
Journal of Pure and Applied Algebra 193 (2004) 287–305

www.elsevier.com/locate/jpaa

On the (nitistic dimension conjecture I: related to
representation-(nite algebras

Changchang Xi
School of Mathematical Sciences, Beijing Normal University, 100875 Beijing, People’s Republic of China

Received 14 April 2003; received in revised form 16 February 2004
Communicated by M. Brou5e

Dedicated to the memory of Sheila Brenner

Abstract

We use the class of representation-(nite algebras to investigate the (nitistic dimension conjec-
ture. In this way we obtain a large class of algebras for which the (nitistic dimension conjecture
holds. The main results in this paper are: (1) Let A be an artin algebra and let Ij; 16 j6 n be
a family of ideals in A with I1I2 · · · In = 0, such that proj:dim(AIj)¡∞ and proj:dim(Ij)A = 0
for all j¿ 3. If A=I1 and A=I2 are representation-(nite and if A=Ij has (nite (nitistic dimen-
sion for j¿ 3, then the (nitistic dimension of A is (nite. In particular, the (nitistic dimension
conjecture is true for algebras obtained from representation-(nite algebras by forming dual ex-
tensions, trivially twisted extensions, Hochschild extensions, matrix algebras and tensor products
with algebras of radical-square-zero. (2) Let A; B and C be three artin algebras with the same
identity such that (i) C ⊆ B ⊆ A, and (ii) the Jacobson radical of C is a left ideal of B and the
Jacobson radical of B is a left ideal of A. If A is representation-(nite, then C has (nite (nitistic
dimension. We also provide a way to construct algebras satisfying all conditions in (2), and this
leads to a new reformulation of the (nitistic dimension conjecture.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In the representation theory of algebras and groups, homological invariants of mod-
ules and algebras form one of the important topics. Among them is the (nitistic dimen-
sion, which is de(ned to be the supremum of projective dimensions of (nitely generated
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modules having (nite projective dimension. The famous (nitistic dimension conjecture
says that the (nitistic dimension of an arbitrary artin algebra is (nite. This conjecture is
closely related to the well-known Nakayama conjecture and the generalized Nakayama
conjecture. There is a variety of literatures on the studying of (nitistic dimensions of
special classes of artin algebras (see [5,6,21,13], and others). Recently, it is shown in
[8] that if the representation dimension of an artin algebra is upper bounded by 3, then
the (nitistic dimension of the algebra is (nite, where the representation dimension,
introduced by Auslander in [1], is by de(nition the minimum of the global dimensions
of algebras of the form End(AM) with M a generator-cogenerator. However, we know
that the representation dimension is not always bounded by 3 proved by Rouquier (un-
published), thus the (nitistic dimension conjecture is still open. In fact, it is far from
being solved.
As we know, the class of representation-(nite artin algebras is better understood than

other classes of algebras in the representation theory. Of course, the (nitistic dimension
conjecture holds true for representation-(nite artin algebras. From this point of view, in
this note we try to use representation-(nite algebras to enlarge our knowledge on (ni-
tistic dimensions, namely, we study questions of the following type: suppose two artin
algebras A and B have certain good relationship. If one of them is representation-(nite,
what could we say about the (nitistic dimension of the other? So our philosophic idea
in this note is to approach a homological conjecture, the (nitistic dimension conjec-
ture, without imposing homological conditions on algebras, but merely by employing
the class of representation-(nite artin algebras. In this direction we have already seen
some interesting results in [13] and in [4]. These are also the motivation of our phi-
losophy. In this note we shall add the following new results along this direction:
(1) If A is an artin algebra with two ideals I and J such that both A=I and A=J

are representation-(nite, then the (nitistic dimension of A=IJ is (nite. In particular, the
(nitistic dimension conjecture is true for algebras obtained from representation-(nite
algebras by forming

• dual extensions,
• trivially twisted extensions,
• Hochschild extensions,
• matrix algebras,
• tensor products with algebras of radical-square-zero.

Thus statement (1) describes the (nitistic dimensions of extension algebras, while
the following result describes the (nitistic dimensions of subalgebras.
(2) Let A; B and C be three artin algebras with the same identity such that (i)

C ⊆ B ⊆ A, and (ii) the Jacobson radical of C is a left ideal of B and the Jacobson
radical of B is a left ideal of A. If A is representation-(nite, then C has (nite (nitistic
dimension.
In particular, we have the following consequence.
(3) Let B be a subalgebra of an artin algebra A with the same identity such that the

Jacobson radical of B is a left ideal in A. If A is representation-(nite, then the (nitistic
dimension of B is (nite. Particularly, if A and B have the same Jacobson radical and
if A is representation-(nite, then B has (nite (nitistic dimension.
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Note that the last statement in (3) was proved in [4], but we re-prove it by a more
direct manner. Since there are plenty of examples of subalgebras such that their rad-
icals are only left ideals in the overalgebras, our result (3) is a proper generalization
of the result on (nitistic dimensions in [4]. As a consequence of (3) together with the
splitting method in [4] we re-obtain the result that the (nitistic dimension conjecture
is true for string algebras. Note also that the proofs in [4] do not extend to our cases
of (3) and (2).
This note is detailed as follows: after we list in Section 2 some basic results needed

for our proofs, we start with Section 3 the proofs of (1) and (3), in this section we shall
also construct algebras of representation dimension 3 by trivially twisted extensions in
[17]. In Section 4 we prove (2) and also give a construction of algebras satisfying all
conditions of (2) by the idealizer method. In the last section some questions on the
(nitistic dimension and the representation dimension related to the results in this note
are mentioned.

2. Preliminaries

In this section we recall some basic de(nitions and results needed in the paper.
Let A be an artin algebra, that is, A is a (nitely generated module over its center

which is assumed to be a commutative artin ring. We denote by A-mod the category
of all (nitely generated left A-modules and by rad(A) the Jacobson radical of A. Given
an A-module M , we denote by proj:dim(M) the projective dimension of M . Let K(A)
be the quotient of the free abelian group generated by the isomorphism classes [M ]
of modules M in A-mod modulo the relations (i) [Y ] = [X ] + [Z] if Y � X ⊕ Z ;
and (ii) [P] = 0 if P is projective. Thus K(A) is a free abelian group with the basis
of non-isomorphism classes of non-projective indecomposable A-modules. Igusa and
Todorov de(ne a function � on this abelian group, which depends on the algebra A
and takes values of non-negative integers.
The following result is due to Igusa and Todorov [8].

Lemma 2.1. For any artin algebra A there is a function � de5ned on the objects of
A-mod such that
(1) �(M) = proj:dim(M) if M has 5nite projective dimension. Moreover, if M is

indecomposable and proj:dim(M) =∞, then �(M) = 0.
(2) For any natural number n, �(

⊕n
j=1M) =�(M).

(3) For any A-modules X and Y, �(X )6�(X ⊕ Y ).
(4) If 0→ X → Y → Z → 0 is an exact sequence in A-mod with proj:dim(Z)¡∞,

then proj:dim(Z)6�(X ⊕ Y ) + 1.
(5) If 0→ X → Y → Z → 0 is an exact sequence in A-mod with Z indecomposable,

then �(Z)6�(X ⊕ Y ) + 1.

Note that given an exact sequence 0 → X → Y → Z → 0 in A-mod, there are
two relevant exact sequences 0 → �(Y ) → �(Z) ⊕ P → X → 0 and 0 → �2(Z) →
�(X )⊕P′ → �(Y )→ 0, where �i is the ith syzygy operator, and P; P′ are projective
modules. So the following result is a consequence of 2.1 (see also [13]).
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Lemma 2.2. If 0→ X → Y → Z → 0 is an exact sequence in A-mod, then
(1) proj:dim(Y )6�(�(X )⊕ �2(Z)) + 2 in case proj:dim(Y )¡∞,
(2) proj:dim(X )6�(�(Y ⊕ Z)) + 1 in case proj:dim(X )¡∞.

Given an artin algebra A, the �nitistic dimension of A, denoted by (n:dim(A), is
de(ned as

(n:dim(A) = sup{proj:dim(AM)|M ∈A-mod and proj:dim(AM)¡∞}:
Note that (n:dim(A) may be diLerent from (n:dim(Aop), where Aop is the opposite

algebra. Finally, recall that A is called representation-5nite if in A-mod there are only
(nitely many non-isomorphic indecomposable modules.

3. Results and proofs

In this section we shall show how the representation-(nite algebras can be used to
control the (nitistic dimension in the question mentioned in the introduction. Let us
(rst prove the following result which generalizes properly a result in [4]. At the end
of this section we provide an example of a pair B ⊆ A such that rad(B) is just a left
ideal of A, but not a two-sided ideal in A.

Theorem 3.1. Let B be a subalgebra of an artin algebra A with the same identity such
that the Jacobson radical rad(B) of B is a left ideal in A. If A is representation-5nite,
then the 5nitistic dimension of B is 5nite.

Proof. Since A is representation-(nite, we may assume that M1; M2; : : : ; Mt are a com-
plete list of non-isomorphic indecomposable A-modules. Since B is a subalgebra of A,
each A-module can be considered as a B-module just by restriction of the scalars of A
to B. Let X be a B-module with (nite projective dimension. We take a minimal pro-
jective cover f:PB(X )→ X , thus the top of X and the top of PB(X ) are isomorphic.
If we denote by rad(X ) the radical of the B-module X , then we have the following
commutative diagram:

0 0� �
�(X ) �(X )� �

0 −−→ rad(PB(X )) −−→ PB(X ) −−→ top(X ) −−→ 0

f′
� f

� ∥∥∥
0 −−−−→ rad(X ) −−−−→ X −−−−→ top(X ) −−→ 0� �

0 0

where f′ is the restriction of f. Since rad(B) is a left ideal in A and since rad(BM)=
rad(B)M for all B-modules BM , we know that rad(PB(X )) and rad(X ) are A-modules
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and that f′ is in fact an A-module homomorphism, thus the kernel �(X ) of f′ is also
an A-module. So we may write this A-module as �(X ) =

⊕t
j=1 M

sj
j , where sj is a

non-negative integer for each j. Note that this is also a B-module decomposition. Now
we use 2.1 to bound the projective dimension of BX :

proj:dimBX 6 proj:dim�(BX ) + 1

= �(�(BX )) + 1

= �(⊕Msj
j ) + 1

6�

(⊕
j

Mj

)
+ 1:

Thus the (nitistic dimension of B is upper bounded by �(
⊕

j Mj)+1. This (nishes
the proof.

Now we turn to the proof of the following result.

Theorem 3.2. If A is an artin algebra with two ideals I and J such that IJ = 0 and
both A=I and A=J are representation-5nite, then the 5nitistic dimension of A is 5nite.

Proof. By assumption we suppose that {M1; M2; : : : ; Ms} is a complete list of non-
isomorphic indecomposable A=I -modules and that {N1; N2; : : : ; Nt} is a complete list of
non-isomorphic indecomposable A=J -modules. Now let X be an A-module with (nite
projective dimension. We consider the exact sequence 0 → JX → X → X=JX → 0.
Since IJ = 0, the module JX is also an A=I -module, thus JX =

⊕s
j=1 M

sj
j for some

non-negative integers sj. Clearly, X=JX is an A=J -module and therefore X=JX=
⊕t

j=1N
tj
j

for some non-negative integers tj. By 2.2, we have

proj:dimAX =�(AX )6�


�


 s⊕

j=1

Msj
j


⊕ �2


 t⊕

j=1

Ntj
j




+ 2

= �


 s⊕

j=1

�(Mj)sj ⊕
t⊕

j=1

�2(Nj)tj


+ 2

6�

(⊕
j

�(Mj)⊕
⊕

i

�2(Ni)

)
+ 2:

Thus the projective dimension of X is bounded by �(
⊕

j �(Mj)⊕
⊕

i �
2(Ni)) + 2,

and Theorem 3.2 follows.

Let us remark that this result seems to have the following generalization: if Ij,
16 j6 n, are a family of ideals in A such that I1 · · · In = 0 and that all A=Ij are
representation-(nite, then A has (nite (nitistic dimension. It would be interesting to
have a proof of this generalization.
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The following result is a partial answer in this direction.

Theorem 3.3. Let Ij, 16 j6 n¿ 2, be a family of ideals in an artin algebra A such
that I1 · · · In = 0 and that A=Ij are representation-5nite for j= 1; 2; and that A=Ij has
5nite 5nitistic dimension for j¿ 3. If the projective dimension of AIj is 5nite for
all j¿ 3 and if Ij is projective as a right A-module for all j¿ 3, then A has 5nite
5nitistic dimension.

To prove the result, we need the following lemma in [12, Lemma 7.3.9, p. 240].

Lemma 3.4. Let A be an artin algebra, I an ideal in A and AM an A-module. Then:
if IA is projective and AM is a submodule of a projective module, then
proj:dimAIM6proj:dimAM + proj:dimAI .

Proof of Theorem 3.3. Note that given an exact sequence 0 → X → Y → Z → 0 in
A-mod, if two of the modules have (nite projective dimension then the third has also (-
nite projective dimension, and in this case proj:dimAY 6max{proj:dimAX; proj:dimAZ}.

Suppose that Y is an A-module of (nite projective dimension. Then X := �A(Y )
is a submodule of a projective A-module. Since Ij is a projective right A-module
and proj:dimAIj ¡∞ for j¿ 3, we know that IjIj+1 · · · InX has (nite projective di-
mension by Lemma 3.4. Thus proj:dimAIj+1 · · · InX=IjIj+1 · · · InX ¡∞ for j¿ 3. If
{M1; M2; : : : ; Ms} is a complete list of non-isomorphic indecomposable A=I1-modules
and if {N1; N2; : : : ; Nt} is a complete list of non-isomorphic indecomposable A=I2-
modules, then proj:dimAI3 · · · InX 6�A(

⊕
j �(Mj) ⊕

⊕
i �

2(Ni)) + 2 by 3.2. Let us
denote by (n:dim(A) the (nitistic dimension of A. So we have

proj:dimAX 6max{proj:dimAInX; proj:dimAX=InX }
6max{proj:dimAInX; (n:dim(A=In)}
6max{proj:dimAIn−1InX; (n:dim(A=In−1); (n:dim(A=In)}
6 ::::::

6max{proj:dimAI3I4 · · · InX; (n:dim(A=I3); : : : ; (n:dim(A=In)}
= max{�A(I3I4 · · · InX ); (n:dim(A=I3); : : : ; (n:dim(A=In)}

6max

{
�A

(⊕
j

�(Mj)⊕
⊕

i

�2(Ni)

)
+ 2; (n:dim(A=I3);

: : : ; (n:dim(A=In)} :
This shows that proj:dimAY is upper bounded by max{�A(

⊕
j �(Mj)⊕

⊕
i �

2(Ni))+
2; (n:dim(A=I3); : : : ; (n:dim(A=In)}+ 1. The proof is completed.

The next result is a dual statement of 3.1 in some sense.
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Proposition 3.5. Let A and B be two artin algebras such that A=soc(A) � B=soc(B),
and suppose there is a surjective homomorphism f :A → B. If B is representation-
5nite, then A has 5nite 5nitistic dimension.

The proof of Proposition 3.5 follows from the following observation.

Lemma 3.6. Let A and B be two artin algebras, and let f :A → B be an algebra
homomorphism such that the kernel of f is contained in the socle of A. If A=ker(f)
is representation-5nite, then A has 5nite 5nitistic dimension.

Proof. Let I be the kernel of f and J the radical of A. Then Jker(f) = 0. Since A=I
and A=J are representation-(nite, the result follows from 3.2.

Similarly, we have the following result which generalizes the main result in [13]
and also re-proves that the (nitistic dimension conjecture is true for algebras with
radical-cube-zero.

Proposition 3.7. Let A be an artin algebra with an ideal I such that I nrad(A)=0 for
a natural number n¿ 2. If A=In−1 is representation-5nite, then A has 5nite 5nitistic
dimension.

Proof. Given an A-module X with (nite projective dimension, we consider �(X )
instead of X , and then apply 2.2 to the exact sequence 0 → I n−1�(X ) → �(X ) →
�(X )=I n−1�(X )→ 0 since �(X ) has (nite projective dimension and since I n−1�(X )
is an A=I -module by the fact that I n�(X ) ⊆ I nrad(P(X )) = I nrad(A)P(X ) = 0, where
P(X ) is the projective cover of X . Since A=In−1 is representation-(nite, A=I is also
representation-(nite. By the argument in the proof of Theorem 3.2 we have the propo-
sition.

Now let us get some other consequences of 3.2. The (rst case we consider is that
I = J .

Corollary 3.8. If A is an artin algebra with an ideal I such that I 2 = 0 and A=I is
representation-5nite, then the 5nitistic dimension conjecture is true for A.

A special case of (3.8) is the Hochschild extension of a representation-(nite algebra.
Let B be an algebra and let M be a B-B-bimodule. For each 2-cocycle "∈H 2(B;M),
there is an algebra structure on A" := B⊕M by (b; m)(b′; m′)=(bb′; "(b; b′)+bm′+mb′)
for all m;m′ ∈M and b; b′ ∈B such that M is an ideal in A" with M 2 = 0 (see [7]).
The algebra A" is called the Hochschild extension of B by M via ". It follows from
(3.8) that if B is representation-(nite then A" has (nite (nitistic dimension. Thus the
(niteness of (nitistic dimension of the Hochschild extension of a representation-(nite
algebra does not depend on the bimodule M . Note that the algebra A" may have (nite
or in(nite global dimension (see [11]).
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Now let us introduce a new construction which generalizes slightly the notion of
dual extensions in [16]. Let C be a (nite dimensional algebra over a (eld given by
the quiver % = (%0; %1) with relations {&i | i∈ I0}, and let B be an algebra given by
the quiver ' = ('0; '1) with relations {(j | j∈ J0}. Assume that S = {s1; : : : ; sm} is
a subset contained in %0 ∩ '0. Now we de(ne a new algebra A, called the trivially
twisted extension of C and B at S, in the following manner: A is given by the quiver
Q = (Q0 := %0∪̇('0 \ S); Q1 := %1∪̇'1), with the relations {&i|i∈ I0} ∪ {(j|j∈ J0} ∪
{+,|+∈%1; ,∈'1}. Note that if S='0=%0 and if B is the opposite algebra of C then
A is just the dual extension of C. Another special case is that S = ∅. In this case we
have that A is the direct sum of B and C. Now let J be the ideal in A generated by
{,|,∈'1} and let I be the ideal in A generated by {+|+∈%1}. Then IJ = 0, A=I � B
and A=J � C. Note that C and B are not only factor algebras but also subalgebras
of A.
The following result is an immediate consequence of 3.2.

Corollary 3.9. If C and B are representation-5nite over a 5eld, then the trivially
twisted extension of C and B at S has 5nite 5nitistic dimension.

Note that the trivially twisted extension of two representation-(nite algebras can
be of wild representation type and can also have arbitrary nilpotency index for the
radical. For further property of the dual extension we refer the reader to [17]. Now let
us illustrate the trivially twisted extension by an example.

Example 1. (1) Let A be an algebra (over a (eld) given by the following quiver with
relations:

Let B and C be the algebras given by the following quiver with relations, respectively:

Suppose both - and , have the same starting vertex 1 and the same ending vertex 2.
Then A is the trivially twisted extension of B and C at the vertex S = {1; 2}. Since B
and C are representation-(nite, the algebra A has (nite (nitistic dimension by 3.9.
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(2) Let A be the algebra given by the following quiver

1 ◦
,←
→
-

←
+

◦ 2

with relations +- = -+ = -, = 0. If we take C to be the subalgebra of A generated
by the arrows +; - and the two primitive orthogonal idempotents e1 and e2, and B the
subalgebra of A generated by {e1; e2; ,}, then A is the trivially twisted extension of C
and B at S = {1; 2}, and therefore has (nite (nitistic dimension by 3.9 since C and B
are transparently representation-(nite.

Let us remark that this famous example, due to Igusa, SmalN and Todorov, is used
to show that the subcategory P∞(A) of A-mod consisting of all modules with (nite
projective dimensions is not always contravariantly (nite in A-mod. However, if this
subcategory is contravariantly (nite in A-mod, then the (nitistic dimension of A is (nite
(see [2]). In general, it is not easy to control the category P∞(A), for instance, the
contravariant (niteness of both P∞(C) in C-mod and P∞(B) in B-mod even cannot
guarantee the contravariant (niteness of P∞(A) in A-mod, as the example shows.
But our Theorem 3.2 (see also Theorem 4.5 below) provides a chance to avoid the
consideration of the contravariant (niteness of P∞(A).
The construction of trivially twisted extensions produces also algebras with the rep-

resentation dimension bounded by 3. This is done in the following manner:
Let A be the trivially twisted extension of C and B at S. If K is the ideal in A

generated by {,+ | ,∈'1; +∈%1}, then rad(A=K) = rad(C) ⊕ rad(B) and the algebra
A=K can be embedded in B ⊕ C, and therefore the representation dimension of A=K
is upper bounded by 3 if C and B are representation-(nite. This can be seen from
the main result in [4]. For further new results on representation dimension we refer to
[18,19,20].
As another consequence of 3.8 and 3.2 we have the following results on the (nitistic

dimension of the tensor product of two algebras. Recall that given two k-algebras A
and B over a (eld k, the tensor product of A and B, denoted by A

⊗
kB, has the

multiplication de(ned by

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′; a; a′ ∈A; b; b′ ∈B:

Proposition 3.10. If A is a representation-5nite k-algebra and if B is a k-algebra
with rad2(B)= 0 such that B=rad(B) is a split semi-simple k-algebra, then the tensor
product A

⊗
kB of A and B has 5nite 5nitistic dimension.

Proof. We de(ne I = A
⊗

k rad(B). Then I is an ideal in A
⊗

kB with I 2 = 0. Since
B=rad(B) is a direct sum of full matrix algebras over k, we see that A

⊗
k(B=rad(B)) is

Morita equivalent to a direct sum of copies of A. Thus (A
⊗

kB)=I � A
⊗

k(B=rad(B)) is
representation-(nite since A is representation-(nite by assumption. Now the proposition
follows from 3.8 immediately.



296 C.C. Xi / Journal of Pure and Applied Algebra 193 (2004) 287–305

Note that even under the assumption of Proposition 3.10 the radical of A
⊗

kB may
have arbitrary nilpotency index and the tensor product may not be a monomial algebra
in general. So we cannot apply the result in [5].

Proposition 3.11. Let B and C be two 5nite dimensional k-algebras over a 5eld k
such that B=rad(B) and C=rad(C) are splitting semi-simple k-algebras. If B and C
are representation-5nite, then the 5nitistic dimension of (B

⊗
kC)=(rad(B)

⊗
krad(C))

is 5nite.

Proof. We denote by A the tensor product of B and C and by OA the factor algebra
(B
⊗

kC)=(rad(B)
⊗

k rad(C)). Let I =rad(B)
⊗

kC and J =B
⊗

k rad(C). The images of
I and J under the canonical surjective map A → OA are denoted by OI and OJ , respec-
tively. Since B=rad(B) � ⊕jMnj (k), where Mn(k) stands for the full matrix algebra
over the (eld k; we have that OA= OI � (B

⊗
kC)=(rad(B)

⊗
kC) � (B=rad(B))

⊗
kC �⊕

jMnj (k)
⊗

kC �
⊕

jMnj (C). This implies that OA= OI is representation-(nite. Similarly,
we know that OA= OJ is representation-(nite. Clearly, OI OJ =0. Now the proposition follows
from Theorem 3.2.

Remark. If we assume that the (eld k is a perfect (eld (for example, a (nite (eld, or
a (led of characteristic zero, or an algebraically closed (eld) then we can drop simply
the assumption that B=rad(B) and C=rad(C) are splitting semi-simple k-algebras in
Propositions 3.10 and 3.11 since if B is representation-(nite then B

⊗
kMn(D) is also

representation-(nite for any (nite dimensional division k-algebra D by (nding the
representation dimension (see [15, Theorem 3.5]).

The next result deals with triangular algebras, here we re-obtain a result in the
literature.

Corollary 3.12. Given two artin algebras A and B, and an A-B-bimodule M, we may
form the triangular algebra

/=
(

A M
0 B

)
:

If A and B are representation-5nite, then the 5nitistic dimension of / is 5nite. In

particular, if A is representation-5nite, then the algebra T2(A)=
(

A A
0 A

)
has 5nite

5nitistic dimension.

More generally, we have the following result which is also a special case of Hochs-
child extensions.

Corollary 3.13. Given two artin algebras A and B, an A-B-bimodule M and a
B-A-bimodule N, we de5ne a matrix algebra as follows:

/=

(
A M

N B

)
;

(
a m

n b

)(
a′ m′

n′ b′

)
=

(
aa′ am′ + mb′

na′ + bn′ bb′

)
;
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where a; a′ ∈A; b; b′ ∈B and m;m′ ∈M; n; n′ ∈N . If A and B are representation-5nite,
then the 5nitistic dimension of / is 5nite.

Proof. We just take the ideal

(
0 M

N 0

)
of the matrix algebra, and then apply 3.8

since the square of this ideal vanishes.

In the following we give several examples to show that there do exist algebras which
satisfy our more general conditions.
Let us (rst see an example where the radical of a subalgebra B is a left ideal of the

algebra A, but not a right ideal in A.

Example 2. Let A and B be the subalgebras of the 4 × 4 matrix algebra over a (eld
k de(ned as follows:

B=







a b c 0

0 a b 0

0 0 a 0

d e f g


 |a; b; c; d; e; f; g∈ k




;

A=







a b c 0

0 a x 0

0 0 y 0

d e f g


 |a; b; c; d; e; f; g; x; y∈ k




:

One can verify that the radical of B is rad(B)=







0 b c 0

0 0 b 0

0 0 0 0

d e f 0


 |b; c; d; e; f∈ k



,

which is a left ideal in A, but not a right ideal in A. Clearly, the radical of A is

rad(A) =







0 b1 c 0

0 0 b2 0

0 0 0 0

d e f 0


 |b1; b2; c; d; e; f∈ k



. So the radical of B is properly

contained in the radical of A. In fact, A is the set of all 4 × 4 matrices x such that
x · rad(B) ⊆ rad(B). Since the algebra A is representation-(nite by covering technique,
we know that B has (nite (nitistic dimension by 3.1. This follows also from the fact
that B is a monomial algebra (see [5,9]).
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Example 3. Let us give a very simple example of pair B ⊂ A for the case rad(B) =
rad(A).
We take A to be the algebra of 2×2 upper triangular matrices over a (eld k, and let

B be the subalgebra generated by the identity element e and the radical of A. Clearly,
A and B have the same radical.
In fact, the general construction of a pair B ⊂ A with rad(B) = rad(A) proceeds in

the same way as this example shows: given an algebra A, we (x a decomposition of
1 into orthogonal primitive idempotents, say 1 =

∑n
j=1 ej. To de(ne B, we just (x a

partition of the set I := {1; 2; : : : ; n}, say I =
⋃m

i=1 Ii, and put fi =
∑

j∈Ii ej. Now the
algebra B is generated by fi; 16 i6m together with rad(A). Clearly, A and B have
the same identity and the same radical. Conversely, every such pair B ⊆ A with A an
basic algebra appears in this form if the ground (eld is algebraically closed: choose
a maximal semi-simple subalgebra S0 of B and extend it to a maximal semi-simple
subalgebra of A. First we write 1 in S0 as a sum of primitive orthogonal idempotents of
B, say

∑
j fj = 1, and then write each fj as sum of primitive orthogonal idempotents

of A, say fj =
∑

i∈Ij ei. Since A is basic, S is a commutative algebra. Thus S0 is
a product of (elds by Wedderburn-theorem, and is generated by fj’s, and also S is
generated by ei’s.
In the following we give an example of a pair B ⊆ A of algebras such that B

is representation-in(nite, A is representation-(nite, and rad(B)( �= rad(A)) is an ideal
in A.

Example 4. Let A and B be the following algebras:

B=







a 0 e f

0 b g h

0 0 c 0

0 0 0 d


 |a; b; c; d; e; f; g∈ k




;

A=







a 0 e f

0 b g h

0 0 c i

0 0 0 d


 |a; b; c; d; e; f; g; h; i∈ k




:

One can easily see that A is a hereditary algebra of Dynkin type, thus representation-
(nite, but B is a hereditary algebra of aQne type, thus representation-in(nite. A simple
veri(cation shows that rad(B) is an ideal in A and contained properly in rad(A).

4. Idealized extensions

In this section we give a construction of the pair B ⊆ A with rad(B) being a left
ideal in A, and prove statement (2) in the introduction.
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Let us start with the following lemma which describes some general properties of a
pair B ⊆ A.

Lemma 4.1. Let B be a subalgebra of A such that rad(B) is a left ideal in A. Then
(1) rad(B) ⊆ rad(B)A= rad(BA) ⊆ rad(A).
(2) B ∩ rad(A) = rad(B), and hence B=rad(B) is a subalgebra of A=rad(A).
(3) If B is a self-injective algebra, then we have an exact sequence of algebra-

homomorphisms:

0→ soc(AB)→ A→ End(rad(B)B)→ 0:

Proof. (1) Clearly, rad(B)A is a nilpotent ideal in A, hence rad(B)A ⊆ rad(A).
(2) Since B∩ rad(A) is a nilpotent ideal in B, we have B∩ rad(A) ⊆ rad(B). On the

other hand, we have rad(B) ⊆ B ∩ rad(A) by (1), thus (2) follows.
(3) By de(nition, each element a∈A gives us an endomorphism "a of the right

B-module rad(B) by the left multiplication. Thus the map a �→ "a is an algebra homo-
morphism from A to End(rad(B)B) with the kernel soc(AB). Since B is a
self-injective algebra, every endomorphism of rad(B)B can be left to an endomorphism
of BB, which is in fact a map by left multiplying of an element in B, thus an element
in A. This means that the map " sending a to "a is surjective.

The following result is a general categorical property of the pair B ⊆ A with rad(B)
being a left ideal of A. Recall that each A-module can be regarded as a B-module just
by the restriction of scalars, this provides us a functor F .

Lemma 4.2. (1) The restriction functor F :A-mod→ B-mod is an exact faithful func-
tor, and has a right adjoint G = HomB(BAA;−) : B-mod→ A-mod and a left adjoint
E= : A

⊗
B− : B-mod→ A-mod. In particular, E preserves projective modules and G

preserves injective modules.
(2) For any B-module M there is a B-homomorphism +M :GM → M such that the

induced map HomA(X;GM)→ HomB(X;M) is an isomorphism for all A-module X.
(3) The kernel and the cokernel of +M are semi-simple B-modules.
(4) Each simple A-module is also a semi-simple B-module via restriction. (In gen-

eral, F does not preserve simples.)
(5) add(B=rad(B)) = add(F(A=rad(A))).
(6) rad(A) = rad(B)A if and only if rad(BFX ) = F rad(AX ) for all A-module X,

and if and only if FtopA(X ) = topB(FX ) for all A-module X, where topA(X ) stands
for the top of the A-module X.

Proof. Statements (1), (2) and (4) are clear.
(3) Note that the kernel and cokernel of +M are given by the following exact se-

quence according to the de(nition of +M :

0→ HomB(A=B; BM)→ HomB(BAA; BM) +M−→M → Ext1B(A=B;M):

Since the left B-module structure on HomB(A=B;M) is induced from the right
B-module structure of (A=B)B and since (A=B)rad(B) = (A rad(B) + B)=B ⊆



300 C.C. Xi / Journal of Pure and Applied Algebra 193 (2004) 287–305

(rad(B)+B)=B=0, we know that HomB(A=B;M) is a semi-simple B-module. Similarly,
we have that Ext1B(A=B;M) is a semi-simple B-module.
(5) Clearly, add(F(A=rad(A))) ⊆ add(B=rad(B)) by (4). Since the inclusion B ⊆ A

induces an injective B-module homomorphism from B=rad(B) to the B-module A=rad(A)
by Lemma 4.1, we see that the socle of B=rad(B) is contained in the socle of A=rad(A),
but both B-modules are semi-simple, thus add(B=rad(B)) ⊆ add(F(A=rad(A))).
(6) The (rst statement is obvious, and the second statement follows from the fol-

lowing exact commutative diagram:

0 −−→ rad(FX ) −−→ FX −−→ topB(FX ) −−→ 0� ∥∥∥ �
0 −−→ Frad(AX ) −−→ FX −−→ F topA(X ) −−→ 0

by the snake lemma.

The following is a homological property of the pair B ⊆ A.

Lemma 4.3. Let A be an idealized extension of B with rad(B)A= rad(A).
(1) If BX is a B-module of positive projective dimension m¡∞, then �m

B (X ) is a
projective A-module.
(2) If AX is an A-module such that FX is a projective B-module, then AX is a

projective A-module.

Proof. (1) It suQces to show that this is true for m = 1. In this case, �B(X ) is a
projective B-module and also an A-module. Let f :Q → �B(X ) be a projective cover
of the A-module �B(X ). Then there is a B-module homomorphism f′ :�B(X ) → FQ
such that f′(Ff) = id. Note that topB(�B(X )) = topB(F�B(X )) = F topA(�B(X )) =
F topA(Q)=topB(FQ) by Lemma 4.2(6). This implies that f′ is surjective by a general
homological fact. So the following diagram

�B(X ) �B(X ) −−→ 0

f′
� ∥∥∥

0 −−→ F�A(�B(X )) −−−−→ FQ
Ff−−−−→ �B(X ) −−→ 0

indicates clearly that �A(�B(X )) = 0, that is, �B(X ) is a projective A-module.
(2) Let P → X be a projective cover of the A-module X . Then we have the following

exact sequence

0→ F�A(X )→ FP → FX → 0:

Since FX is a projective B-module, the sequence splits. On the other hand, the top of
FX and the top of FP are isomorphic by 4.2(6). This implies that F�A(X ) = 0. Thus
(2) follows.

The following is a way to construct a pair B ⊆ A such that rad(B) is a left ideal
in A.
We start with an algebra B over a (eld k, and (x a minimal number n such that

B is a subalgebra of the n × n matrix algebra Mn(k) over k, so B and Mn(k) have
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the same identity. We de(ne A to be the set of all matrices x∈Mn(k) such that
x · rad(B) ⊆ rad(B). Note that A is the largest subring of Mn(k) containing rad(B) as a
left ideal. We call A the (left) idealized extension of B. In the literature the idealizers
or subidealizers of right ideals of rings are studied intensively, but most of the authors
assume that the right ideals considered are idempotent, this cannot happen in our case.
However, our construction appears in the study of orders over a Dedekind domain (for
example, see [10] and [14]).
Now we de(ne A0 = B; and A1 = A. For i¿ 1, we de(ne Ai+1 is the idealized

extension of Ai. Note that all Ai are subalgebras of Mn(k) with the same identity.
Thus there is a minimal number s such that As = As+1 = · · · ⊂ Mn(k). (In practice, we
may choose any matrix algebra Mn(k) containing B and do not require the minimality
of n.)

Lemma 4.4. (1) Ai �= Ai+1 if and only if rad(Ai−1) is not a left ideal of Ai+1.
(2) Ai+1rad(Ai−1) ⊆ rad(Ai) for all i¿ 1.
(3) As is the maximal subalgebra of Mn(k) containing rad(As) as a two-sided ideal.
(4) If rad(Ai)Ai+1 = rad(Ai+1) for all i, then rad(A0)Aj = rad(Aj) for all j.

The following result, which is a generalization of Theorem 3.1, shows that our
construction can provide algebras of (nite (nitistic dimension.

Theorem 4.5. Let A, B and C be three artin algebras with the same identity such
that (i) C ⊆ B ⊆ A, and (ii) the Jacobson radical of C is a left ideal of B and the
Jacobson radical of B is a left ideal of A. If A is representation-5nite, then C has
5nite 5nitistic dimension.

Proof. Suppose that X1; : : : ; Xn form a complete list of non-isomorphic indecomposable
A-modules. Let Y be a C-module of (nite projective dimension. Then we know from
the proof of 3.1 that the C-syzygy �C(Y ) of Y is a B-module. Let us take a B-projective
cover PB(�C(Y )) of �C(Y ):

0→ �B(�C(Y ))→ PB(�C(Y ))→ �C(Y )→ 0:

Then �B(�C(Y )) is an A-module, and thus there are non-negative integers ti such that
�B(�C(Y )) =

⊕
i X

ti
i . Now we consider all these modules as C-modules by restriction

and use Lemma 2.1 to bound the projective dimension:

proj:dim(CY )6 proj:dim�C(Y ) + 1

= �(�C(Y )) + 1

6�(PB(�C(Y ))⊕ �B(�C(Y ))) + 1 + 1

= �

(
PB(�C(Y ))⊕

⊕
i

X ti
i

)
+ 2

6�

(
CB⊕

⊕
i

Xi

)
+ 2:
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This shows that proj:dim(CY ) is bounded by �(CB⊕
⊕

i Xi) + 2.

In the following we shall see that the algebra As in our construction is in fact a
representation-(nite algebra. Let us recall some de(nitions from order theory.
Let R be a discrete valuation ring, and let 9 be an element of R which generates

the unique maximal ideal of R. Let K and k be the fraction (eld and the residue (eld
of R, respectively. Suppose : is a central simple K-algebra. An R-order / in : is a
subring of : with the same identity satisfying the following conditions: (i) the center
of / contains R, (ii) / is (nitely generated R-module and (iii) K · / = :. For any
R-order / in A, we have rad(/) = 9/.
Note that we consider B=A0 as a subalgebra of Mn(k). Now let % be the maximal

R-order Mn(R) in :. Then we have %=rad(%) = Mn(k). Let us denote the canonical
projection from % to Mn(k) by ". We de(ne / to be the pullback:

/ −−−−→ %� � "

A0 −−→Mn(k):

Then / is an R-order in :. We de(ne /0 = / and consider /0 as a subring of :.
Now let /i be the idealized extension of /i−1. Then we obtain a chain of orders which
must stop after (nite number of steps at an order /s, namely, /0 ⊂ /1 ⊂ · · · ⊂ /s, all
are suborders of % satisfying rad(%) ⊆ rad(/i) and rad(/i) ⊂ rad(/i+1). This chain
of R-orders in : under the "-projection gives us the chain A0 ⊂ A1 ⊂ · · · ⊂ As. Since
rad/i = 9/i, we know that rad(/i) = rad(/i−1)/i. Thus rad(Ai) = rad(Ai−1)Ai for
all i.
The following lemma shows that the algebra As is always representation-(nite.

Lemma 4.6. If k is the residue 5eld of a discrete valuation ring R, then As is Morita
equivalent to a direct sum of lower triangular matrix algebras Tm(k) over k. In
particular, As is representation-5nite.

Proof. It follows from the above construction that As is a "-projection of a hereditary
R-order /s in the central simple algebra : and that /s is contained in the maximal
R-order % := Mn(R). (Note that under our assumption, an R-order / in : is hereditary
if and only if / is the idealized extension of /.) By [3, Theorem 26.28, p. 577], /s

has a “block” form, if we factor out from /s the radical of % which is contained in
the radical of /s; then we get a lower block triangular matrix algebra over k, and thus
As is Morita-equivalent to a direct sum of copies of some Tm(k) with m6 n.

As a consequence of Lemma 4.6 and Theorem 4.5, we have the following
corollary.

Corollary 4.7. Let k be the residue 5eld of a discrete valuation ring, and let s be
de5ned as above. If s¿ 2, then As−2 and As−1 have 5nite 5nitistic dimension.

Let us look at Example 1 again to demonstrate the above construction.
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We take A0 := B and A1 := A to be the algebras in Example 1. Then a calculation
shows that the idealized extension A2 of A1 is

A2 =







a b c 0

0 d e 0

0 0 f 0

x y z u


 |a; b; c; d; e; f; u; x; y; z ∈ k




:

Since the radicals of A1 and A2 coincide with each other, we know that the con-
struction stops at s= 2. It is easy to see that the algebra A2 is representation-(nite. In
fact, a basis change shows that A2 is isomorphic to a 4 × 4 upper triangular matrix
algebra over k.
Now let us point out that the above consideration gives another formulation of the

(nitistic dimension conjecture.

Corollary 4.8. Let k be the residue 5eld of a discrete valuation ring. Then the fol-
lowing are equivalent:
(1) The 5nitistic dimension conjecture is true for all k-algebras;
(2) If B ⊆ A is a pair of k-algebras with the same identity such that rad(B) is

a left ideal in A and if A has 5nite 5nitistic dimension, then B has 5nite 5nitistic
dimension.

Finally, let us mention the following result concerning the condition rad(B)A=rad(A).

Proposition 4.9. Let B be a subalgebra of an artin algebra A such that rad(B) is a
left ideal in A and rad(A) = rad(B)A. If the subcategory �A(A-mod) = {X ∈A-mod|
there is an A-module Y such that X � �A(Y )} is 5nite, then fin:dim(B) is 5nite.

Proof. The condition rad(B)A = rad(A) implies that BtopA(X ) = topB(BX ) for all
A-modules AX by Lemma 4.2(6).
Now let BX be a B-module with proj:dim(BX )¡∞. Then we consider the (rst

syzygy �B(X ). This is also an A-module. Let PA(�(X )) be an A-projective cover of
�B(X ), and let Q be a B-projective cover of �B(X ). Then we have the following
commutative exact diagram:

0 −−−−−−−→ B�2
B(X ) −−−−−−−→ Q −−−−−−−→ �B(X ) −−→ 0

+

� ,

� ∥∥∥
0 −−−−−→B�A(�B(X )) −−−−→ BPA(�B(X ))−−−−→�B(X ) −−→ 0

Since topB(Q) � topB(�B(X )) and topBPA(�B(X )) � BtopAPA(�B(X )) � BtopA�B(X ) �
topB(B�B(X )), we see that as B-modules, Q and BPA(�B(X )) have the same tops,
and this implies that the map , is surjective. Moreover, it is a B-projective cover of
BPA(�B(X )). Hence, the snake lemma yields the following exact sequence

0→ �B(BPA(�B(X )))→ �2
B(X )→ �A(�B(X ))→ 0:
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By assumption, add�A(A-mod) is (nite, let Y1; : : : ; Ys form a complete list of non-
isomorphic indecomposable modules in add�A(A-mod). Then �A(�B(X ))=

⊕
jY

tj
j for

some non-negative integers tj. Now we have the following estimation

proj:dim(BX )6 proj:dim(B�2
B(X )) + 2

= �(B�2
B(X )) + 2

6�

(
�B(�B(BPA(�B(X ))))⊕ �2

(⊕
j

Y tj
j

))
+ 2 + 2

= �

(
�2

B(BPA(�B(X )))⊕ �2
B

(⊕
j

Y tj
j

))
+ 2 + 2

= �

(
�2

B(BPA(�B(X )))⊕
⊕
j

Y tj
j

)
+ 4

6�


�2

B


BA⊕

s⊕
j=1

Yj




+ 4:

This proves what we wanted.

5. Questions

The results in this note suggest that the following questions related to the (nitistic
dimension and representation dimension might be answered.
Question 1. Let C and B be two representation-(nite algebras over a (eld. Does

the trivially twisted extension of C and B at S has the representation dimension at
most 3?
Question 2. Let A be an artin algebra and J an ideal in A with J 3 = 0. If A=J is

representation-(nite, is the (nitistic dimension conjecture true for A?
Note that if A=J 2 is representation-(nite then the (nitistic dimension of A is (nite.

This follows easily from 3.2. It is also well-known that if J is the Jacobson radical of
A then the (nitistic dimension conjecture for A is true.
Question 3. Let A and B be two artin algebras, and let f :B → A be a surjective

homomorphism of algebras such that the square of ker(f) vanishes. If the representa-
tion dimension of A is at most 3, is the (nitistic dimension conjecture true for B?
Question 4. Let A be an artin algebra and I an ideal in A with I 2 = 0. If A=I is

representation-(nite, does the algebra A has the representation dimension at most 3?
This question has the positive answer in the case I = rad(A) or I = radn(A) with

n+ 1 the nilpotency index of rad(A).
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