X n upper triangular matrix ring over a ring A.

Proof. Clearly, (1) follows from A : R — Rq; being a ring epimorphism and from
Hompg(Ry /R, Ry) = 0 (see Lemma 2.10). As to (2), we first show statement (b).
In fact, by the proof of Lemma 4.10, we know Ry /Ry >~ Ry ®r (Ry/R) as
Ry - R-bimodules. Since V € U™, we have Ry ® g (Ry/R) ~ Ry /R as R-mod-
ules by Lemma 4.1, and therefore Ry /Rq >~ Rvy/R as R-modules. This implies
that

EndRu(R'w/R‘u) =~ EndR(R'w/R‘u) =~ EndR(Rv/R).

Now, we define m; := c(€;) foreach j € J. Then it follows from Lemmas 4.4 (2)
and 4.3 (2) that

m;—1

Ry/R =~ @ @ Ui jlmj — 190,

jeJ i=1
where §; ; >0 and VNE; ={U;; | 1 <i <mj} such that U;j41,; =1 U; ;
forall 1 <i < m; — 1. Further, for a fixed j € J, we have an exact sequence

0—>Uj — Uij[m; —i] - U1, jlmj —i —1] — 0
of R-modules with 1 <i < m; — 1. Since
HomR(U,-,j[n’lj — i], U,',j) = EXt}e(Ui’j [m]' — i], U[’j) =0
and since
Hompg (Ui, j, Uit1,j[m; —i —1]) =0,
we see that y induces isomorphisms
EndR(U,',j[mj — l]) ~ HomR(Ui’j[mj - i], U,'_H,j[mj' —1— 1])
>~ EndR(Ul'_H’j [mj -1 — 1)])
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Moreover,
Homg (Uy,j[mj —r], Us, j[m; —s]) =0

for1 <s <r <mj — 1. Hence

m;—1
EndR( P vijlm; - i]) >~ Tm;—1(Endgr(V))),
i=1

where V; is a fixed element of €; with j € J. Note that, up to isomorphism,
Endg (V) is independent of the choice of elements of €;. Thus Endg,, (Rw/Rq)
is Morita equivalent to [ | jes Tm;—1(Endg(V})) since there is no non-trivial ho-
momorphism between two different tubes.

Note that the other conclusions in (2) are consequences of Lemma 4.10 and
properties of injective ring epimorphisms (see also [8, Lemma 6.4 (2)]). This com-
pletes the proof. o

Thus, by Corollary 4.11 (2), the consideration of the derived category Z(Ry;)
needs first to understand universal localizations of tame hereditary algebras with
two isomorphism classes of simple modules, at simple regular modules. If k is an
algebraically closed field, then each tame hereditary algebra with two isomorphism
classes of simple modules is Morita equivalent to the Kronecker algebra. So, in the
next subsection, we shall focus our attention on the universal localizations of the
Kronecker algebra.

4.3 Kronecker algebra

In this subsection, we shall consider a particular tame hereditary algebra, the Kro-
necker algebra. The results obtained here will serve again as a preparation for the
discussion of stratifications of derived module categories in the next section.

Throughout this subsection, k is a field and R is the Kronecker algebra (¥ ’7{2 ),
where the k-k-bimodule structure of k2 is given by

a(b,c)d = (abd,acd)
with a,b,c,d € k. It is known that R is isomorphic to the path algebra of the
quiver
o
0:2 —=1,
B
and that R-Mod (respectively, R-mod) is equivalent to the category of representa-

tions (respectively, finite-dimensional representations) of Q over k.
In this subsection, we denote by V' the representation

0
k —= k.
1
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By [8, Section 8], we have Ry = M5 (k[x]), and the universal localization map
A : R — Ry is given by

a (c,d) | c+dx
0 b 0 b

for a,b,c,d € k. In particular, the restriction functor A4 : Ry-Mod — R-Mod
induced by A is fully faithful. Let

1oy,
e = .
00 v

Clearly, the tensor functor Rye ®[y] — : k[x]-Mod — Ry-Mod is an equiva-
lence. Now, we define F : k[x]-Mod — R-Mod to be the composition of the func-
tors Ry e ®g[x] — and A«. Then F is a fully faithful exact functor, and sends each
k[x]-module M to the representation

1
M — M.
X
Moreover, we have the following result.

Lemma 4.12 ([25, Theorem 4]). The functor F induces an equivalence between
the category of finite-dimensional k[x]-modules and the category of finite-dimen-
sional regular R-modules with regular composition factors not isomorphic to V.

Let & be the set of all monic irreducible polynomials in k[x]. For each polyno-
mial p(x) € &, we denote by k() the extension field k[x]/(p(x)) of k, and by
Vp(x) the representation

1
kpe) == Kp(o)-

which is the image of k() under F. Since simple k [x]-modules are parameterized
by monic irreducible polynomials, it follows from Lemma 4.12 that

S = {V} U {Vp(x) | p(x) € P}

is a complete set of isomorphism classes of simple regular R-modules. If k is
algebraically closed, then > = {x —a | a € k}, and therefore . can be identified
with the projective line P! (k).

The following corollary describes the endomorphism algebras of Priifer mod-
ules over the Kronecker algebra.

Corollary 4.13. Let t be a variable and p(x) € . Then there are isomorphisms
of rings:

Endg(V[oo]) = k[[t]] and Endg(Vj(x)loo]) = kpollt]l-
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Proof. Recall that, for any simple regular R-module U, we have

Endg (U [o0]) >~ L&n Endg (U [n])

n

asrings. If U = V, then Endg (U [n]) >~ k[t]/(¢t") for any n > 0, and therefore
Endg (U[o0]) =~ 1(&11 k[t]/ (") ~ k[[¢]].
n

Suppose U = V), (y). It follows from Lemma 4.12 that U[n] >~ F(k[x]/(p(x)"))
as R-modules and that Endg(U [n]) =~ Endg[xj(k[x]/(p(x)")) == k[x]/(p(x)")
for any n > 0. Thus

Endg (U[o]) = limk[x]/(p(x)").

This implies that Endg (U[o0]) is a complete commutative discrete valuation ring
(see Lemma 3.1 (5)), and therefore it is a regular ring of Krull dimension 1. Recall
that a regular ring is by definition a commutative noetherian ring of finite global
dimension. For regular rings, the global dimension agrees with the Krull dimen-
sion.

It remains to prove

lim k [x]/(p(x)") = kpgo[1]]

n
Actually, this is a straightforward consequences of the following classical result
(see [12, Theorem 15] for details):

Let S be a complete regular local ring of Krull dimension m with the residue
class field K. If S contains a field, then S is isomorphic to the formal power series
ring K[[t1,...,tm]] over K in variables t1, ..., ty,.

Hence

Endg (U [o0]) = lim k[x)/(p(x)") = kpco)[1]).
n
which finishes the proof. ]

Finally, we prove the following lemma as the last preparation for the proof of
Corollary 1.2.

Lemma 4.14. Let A be a subset of &, and let U := {V} U {V,(x) | p(x) € A}.
Suppose that D is the smallest subring of the fraction field k(x) of k[x] containing
both k|[x] and ﬁ with all p(x) € A. Then Ry >~ M»(D), the 2 X 2 matrix ring
over D. In particular, Ry is Morita equivalent to the Dedekind integral domain D.
Proof. Define W := {Ry ®Rr Vp(x) | p(x) € A}. Then Ry = (Ry)w by Lem-
ma 4.2 (3). Recall that Ryy = M5 (k[x])and A : R — Ry is the universal localiza-
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tion of R at V. On the one hand, for each p(x) € A, it follows from

Vox) = Fkp(x)) = Ax(Rye ®k[x] kp(x))

that

k
RV QR Vp(x) ~ VP(X) = RV@ ®k[x] kp(x) — ( p(x))

kp(X)

as Ry-modules. On the other hand, by [8, Corollary 3.5], Morita equivalences
preserve universal localizations. Consequently, we have

Ry = (Ma(k[x]))w =~ Ma(k[x]e)

with © := {k, ) | p(x) € A} C k[x]-Mod. Now, one may readily see that k[x]e
coincides with the localization of k[x] at the smallest multiplicative subset of
k[x] containing {p(x) | p(x) € A}, which is exactly the ring D defined in Lem-
ma 4.14. Since k[x] is a Dedekind integral domain and since localizations of
Dedekind integral domains are again Dedekind integral domains, we see that D is
a Dedekind integral domain. As a result, we have Rqy >~ M5 (D). This completes
the proof. |

Remark. (1) If k is an algebraically closed field, then, for any simple regular
R-module U, we can choose an automorphism ¢ : R — R such that the induced
functor 0% : R-Mod — R-Mod by ¢ is an equivalence with 04 (U) >~ V. This im-
plies that, up to isomorphism, Lemma 4.14 provides a complete description of
Ry for any subset V of .. In particular, Ry is Morita equivalent to a Dedekind
integral domain.

(2) If we localize R at all non-isomorphic simple regular modules . which
is indexed by all monic irreducible polynomials, then, by Lemma 4.14, we have
Ry >~ Mj(k(x)) since the smallest subring containing the inverses of all irre-
ducible polynomials p(x) is just k(x).

5 Proof of the main results

In this section, we prove our main results, Theorem 1.1 and Corollary 1.2, in this
paper.

5.1 Proof of Theorem 1.1

Recall that
B :=Endgr(Ry & Ry/R)

and
S = EndR(Ru/R).
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By Proposition 2.11, there is a recollement of derived module categories

— T~
7(Sx) 7(B) Z(R) ()
Y~ Y~

where Sy is the universal localization of S at ¥ := {S ®g fu | U € U}.

Note that / is an index set such that {€; };<7 is the set of all cliques contained
in U. It follows from Corollary 4.9 that Sy is Morita equivalent to the adele ring
Aq in Theorem 1.1. So, if we substitute Z(Sx) by Z(A ) in (7), then we obtain
the desired recollement of derived module categories in Theorem 1.1:

T T~
PD(Ay) — D(B) ——— D(R).
~ Y~

This completes the proof of the first part of Theorem 1.1.

As for the second part, we note that if k is algebraically closed, then, for each
clique € of R, the rings D(€) and Q(€) are isomorphic to k[[x]] and k((x)) by
Lemma 3.1 (5), respectively. Now, combining this fact with the first part of Theo-
rem 1.1, we know that Aqy is isomorphic to A;. This finishes the proof. o

In the following, we give two consequences of Theorem 1.1.
If we take U = ., then the module 7'» := R» @& R~ /R is a Reiten—Ringel
tilting R-module (see [26] and [3, Example 1.3]). Actually, this module is of the

form
G™ g @ U[Oo](sU)’
Uey
where G is the unique generic R-module, and where

n =dimGgup) and Sy = dimgyg,w) Extg (U, R)

for U € . (see [3, Proposition 1.10]). Recall that . is parameterized by the
projective line P! (k) if k is algebraically closed. As a direct consequence of The-
orem 1.1, we have the following corollary.

Corollary 5.1. If k is an algebraically closed field and T is the Reiten—Ringel
tilting R-module T &, then there is a recollement

— T~
2(Ap1k)) — P(Endg(T)) — Z(R).
—_ Y

Now, let A be a subset of 2, the set of all monic irreducible polynomials in k [x],
and let U := {V} U{V,(x) | p(x) € A} (see Section 4.3 for notation). We define
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the A-adele ring of k[x] as follows:

A(A) = k((t)) X {(ep(x))p(x)eA € l—[ kp(x)((t)) | ep(x) € kp(x)[[t]] for
p(x)eA

almost all p(x) € A}.
Combining Theorem 1.1 with Corollary 4.13, we get the following result.

Corollary 5.2. Suppose that R is the Kronecker algebra. Let B be the endomor-
phism algebra of the tilting R-module Ry @ Ry /R. Then there is a recollement
of derived categories:

— T~
D(A(A) —— D(B) —— D(R).
Y Y

5.2 Proof of Corollary 1.2

We first recall the definition of stratifications of derived categories of rings.
Following [1, Sections 4 and 5], the derived module category Z(A) of a ring A

is called derived simple if it is not a non-trivial recollement of any derived cat-
egories of rings. A stratification of Z(A) of a ring A by derived categories of
rings is defined to be a sequence of iterated recollements of the following form: a
recollement of A, if it is not derived simple,

T —

7(A1) 2(4) 7(A2).
~ ~_

a recollement of the ring A1, if it is not derived simple,
e —
P(A11) — (A1) ——— Z(A12),
and a recollement of the ring A5, if it is not derived simple,
— e
D(A21) —— D(A2) — D(A2),
and recollements of the rings A;; with 1 < i, j < 2, if they are not derived simple,
and so on, until one arrives at derived simple rings at all positions, or continues to
infinitum. All the derived simple rings appearing in this procedure are called com-
position factors of the stratification. The cardinality of the set of all composition
factors (counting the multiplicity) is called the length of the stratification. If the
length of a stratification is finite, we say that this stratification is finite or of finite
length.
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Proof of Corollary 1.2. Under the assumption that k£ is an algebraically closed
field, the following two facts are known:

(a) For any simple regular R-module U, the algebras Endg(U) and Endg (U [00])
are isomorphic to k and k[[x]], respectively. This is due to Lemma 3.1 (5).

(b) Each tame hereditary algebra with two isomorphism classes of simple modules
is Morita equivalent to the Kronecker algebra.

One the one hand, it follows from Theorem 1.1 that Z(B) is stratified by Z(R)
and Z(Ay), where I = {1,2,...,s} is an index set of the cliques contained in U,
and the ring A7 is defined in the Introduction. Since U is a union of finitely many
cliques of ., we know that Aj is equal to k((x))%, the direct product of s copies
of k((x)). Thus Z(Ay) has a stratification by derived module categories with s
copies of the composition factor k((x)). Note that Z(R) has a stratification by
derived module categories with r copies of the composition factor k, where r is the
number of non-isomorphic simple R-modules. Thus Z(B) has a stratification of
length  + s with the composition factor k of multiplicity r, and the composition
factor k((x)) of multiplicity s.

On the other hand, by Corollary 4.11, we know that Z(B) can be stratified
by Z(Rw), Z(Endg,, (Rw/Ry)) and Z(Endg(Ry/R)), where W is defined
in Corollary 4.11. Here, we have used the known fact that every 2 x 2 triangular
matrix ring yields a recollement of derived module categories of the rings in the
diagonal. In the following, we shall calculate composition factors of Z(B).

First, it follows from Corollary 4.11(2) and Lemma 4.14 that Ry is Morita
equivalent to a Dedekind integral domain and that Endg,, (Rw/Rq) is Morita
equivalent to [] jeJ Tece;)—1(k). It is known from [1, Proposition 4.11(3)] that
every Dedekind domain is derived simple. Thus R+ contributes one composi-
tion factor to Z(B). It is easy to see that Z(T;(g;)—1(k)) has a stratification with
¢(€;) — 1 copies of the composition factor k. Thus Z(Endg,, (Rw/Ry)) admits
a stratification with )_ jes(c(€j) — 1) copies of k.

Second, combining Lemma 4.8 (1) with Corollary 3.3, we can conclude that
Endg(Ry/R) is Morita equivalent to [[i_; ['(c(€;)), where U is assumed to
be a union of s cliques €; with 1 <i <s, and where I'(m) is defined in Corol-
lary 3.3 for each positive integer m. Note that the canonical inclusion f of I'(m)
into My, (k[[x]]) is a ring epimorphism and that My, (k[[x]]) is finitely generated
and projective as a left I'(m)-module. Let E,, ;,, be the diagonal matrix with 1 in
the (m, m)-entry, and O in other entries. Then the sequence

0— I'(m) i) M, (k[[x]]) — Coker(f) — 0

is an add(I" (m) E,m )-split sequence in the category of all left I' (m)-modules (see
[30, Lemma 3.1]), and therefore we see that Endr ) (I'(m) & My, (k[[x]])) and
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Endr () (M (k[[x]]) & Coker( f)) are derived equivalent by [19, Theorem 1.1].
Clearly, the former ring is Morita equivalent to I (m) and the latter is Morita equiv-
alent to Endr () (M, (k[[x]]) Emn,m @ Coker(f)). Hence I'(m) is derived equiva-
lent to Endr () (M (K [[X]]) Em,m © Coker( f')) which is just the following matrix
ring:

k[[x]] k - k
0 k :
: Lok
0 - 0 k

mxm

For a general consideration of derived equivalences between subrings of matrix
rings, we refer to [10]. Thus, we know that Z(I"(m)) has a stratification with the
composition factor k[[x]] of multiplicity 1, and the composition factor k& of mul-
tiplicity m — 1. Therefore, Z(Endg (Ry;/R)) admits a stratification with the fol-
lowing composition factors: s copies of k[[x]] and > "7 _, (c(€;) — 1) copies of k.

Finally, by summarizing up the above discussions, we conclude that Z(B) has
a stratification of length » + s — 1 with the following composition factors: r — 2
copies of k, s copies of k[[x]] and one copy of a fixed Dedekind domain. Here, we
use the well-known fact

D © - =r-2
€

where € runs over all of the cliques of R. Thus the proof is completed. |

Let us end this section by mentioning the following questions suggested by our
results.

(1) For tilting modules of the form Rq; & Ry /R, we have provided a recolle-
ment of the derived categories of their endomorphism algebras. It would be
interesting to have a similar result for tilting modules of other types described
in [3].

(2) In Corollary 1.2, it would be nice to know that Z(B) has no other composition

factors (up to derived equivalence) except the ones displayed there.

(3) It would be interesting to generalize the results in this paper to hereditary
orders.

(4) Suppose that the derived category Z(A) of a ring A admits a stratification of
finite length by derived categories of rings. Does Z(A) then have only finitely
many derived composition factors (up to derived equivalence)?
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