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Abstract

The Nakayama conjecture states that an algebra of infinite dominant dimension should be self-
injective. Motivated by understanding this conjecture in the context of derived categories, we study
dominant dimensions of algebras under derived equivalences induced by tilting modules, specifically, the
infinity of dominant dimensions under tilting procedure. We first give a new method to produce derived
equivalences from relatively exact sequences, and then establish relationships and lower bounds of dom-
inant dimensions for derived equivalences induced by tilting modules. Particularly, we show that under
a sufficient condition the infinity of dominant dimensions can be preserved by tilting, and get not only
a class of derived equivalences between two algebras such that one of them is a Morita algebra in the
sense of Kerner-Yamagata and the other is not, but also the first counterexample to the question whether
generalized symmetric algebras are closed under derived equivalences.
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1 Introduction

Derived equivalences play an important role in the representation theory of algebras and finite groups ([9],
[3]), while the Morita theory of derived categories by Rickard provides a powerful tool to understand these
equivalences of rings [21]. On the one hand, many different approaches to constructing derived equivalences
have been made in recent years. For example, a kind of relatively split sequences has been introduced in
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[12, 11] to produce systematically classical tilting modules and derived equivalences. On the other hand,
many homological invariants of derived equivalences have been discovered, for instance, Hochschild homol-
ogy and cohomology, finiteness of global and finitistic dimensions (see [9, 10, 14, 20]). Unfortunately, so far
as we know, there are few papers to investigate dominant dimensions of algebras in the context of derived
equivalences. Recall that the dominant dimension of an algebra reflects how far the algebra is away from be-
ing self-injective, while the latter forms an important class of algebras in the representation theory of algebras
and has many significant applications in topology (see [22] and [16]). Related to dominant dimensions, there
is a famous open problem: If an algebra has infinite dominant dimension then it should be self-injective.
This is the so-called Nakayama conjecture (see, for instance, [2, Conjecture (8), p.410]) and has attracted
interests of a lot of mathematicians such as M. Auslander, K. R. Fuller, B. Huisgen-Zimmermann, I. Reiten,
H. Tachikawa, and G. V. Wilson.

In the present paper, we shall study behaviors of dominant dimensions of algebras under derived equiv-
alences, and try to understand the above conjecture in the context of derived categories. For this purpose,
we first have to construct some particular derived equivalences with given dominant dimensions (at least for
small dominant dimensions). So, we introduce a more general notion of relatively exact sequences which
not only capture relatively split sequences defined in [12], but also provide us with a construction of derived
equivalences between subrings of the endomorphism rings of objects involved. Here, these subrings can
be described explicitly (see Proposition 2.4 below), and the most ideas of the proof of this construction are
motivated from [12]. However, along the way some of arguments in [12] have been changed and some of
the results seem to be new. As a consequence of these discussions, we get the first main result, Theorem 3.6,
of this paper, which provides a method to construct derived equivalences between algebras with small domi-
nant dimensions. As a byproduct of this result, we construct an example of a derived equivalence between a
generalized symmetric algebra of dominant dimension 2 and an algebra of dominant dimension 1. Thus we
answer negatively a question by Ming Fang whether derived equivalences preserve generalized symmetric
algebras.

This example also shows a known phenomenon that, in general, derived equivalences do not preserve
dominant dimensions. So our next purpose is to investigate the relationship of dominant dimensions for de-
rived equivalences induced from tilting modules, and further to consider when such equivalences preserve
dominant dimensions and Morita algebras. In this direction, our second main result, Theorem 4.7, provides
an inequality of the dominant dimension of one algebra in terms of the one of the other, together with the
projective dimension of a tilting module. Consequently, we obtain a sufficient condition for tilting procedure
to preserve the infinity of dominant dimensions. Moreover, Corollary 4.12 gives a lower bound for the dom-
inant dimension of the endomorphism algebra of an arbitrary tilting module T in terms of T -gradients of the
given algebra, while Proposition 4.17 provides several sufficient conditions for tilting procedure to preserve
dominant dimensions and Morita algebras. In particular, for a Morita algebra A and any tilting A-module T ,
the dominant dimension of A is always less than or equal to the dominant dimension of the endomorphism
algebra B of T plus the projective dimension of T ; and the endomorphism algebras of canonical tilting A-
modules are again Morita algebras and have the same dominant dimension as A does (see Corollaries 4.9 and
4.19).

The paper is outlined as follows: In Section 2, we fix notation, introduce the notion of relatively exact
sequences with respect to subcategories, and give a new construction of derived equivalences. In section
3, we prove the first main result Theorem 3.6. In section 4, we prove the second main result Theorem 4.7,
where its particular applications to n-BB-tilting modules and canonical tilting modules are also given. In
order to describe lower bounds for dominant dimensions of the endomorphism algebras of tilting modules,
the notion of T -gradients is introduced in this section. The last section, Section 5, is devoted to showing the
first counterexample to a question of whether generalized symmetric algebras are closed under taking derived
equivalences. Also, a few open questions relevant to results in this paper are mentioned there.
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2 Relatively exact sequences and derived equivalences

In this section, we first fix some notation, and then generalize a result in [12, Thoerem 1.1].
Throughout this section, let C be an additive category.
Given two morphisms f : X→Y and g : Y → Z in C , we denote the composite of f and g by f g which is a

morphism from X to Z. The induced morphisms HomC (Z, f ) : HomC (Z,X)→HomC (Z,Y ) and HomC ( f ,Z) :
HomC (Y,Z)→ HomC (X ,Z) are denoted by f ∗ and f∗, respectively.

Let X be an object in C . Then we denote by add(X) the full subcategory of C consisting of all direct
summands of direct sums of finitely many copies of X . The endomorphism algebra of the object X is denoted
by EndC (X). It is known that the Hom-functor HomC (X ,−) is a fully faithful functor from add(X) to the
category of finitely generated projective EndC (X))-modules. We say that X is an additive generator for C if
add(X) = C .

Let C (C ) be the category of all complexes over C with chain maps, and K (C ) the homotopy category of
C (C ). When C is abelian, the derived category of C is denoted by D(C ), which is the localization of K (C )
at all quasi-isomorphisms.

Let R be an arbitrary ring with identity. We denote by R-Mod (respectively, R-mod) the category of all
unitary (respectively, finitely generated) left R-modules. As usual, we simply write C (R), K (R) and D(R)
for C (R-Mod), K (R-Mod) and D(R-Mod), respectively.

Recall that two rings R and S are said to be derived equivalent if D(R) and D(S) are equivalent as
triangulated categories. Note that if R and S are finite-dimensional k-algebras over a field k, then R and S are
derived equivalent if and only if Db(R-mod) and Db(S-mod) are equivalent as triangulated categories. For
more details on characterizations of derived equivalences, we refer to [21], and for some new constructions
of derived equivalences, we refer the reader to the recent papers [5, 11, 12, 13].

Let us start with recalling from [12] the definition of relatively split sequences in additive categories.

Definition 2.1. Let D be a full subcategory of C . A sequence

X
f−→M

g−→ Y

of two morphisms f and g between objects in C is called a D-split sequence if
(1) M ∈D;
(2) HomC (D′,g) and HomC ( f ,D′) are surjective for any object D′ ∈D;
(3) f is a kernel of g, and g is a cokernel of f .

Given an arbitrary D-split sequence, there exists a derived equivalence between the endomorphism alge-
bras of relevant objects, as shown by the following result.

Proposition 2.2. [12, Theorem 1.1] Let C be an additive category and M an object in C . Suppose that

X −→M′ −→ Y

is an add(M)-split sequence in C . Then EndC (X⊕M) and EndC (Y ⊕M) are derived equivalent.

For our purpose, we introduce the following definition of D-exact sequences, which modifies and gener-
alizes slightly the one of D-spit sequences.

Definition 2.3. Let D be a full subcategory of C . A sequence

X
f−→M0

g−→ Y

of objects and morphisms in C is called a D-exact sequence provided that
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(1) M0 ∈D .
(2) The following two sequences of abelian groups are exact:

(†) 0−→ HomC (X⊕M, X)
f ∗−→ HomC (X⊕M, M0)

g∗−→ HomC (X⊕M, Y )

(‡) 0−→ HomC (Y, M⊕Y )
g∗−→ HomC (M0, M⊕Y )

f∗−→ HomC (X , M⊕Y )

for every object M in D .

Note that the condition (2) in Definition 2.3 implies f g = 0. Moreover, if f is a kernel of g and g is a
cokernel of f , then the condition (2) holds automatically. Thus D-split sequences in C are D-exact sequences
in C . But the converse is not true: Since every short exact sequence 0→ X → M → Y → 0 in an abelian
category is an add(M)-exact sequence, we get not only the ubiquity of relatively exact sequences, but also
examples of D-exact sequences which is not D-split. For instance, we take A = k[T1,T2]/(T 2

1 ,T
2

2 ,T1T2) with
k a field, C = A-mod and X = A/rad(A), then there is a short exact sequence 0→ X → A→ A/(T1)→ 0, for
which the condition (2) in Definition 2.1 is not satisfied. Thus this sequence is not add(AA)-split.

In the following, we shall focus on the most interesting case where D = add(M) for M an object in C .
Observe that, for an arbitrary add(M)-exact sequence (not necessarily an add(M)-split sequence), we do not
have to get a derived equivalence between endomorphism rings as in Proposition 2.2. However, we shall
prove that there does exist a derived equivalence between subrings of corresponding endomorphism rings.

Proposition 2.4. Let C be an additive category and M an object in C . Suppose

X
f−→M0

g−→ Y

is an add(M)-exact sequence in C . Set

R :=
{(

h1 h2
f h3 h4

)
∈
(

EndC (M) HomC (M,X)
HomC (X ,M) EndC (X)

)∣∣∣∣ h3 ∈ HomC (M0,M) and there exists
h5 ∈ EndC (M0) such that h4 f = f h5

}
and

S :=
{(

h1 h2 g
h3 h4

)
∈
(

EndC (M) HomC (M,Y )
HomC (Y,M) EndC (Y )

)∣∣∣∣ h2 ∈ HomC (M,M0) and there exists
h5 ∈ EndC (M0) such that gh4 = h5g

}
.

Then R and S are subrings of EndC (M⊕X) and EndC (M⊕Y ), respectively. Moreover, they are derived
equivalent.

Proof. The proof here is actually motivated by [12, Lemma 3.4].
Set V := X ⊕M and Λ := EndC (V ). By the exact sequence (†) in Definition 2.3, there exists an exact

sequence

0−→ HomC (V, X)
f ∗−→ HomC (V, M0)

g∗−→ HomC (V, Y )

of Λ-modules. Further, we define L := Im (g∗), the image of the map g∗, and T := HomC (V,M)⊕L.
In the following, we shall divide the whole proof of Proposition 2.4 into four steps.
(1) We claim that EndΛ(T )' S as rings.

To show this, let f = (0, f ) : X→M⊕M0 and g =

(
1 0
0 g

)
: M⊕M0→M⊕Y. Then, from f g = 0 we

have f g = 0. Moreover, there exists the following exact sequence of Λ-modules:

0−→ HomC (V, X)
f ∗−→ HomC (V, M⊕M0)

g∗−→ T −→ 0.
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Let P• be the following complex:

0−→ HomC (V, X)
f ∗−→ HomC (V, M⊕M0)−→ 0

with HomC (V, X) in degree −1. Note that both HomC (V,X) and HomC (V, M⊕M0) are finitely gener-
ated projective Λ-modules since X ∈ add(V ) and M0 ∈ add(M) ⊆ add(V ). This implies that EndΛ(T ) '
EndD(Λ)(P•)' EndK (Λ)(P•) as rings. As the Hom-functor HomC (V,−) : add(V )→ add(ΛΛ) is fully faith-
ful, we see that EndK (Λ)(P•)' EndK (add(V ))(Q•) as rings, where Q• is defined to be the complex:

0−→ X
f−→M⊕M0 −→ 0

where the object X is of degree −1. To finish the proof of (1), it suffices to show that there exists an injective
ring homomorphism Ψ : EndK (add(V ))(Q•)→ EndC (M⊕Y ) such that Im (Ψ) = S because it then follows
that EndΛ(T )' EndK (add(V ))(Q•)' S as rings, as claimed.

Let (α,β) : Q•→Q• be an arbitrary chain map with α∈EndC (X) and β∈EndC (M⊕M0). Then α f = f β.
Now, we point out that there exists a unique morphism γ ∈ EndC (M⊕Y ) such that the following diagram is
commutative in C :

X

α

��

f // M⊕M0

β

��

g // M⊕Y

γ

��
X

f // M⊕M0
g // M⊕Y.

Actually, by the sequence (‡) in Definition 2.3 , we have the following exact sequence of abelian groups:

0−→ HomC (M⊕Y, M⊕Y )
g∗−→ HomC (M⊕M0, M⊕Y )

f ∗−→ HomC (X , M⊕Y ).

Since f ∗(βg) = f βg = α f g = 0, there is a unique morphism γ ∈ EndC (M⊕Y ) such that g ∗(γ) = gγ = βg.
Now, we prove that the chain map (α,β) is homotopic to the zero map if and only if γ = 0.
In fact, if (α,β) is null-homotopic, then there exists a morphism δ : M⊕M0→ X such that α = f δ and

β = δ f . In this case, we have βg = δ f g = 0, and therefore γ = 0.
Suppose that γ = 0. Then 0 = gγ = βg. Since M⊕M0 ∈ add(M), we know from the sequence (†) in

Definition 2.3 that the following sequence

0−→ HomC (M⊕M0, X)
f ∗−→ HomC (M⊕M0, M⊕M0)

g∗−→ HomC (M⊕M0,M⊕Y )

is exact. This implies that there exists a morphism σ : M⊕M0→ X such that β = σ f . Consequently, we have
(α− f σ) f = 0 due to α f = f β. Similarly, by the sequence (†) in Definition 2.3, we see that the induced map
HomC (X , f ) : HomC (X ,X)→ HomC (X ,M⊕M0) is injective. This gives rise to α− f σ = 0, that is α = f σ.
Thus (α,β) is null-homotopic.

As a result, the following map

Ψ : EndK (add(V ))(Q
•)−→ EndC (M⊕Y ), (α,β) 7→ γ

is well defined. Clearly, this map is an injective ring homomorphism. It remains to show Im (Ψ) = S.
To check this equality, we write

β =

(
β1 β2
β3 β4

)
∈
(

EndC (M) HomC (M,M0)
HomC (M0,M) EndC (M0)

)
, γ =

(
γ1 γ2
γ3 γ4

)
∈
(

EndC (M) HomC (M,Y )
HomC (Y,M) EndC (Y )

)
.

From gγ= βg, we obtain γ1 = β1, γ2 = β2 g, β3 = gγ3 and gγ4 = β4 g. This implies that γ∈ S and Im (Ψ)⊆ S.
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Conversely, suppose

h :=
(

h1 h2 g
h3 h4

)
∈ S

where h2 ∈ HomC (M,M0) and there is a morphism h5 ∈ EndC (M0) such that gh4 = h5g. Define β :=(
h1 h2
gh3 h5

)
∈ EndC (M⊕M0). Then one can verify that gh = βg. Since f βg = f gh = 0, we know from

the sequence (†) in Definition 2.3 that there exists a unique morphism α ∈ EndC (X) such that the following
diagram commutes in C :

X

α

��

f // M⊕M0

β

��

g // M⊕Y

h
��

X
f // M⊕M0

g // M⊕Y.

This implies that Ψ
(
(α,β)

)
= h and S ⊆ Im (Ψ). Thus S = Im (Ψ). Since Ψ is an injective ring homo-

morphism, we infer that S is actually a subring of EndC (M⊕Y ) and that Ψ : EndK (add(V ))(Q•)→ S is an
isomorphism of rings.

Hence EndΛ(T )' EndK (add(V ))(Q•)' S as rings. This finishes the proof of (1).
(2) We claim that if the induced map HomC ( f ,M) : HomC (M0,M)→ HomC (X ,M) is surjective, then Λ

is derived equivalent to S.
Set N := HomC (V,M). Then ΛT = N⊕L by the foregoing notation, where the module L arises in the

following exact sequence of Λ-modules:

(∗) 0−→ HomC (V, X)
f ∗−→ HomC (V, M0)

g∗−→ L−→ 0.

Clearly, we have HomC (V, M0) ∈ add(N) due to M0 ∈ add(M). On the one hand, since ΛN = HomC (V,M)
is a finitely generated projective Λ-module, the induced map HomΛ(N,g∗) : HomΛ(N,HomC (V,M0)) −→
HomΛ(N,L) is naturally surjective. On the other hand, since the functor HomC (V,−) : add(V )→ add(ΛΛ) is
fully faithful, we know that the induced map

HomΛ( f ∗,N) : HomΛ(HomC (V,M0),N)−→ HomΛ(HomC (V,X),N)

is surjective if and only if so is the map HomC ( f ,M) : HomC (M0,M)→ HomC (X ,M).
Assume that HomC ( f ,M) is surjective. By Definition 2.1, the exact sequence (∗) is an add(ΛN)-split

sequence. Now, it follows from Proposition 2.2 that the rings Λ and EndΛ(T ) are derived equivalent. Since
EndΛ(T ) is isomorphic to S by (1), we know that Λ is derived equivalent to S. This finishes the proof of (2).

(3) Since the notion of add(M)-exact sequences (see Definition 2.3) is self-dual, we can show dually that
if the induced map HomC (M,g) : HomC (M,M0)→ HomC (M,Y ) is surjective, then EndC (M⊕Y ) is derived
equivalent to R.

(4) Now we show that R and S are derived equivalent.
Recall that the sequence (∗) is an exact sequence of Λ-modules. Certainly, it is an add(ΛN)-exact se-

quence in the category of Λ-modules. Moreover, this sequence always has the following property: The
induced map HomΛ(N,g∗) : HomΛ(N,HomC (V,M0))→ HomΛ(N,L) is surjective. Set U := HomC (V,X).
Applying (3) to the sequence (∗), we see that EndΛ(T ) is derived equivalent to the ring

R̃ :=
{(

h1 h2
f h3 h4

)
∈
(

EndΛ(N) HomΛ(N,U)
HomΛ(U,N) EndΛ(U)

)∣∣∣∣ h3 ∈ HomΛ(HomC (V,M0),N), there exists
h5 ∈ EndΛ(HomC (V,M0)) such that h4 f ∗ = f ∗h5

}
.

Since the functor HomC (V,−) : add(V )→ add(ΛΛ) is fully faithful, one can easily check that this functor
induces a ring isomorphism from R to R̃. Recall from (1) that EndΛ(T ) is isomorphic to S. Thus R and S are
derived equivalent. This finishes the proof of Proposition 2.4. �
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Remarks. (1) If X → M0 → Y is an add(M)-split sequence in C , then R = EndC (M ⊕ X) and S =
EndC (M⊕Y ). Thus Proposition 2.4 implies Proposition 2.1.

(2) If C is an abelian category and the sequence in Proposition 2.2 is a short exact sequence in C , then
the derived equivalence between R and S follows also from [5, Corollary 3.4].

As an easy consequence of the above proposition, we know that the rings R and S have the same algebraic
K-groups since derived equivalences preserve algebraic K-theory, and that the finitistic dimension of R is
finite if and only if so is the one of S (see [20]). Further applications will be given in the next section.

3 Dominant dimensions and derived equivalences

Throughout this section, k stands for a fixed field. All algebras considered are finite-dimensional k-algebras
with identity, and all modules are finitely generated left modules.

3.1 Basic facts on dominant dimensions

Let A be an algebra. We denote by rad(A) the Jacobson radical of A, by A-proj (respectively, A-inj) the full
subcategory of A-mod consisting of projective (respectively, injective) modules, by D the usual k-duality
Homk(−,k), and by νA the Nakayama functor DHomA(−, AA) of A. Note that νA is an equivalence from
A-proj to A-inj with the inverse ν

−
A = HomA(D(A),−). The category of projective-injective A-modules is

denoted by A-prinj .
Let X be an A-module. By Ωi

A(X), soc(X) and I(X) we denote the i-th syzygy for i ∈ Z, the socle and
the injective envelope of X , respectively.

For an A-module X , we consider its minimal injective resolution

0−→ AX −→ I0 −→ I1 −→ I2 −→ ·· · .

Let I be an injective A-module and 0 ≤ n ≤ ∞. If n is maximal with the property that all modules I j

are in add(I) for j < n, then n is called the dominant dimension of X with respect to I, denoted by I-
dom.dim(X). If add(I) = A-prinj , we simply write dom.dim(X) and call it the dominant dimension of X .
Since dom.dim(AA) = dom.dim(AA) by [19, Theorem 4], we just write dom.dim(A) and call it the dominant
dimension of A. It is clear that dom.dim(A) = min{dom.dim(P) | P ∈ add(AA)}.

If A is self-injective, that is, the regular module AA is injective, then dom.dim(A) = ∞. The converse of
this statement is the well-known, longstanding Nakayama conjecture: If dom.dim(A) = ∞, then A is self-
injective. Equivalently, if A is not self-injective, then dom.dim(A) ≤ m for a positive integer m. Hence, in
order to understand this conjecture, it makes sense to investigate upper bounds for dominant dimensions.

It is well known that dom.dim(A)≥ 2 if and only if there exists an algebra B and a generator-cogenerator
V over B such that A ' EndB(V ) as algebras (see [19, Theorem 2]). In fact, let e be an idempotent ele-
ment of A such that add(νA(Ae)) coincides with the full subcategory of A-mod consisting of all projective-
injective A-modules. If dom.dim(A)≥ 2, then we can choose B = eAe and V = eA. Furthermore, in this case,
dom.dim(A) = n if and only if ExtieAe(eA,eA) = 0 for all 1≤ i≤ n−2 and Extn−1

eAe (eA,eA) 6= 0 (see [19, Lem-
ma 3]). Thus, for a self-injective algebra A and an A-module Y without projective summands, if there is an
n≥ 0 such that Extn+1

A (Y,Y ) 6= 0 and Ext j
A(Y,Y ) = 0 for all 1≤ j ≤ n, then dom.dim(EndA(A⊕Y )) = n+2.

To estimate dominant dimensions, we need the following result which is essentially taken from [18,
Lemma 1.1 and Corollary 1.3].

Lemma 3.1. Let Λ be an algebra and let 0→Y−1→Y0→Y1→Y2→ ·· · →Ym−1→Ym→ 0 be a long exact
sequence of Λ-modules with m≥ 0. Then the following statements are true:
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(1) If each Yi with 0 ≤ i ≤ m has an injective resolution 0→ Yi→ I0
i → I1

i → I2
i → ··· , then Y−1 has an

injective resolution of the following form:

0−→ Y−1 −→ I0
0 −→

⊕
0≤r≤min{m,1}

I1−r
r −→

⊕
0≤r≤min{m,2}

I2−r
r −→ ·· · −→

⊕
0≤r≤min{m,s}

Is−r
r −→ ·· ·

(2) If each Yj with−1≤ j≤m−1 has an injective resolution 0→Yj→ I0
j → I1

j → I2
j → ··· , then Ym has

an injective resolution of the following form:

0−→ Ym −→ Qm−1 −→
⊕

−1≤r≤m−1

I m−r
r −→

⊕
−1≤r≤m−1

I m+1−r
r −→ ·· · −→

⊕
−1≤r≤m−1

I m+s−r
r −→ ·· ·

where Qm−1 is a direct summand of the module
⊕m−1

r=−1 I m−1−r
r .

As a consequence of Lemma 3.1, we have the following result.

Corollary 3.2. Let Λ be an algebra and let I be an injective Λ-module. Suppose that 0→Y−1→Y0→Y1→
Y2→ ··· → Ym−1→ Ym→ 0 is a long exact sequence of Λ-modules with m≥ 0. Then

(1) I-dom.dim(Y−1)≥min
{

I-dom.dim(Yj)+ j | 0≤ j ≤ m
}

.
(2) I-dom.dim(Ym)≥min

{
I-dom.dim(Yj)+ j | −1≤ j ≤ m−1

}
−m+1.

Proof. (1) Let t :=min
{

I-dom.dim(Yj)+ j | 0≤ j≤m
}

. Then I-dom.dim(Yj)≥ t− j for each 0≤ j≤m.
For such j, let

0−→ Yj −→ I0
j −→ I1

j −→ I2
j −→ ·· ·

be a minimal injective resolution of Yj. Then Iu
j ∈ add(I) for each 0 ≤ u ≤ t − j− 1. This implies that

Is−r
r ∈ add(I) for 0 ≤ r ≤ min{m,s} and s ≤ t − 1. By Lemma 3.1(1), the module Y−1 has an injective

resolution
0−→ Y−1 −→ I0 −→ I1 −→ I2 −→ ·· · −→ It−1 −→ It −→ ·· ·

such that I j ∈ add(I) for all 0≤ j ≤ t−1. Thus I-dom.dim(Y−1)≥ t.
(2) Let m′ = min

{
I-dom.dim(Yj)+ j | −1 ≤ j ≤ m− 1

}
. If m′ ≤ m− 1, then I-dom.dim(Ym) ≥ 0 ≥

m′−m+ 1 and therefore (2) holds. Now, we suppose that m′ ≥ m. Then I-dom.dim(Yj) ≥ m′− j ≥ 1 for
−1≤ j ≤ m−1. For each j, let

0−→ Yj −→ I0
j −→ I1

j −→ I2
j −→ ·· ·

be a minimal injective coresolution of Yj. Then Ip
j ∈ add(I) for 0 ≤ p ≤ m′ − j− 1. This implies that

Iq− j
j ∈ add(I) for all −1 ≤ j ≤ m− 1 ≤ q ≤ m′− 1. By Lemma 3.1(2), the module Ym has an injective

resolution
0−→ Ym −→ E0 −→ E1 −→ E2 −→ ·· · −→ E i−1 −→ E i −→ ·· ·

such that E i ∈ add(I) for all 0≤ i≤ m′−m. Consequently, we obtain I-dom.dim(Ym)≥ m′−m+1. �

Recall that a homomorphism f : Y0→ X of A-modules is called a minimal right add(Y )-approximation
of X if f is minimal, Y0 ∈ add(Y ) and the map HomA(Y,Y0)→ HomA(Y,X) is surjective. A complex of
A-modules of the following form

· · · −→ Y−i f−i

−→ Y−i+1 f−i+1

−→ ·· · f−3

−→ Y−2 f−2

−→ Y−1 f−1

−→ X
f 0

−→ 0

with X in degree 0, is called a minimal right add(Y )-approximation sequence of X if the homomorphism
Y−i→Ker ( f−i+1) induced from f−i is a minimal right add(Y )-approximation of Ker ( f−i+1) for each i≥ 1.
Note that, up to isomorphism of complexes, such a sequence is unique and depends only on X .

The following result is useful for calculation of relative dominant dimensions of modules.
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Lemma 3.3. Let P = Ae and I = νA(Ae) with e2 = e ∈ A. For any A-module X, we have

I-dom.dim(X) = inf{i≥ 0 | HomK (A)(P
•,X [i]) 6= 0},

where the complex

P• : · · · −→ P−i −→ P−i+1 −→ ·· · −→ P−2 −→ P−1 −→ AA−→ 0

is a minimal right add(AP)-approximation sequence of AA.

Proof. For each n ∈ N, it follows from [1, Proposition 2.6] that I-dom.dim(X) ≥ n+ 1 if and only if
ExtiA(A/AeA,X) = 0 for all 0≤ i≤ n. The latter is also equivalent to ExtiA(Y,X) = 0 for all A/AeA-modules
Y and for all 0≤ i≤ n. Thus

I-dom.dim(X) = inf{i≥ 0 | ExtiA(A/AeA,X) 6= 0}.

To show Lemma 3.3, it suffices to check that

inf{i≥ 0 | ExtiA(A/AeA,X) 6= 0}= inf{i≥ 0 | HomK (A)(P
•,X [i]) 6= 0}.

As a preparation, we first prove the following statement:

(∗) Let Q• := (Q j) j∈Z be a complex of A-modules such that Q j = 0 for j > 0 and that H j(Q•) ∈
A/AeA-mod for j≤ 0. If ExtiA(A/AeA,X) = 0 for all 0≤ i≤ n−1, then HomD(A)(Q•,X [m]) = 0 for m≤ n−1
and HomD(A)(Q•,X [n])' HomD(A)(H0(Q•),X [n]) = 0.

To prove this statement, we suppose that ExtiA(A/AeA,X) = 0 for all 0 ≤ i ≤ n − 1. Then
HomD(A)(H j(Q•),X [i]) ' ExtiA(H

j(Q•),X) = 0 for all j ≤ 0. Note that HomD(A)(H j(Q•),X [r]) = 0 for
any r ≤ 0. Thus HomD(A)(H j(Q•),X [s]) = 0 for all s ≤ n− 1. Now, we take iterated canonical truncations
of complexes, and obtain a series of distinguish triangles in D(A):

τ
≤ j−1(Q•)−→ τ

≤ j(Q•)−→ H j(Q•)[− j]−→ τ
≤ j−1(Q•)[1]

where j ≤ 0 and τ≤0(Q•) = Q•. It follows that, for any m≤ n−1, we have

HomD(A)(τ
≤ j(Q•),X [m]) ↪→ HomD(A)(τ

≤ j−1(Q•),X [m]).

This leads to the following inclusions of abelian groups:

HomD(A)(Q
•,X [m]) ↪→ HomD(A)(τ

≤−1(Q•),X [m]) ↪→ ··· ↪→ HomD(A)(τ
≤−m(Q•),X [m]) ↪→ HomD(A)(τ

≤−m−1(Q•),X [m]).

Since τ≤−m−1(Q•) can only have non-zero terms in degrees smaller than −m, we get
HomD(A)(τ

≤−m−1(Q•),X [m]) = 0, and therefore HomD(A)(Q•,X [m]) = 0. Since
(
τ≤−1(Q•)[−1]

)t
= 0 for

any t ≥ 0 and
Ht(

τ
≤−1(Q•)[−1]

)
' Ht−1(Q•) ∈ A/AeA-mod

for any t ≤ 0, we know that HomD(A)(τ
≤−1(Q•),X [n]) ' HomD(A)(τ

≤−1(Q•)[−1],X [n− 1]) = 0 and that
HomD(A)(τ

≤−1(Q•)[1],X [n])'HomD(A)(τ
≤−1(Q•)[−1],X [n−2]) = 0. So if we apply HomD(A)(−,X [n]) to

the triangle τ≤−1(Q•)→Q•→H0(Q•)→ τ≤−1(Q•)[1], then HomD(A)(Q•,X [n])'HomD(A)(H0(Q•),X [n]).
This finishes the proof of (∗).

Next, we show that ExtiA(A/AeA,X) = 0 for all 0 ≤ i ≤ n if and only if HomK (A)(P•,X [m]) = 0 for all
0≤ m≤ n. This leads to inf{i≥ 0 | ExtiA(A/AeA,X) 6= 0}= inf{i≥ 0 | HomK (A)(P•,X [i]) 6= 0}.

In fact, since P• is an above-bounded complex of projective A-modules, we have HomK (A)(P•,X [m])'
HomD(A)(P•,X [m]). So, it suffices to show that ExtiA(A/AeA,X) = 0 for all 0 ≤ i ≤ n if and only if
HomD(A)(P•,X [m]) = 0 for all 0≤ m≤ n.
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By assumption, the complex P• is a minimal right add(P)-approximation sequence of AA. It follows
that the complex Hom•A(P,P

•) is exact. Since P := Ae is projective, we see that eH j(P•) = 0 for any j ≤ 0.
In other words, H j(P•) ∈ A/AeA-mod. As the (−1)-th differential f−1 : P−1→ A in P• is a minimal right
add(P)-approximation of AA, we have Im ( f−1) = AeA, and therefore H0(P•) = Coker ( f−1) = A/AeA. This
gives rise to HomA(A/AeA,X) = HomA(H0(P•),X) ' HomD(A)(P•,X). Thus HomA(A/AeA,X) = 0 if and
only if HomD(A)(P•,X) = 0. Now, with the help of the fact (∗), one can verify the above statement by
induction on n. �

A projective A-module P is said to be ν-stable if νi
A(P) are projective for all i > 0. Dually, an injective A-

module I is said to be ν−-stable if ν
−i
A (I) are injective for all i > 0. The full subcategory of A-proj consisting

of all ν-stable projective A-modules is denoted by E (A). Let εA be a basic additive generator for E (A), that
is, εA is a basic module such that E (A) = add(εA). Recall that an module is basic if it is a direct sum of
non-isomorphic indecomposable modules.

If X is projective-injective and νA(X)'X (or equivalently, ν
−
A (X)'X), then X ∈ E (A). So, the following

lemma shows that εA is the maximal projective-injective basic A-module which generates E (A) and is closed
under νA (or equivalently, under ν

−
A ).

Lemma 3.4. (1) εA ∈A-prinj and νA(εA)' εA' ν
−
A (εA). In particular, the algebra EndA(εA) is self-injective.

(2) An A-module is ν-stably projective if and only if it is ν−-stably injective.
(3) The functor HomA(−,A) induces a duality from E (A) to E (A

op
) which sends εA to εAop .

Proof. (1) Since E (A) = add(εA), we see that ν
j
A(εA) are projective for all j ≥ 0. This implies that

νA(εA) ∈ E (A). As εA is basic, the module νA(εA) is isomorphic to a direct summand of εA. However, both
νA(εA) and εA have the same number of indecomposable direct summands. Thus νA(εA) ' εA. This leads
to εA ∈ A-prinj and therefore εA ' ν

−
A (εA). The last statement in (1) is a result of Martinez-Villa (see, for

example, [1, Lemma 3.1(3)]).
(2) Let AV be a basic additive generator for the category V of ν−-stably injective A-module. We can

show that AV ∈ A-prinj and ν
−
A (V ) ' V . This is dual to (1). Further, for a projective-injective A-module X ,

it is known that νA(X)' X if and only if ν
−
A (X)' X . Thus εA ∈ V and V ∈ E (A). It follows that E (A) = V

and therefore εA 'V .
(3) This follows from (1) and the definition of νA. �

Recall that the module X is called a generator over A if add(AA) ⊆ add(X); a cogenerator if
add(D(AA))⊆ add(X), and a generator-cogenerator if it is both a generator and a cogenerator over A.

Let V be a generator over A with B := EndA(V ). Then HomA(V, I) is an injective B-module for every
injective A-module I. If V is a generator-cogenerator, then each projective-injective B-module is precisely
of the form HomA(V, I) with I an injective A-module. This is due to the isomorphism DHomA(P,V ) '
HomA(V,νA(P)) for all P ∈ add(AA).

The following observation may be useful to determine the dominant dimensions of modules.

Lemma 3.5. Let X be an A-module with an exact sequence 0→ X → X0 → ··· → Xn → V → 0 such that

all X j are projective-injective modules. Suppose that 0→ X → E0→ ··· → En
dn−→ En+1→ ··· is a minimal

injective resolution of X. Then En+1 is projective if and only if so is the injective envelope of V .

Proof. Since X j, with 0≤ j ≤ n, are projective-injective, we see from homological algebra that E j, with
0 ≤ j ≤ n, are projective-injective. It follows from the dual version of Schanuel’s Lemma that V ⊕En⊕
Xn−1⊕ ·· · ⊕C ' Im (dn)⊕Xn⊕En−1⊕ ·· · ⊕C′, where C = X0 and C′ = E0 if n is odd, and C = E0 and
C′ = X0 if n is even. Thus, by taking injective envelopes, we obtain the following isomorphism of modules:

I(V )⊕Q' En+1⊕Q′

where Q and Q′ are projective-injective modules. This implies that En+1 is projective if and only if I(V ) is
projective. �
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3.2 Derived equivalent algebras with different dominant dimensions

In this section, we shall give a construction to produce derived equivalent algebras with different dominant
dimensions.

As usual, for two A-modules X and Y , we denote by P(X ,Y ) the set of homomorphisms from X to Y that
factorise through a projective A-module, and by Hom A(X ,Y ) the Hom-set in the stable category of A-mod.
If A is self-injective, then Ext1A(X ,Y )' Hom A(ΩA(X),Y ).

Our first main result in this paper is as follows:

Theorem 3.6. Let A be a self-injective algebra over a field k. Suppose that

0−→ X −→ P−→ Y −→ 0

is an exact sequence of A-modules with P projective. Let N be an A-module without non-zero projective direct
summands, and let

Λ :=

(
EndA(A) HomA(A,N) HomA(A,X)

HomA(N,A) EndA(N) HomA(N,X)
HomA(X ,A) P(X ,N) EndA(X)

)
and Γ :=

(
EndA(A) HomA(A,N) HomA(A,Y )

HomA(N,A) EndA(N) P(N,Y )
HomA(Y,A) HomA(Y,N) EndA(Y )

)
.

Then the following statements are true:
(1) The algebras Λ and Γ are derived equivalent.
(2) If Hom A(N,Y ) 6= 0, then dom.dim(Γ) = 1.
(3) If Hom A(X ,N) 6= 0, then dom.dim(Λ) = 1.

Proof. (1) In Proposition 2.4, we take C := A-mod and M := AA⊕N. Since P ∈ add(AA)⊆ add(M), the
given exact sequence

0−→ X −→ P−→ Y −→ 0

is an add(M)-exact sequence in A-mod (see Definition 2.3). Clearly, this sequence is always an add(AA)-split
sequence since A is self-injective, but it does not have to be an add(M)-split sequence in general. So we
cannot use Proposition 2.2. Now, one can check straightforward that the rings Λ and Γ in Theorem 3.6 are
the same as the rings R and S in Proposition 2.4, respectively. Thus (1) follows from Proposition 2.4.

(2) Set W := A⊕N⊕Y and B := EndA(W ). In the sequel, we always identify B with the following matrix
ring of 3×3 matrices:  EndA(A) HomA(A,N) HomA(A,Y )

HomA(N,A) EndA(N) HomA(N,Y )
HomA(Y,A) HomA(Y,N) EndA(Y )

 .

Furthermore, let

e1 :=

 1 0 0
0 0 0
0 0 0

 , e2 :=

 0 0 0
0 1 0
0 0 0

 and e3 :=

 0 0 0
0 0 0
0 0 1

 .

Then Be1 ' HomA(W,A) as B-modules. Moreover, the following statements hold:
(a) The algebra Γ is a subalgebra of B and contains all ei for 1≤ i≤ 3.
(b) Γe1 = Be1 and Γe2 = Be2.
(c) There is an exact sequence

0−→ Γe3 −→ Be3 −→ Be3/Γe3 −→ 0

of Γ-modules such that Be3/Γe3 ' HomA(N,Y )/P(N,Y ) = Hom A(N,Y ) as k-modules, e2(Be3/Γe3) =
Be3/Γe3 and e1(Be3/Γe3) = 0 = e3(Be3/Γe3).
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First of all, we point out that νΓ(Γe1)' νB(Be1) as Γ-modules.
In fact, it follows from e1B = e1Γ that there are the following isomorphisms of Γ-modules:

νΓ(Γe1) = DHomΓ(Γe1,Γ)' D(e1Γ) = D(e1B)' DHomB(Be1,B)' νB(Be1).

Next, we claim that add(ΓΓe1) = add
(
νΓ(Γe1)

)
⊆ Γ-mod. This implies that ΓΓe1 is projective-injective.

Actually, we always have add(BBe1) = add
(
νB(Be1)

)
⊆ B-mod. To see this, we first note the following

isomorphisms of B-modules:

νB(Be1) = DHomB(Be1,B)' D(e1B)' D(HomA(A,W ))' HomA(W,DA)

where the last isomorphism is due to the following well known result: Let C be a k-algebra and P a C-
module. If P is projective, then DHomC(P,U) ' HomC(U,νC(P)) as k-modules for each C-module U . S-
ince the algebra A is self-injective, we certainly have add(AA) = add(ADA). Particularly, this implies that
add(BHomA(W,A)) = add(BHomA(W,DA)), and therefore add(BBe1) = add

(
νB(Be1)

)
⊆ B-mod; and the

module BBe1 is projective-injective.
To prove add(ΓΓe1) = add

(
νΓ(Γe1)

)
, we first observe the following fact:

Let S→ R be a ring homomorphism of two k-algebras S and R. Suppose that M and L are R-modules. If
add(RM) = add(RL), then add(SM) = add(SL).

In our case, we know that Γ ⊆ B is an extension of algebras and that Γe1 = Be1 and νΓ(Γe1) ' νB(Be1)
as Γ-modules. By the above-mentioned fact, we conclude from add(BBe1) = add

(
νB(Be1)

)
⊆ B-mod that

add(ΓΓe1) = add
(
νΓ(Γe1)

)
⊆ Γ-mod. This finishes the claim.

Now, we show dom.dim(Γ)≥ 1 .
Let f : W → I(W ) be an injective envelope of AW . Then I(W ) ∈ add(ADA) = add(AA). Applying

HomA(W,−) to the map f , we obtain the induced map f ∗ : B = EndA(W ) → HomA(W, I(W )) which is
injective. Clearly, HomA(W, I(W )) ∈ add(BHomA(W,A)) = add(BBe1).

Recall that Be1 = Γe1 which is a projective-injective Γ-module. This implies that HomA(W, I(W )) is also
projective-injective as a Γ-module. Since Γ can be embedded into B and f ∗ is an injective homomorphism of
Γ-modules, there is an injection Γ→ HomA(W, I(W )) of Γ-modules. It follows that dom.dim(Γ)≥ 1.

Finally, we assume Hom A(N,Y ) 6= 0, and want to show dom.dim(Γ) = 1.
Let g : Y → I(Y ) be an injective envelope of AY . Then the map g∗ : HomA(W,Y )→ HomA(W, I(Y ))

induced by g is injective. Since Be3 ' HomA(W,Y ) as B-modules, there exists an injection ϕ : Be3 →
HomA(W, I(Y )) of B-modules. Thus, using the sequence in (c), we can construct the following exact com-
mutative diagram of Γ-modules:

0 // Γe3 // Be3 //

ϕ

��

Be3/Γe3 //

ψ

��

0

0 // Γe3 // HomA(W, I(Y )) // V // 0

where V is a Γ-module and ψ is injective. This means that Be3/Γe3 is isomorphic to a submodule of ΓV , and
therefore soc(ΓBe3/Γe3) is a direct summand of soc(ΓV ).

Since Hom A(N,Y ) 6= 0 by assumption, we know from (c) that Be3/Γe3 6= 0 and e1(Be3/Γe3) = 0 =
e3(Be3/Γe3). It follows that there exists a simple Γ-module S, which is a direct summand of soc(ΓBe3/Γe3),
such that its projective cover P(S) belongs to add(ΓΓe2). Consequently, the module S is a direct summand of
soc(ΓV ).

Since I(Y ) ∈ add(AI(W )) and ΓHomA(W, I(W )) is projective-injective, we see that HomA(W, I(Y )) is
projective-injective as an Γ-module. So, by Lemma 3.5, to prove dom.dim(Γ) = 1, it is sufficient to show
that the injective envelope I(V ) of the module ΓV is not projective. As S is a direct summand of soc(ΓV ), we
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know that the injective envelope I(S) of S is also a direct summand of I(V ). In the following, we shall show
that I(S) is not projective.

Suppose that ΓI(S) is projective. Then ΓI(S) is projective-injective. On the one hand, by the proof of
dom.dim(Γ) ≥ 1, we have I(S) ∈ add(ΓΓe1) = add(νΓ(Γe1)). It follows from I(S) = νΓ(P(S)) that P(S) ∈
add(ΓΓe1). This implies that e1P(S)∈ add(e1Γe1)⊆ e1Γe1-mod. On the other hand, since P(S)∈ add(ΓΓe2),
we obtain e1P(S) ∈ add(e1Γe2)⊆ e1Γe1-mod. Note that e1Γe1 ' EndA(A)' A as algebras, and that e1Γe2 '
HomA(A,N)' N as A-modules. Consequently, after identifying e1Γe1 with A, we see that e1P(S) ∈ add(AA)
and e1P(S) ∈ add(AN). This contradicts to the assumption that AN has no nonzero projective modules as
direct summands. Thus ΓI(S) is not projective, and dom.dim(Γ) = 1. This completes the proof of (2).

(3) Since the algebra A is self-injective, this Hom-functor HomA(−,A) : A-mod→ Aop-mod is a duality
with dual inverse HomAop(−,A) : Aop-mod→ A-mod (see [2, IV. Proposition 3.4]). By the assumption on the
module AN in Theorem 3.6, we infer that HomA(N,A)A does not have any projective direct summands.

To prove (3), we shall focus on the inclusion Λ→ EndA(A⊕N⊕X) of algebras, and consider the right Λ-
modules instead of left Λ-modules. In this situation, we can show dom.dim(Λop) = 1 by following the proof
of (2). Here, we leave the details to the reader. Note that dom.dim(Λ) = dom.dim(Λop). Thus dom.dim(Λ) =
1. This finishes the proof of (3). �

As a consequence of Theorem 3.6, we have the following result.

Corollary 3.7. Let A be a self-injective algebra. Suppose that Y and N are A-modules such that N has no
non-zero projective direct summands. If Ext1A(Y,N) = 0 and Ext1A(N,ΩA(Y )) 6= 0, then the endomorphism
algebra EndA(A⊕N⊕ΩA(Y )) has dominant dimension at least 2 and is derived equivalent the following
matrix algebra of dominant dimension 1 EndA(A) HomA(A,N) HomA(A,Y )

HomA(N,A) EndA(N) P(N,Y )
HomA(Y,A) HomA(Y,N) EndA(Y )

 .

Proof. Clearly, the dominant dimension of EndA(A⊕N⊕ΩA(Y )) is at least 2 (actually, it is equal to
2 by the remarks after the definition of dominant dimensions). Since A is self-injective, it is known that
Hom A(ΩA(L),M)' Ext1A(L,M) and Hom A(L,M)' Hom A(ΩA(L),ΩA(M)) for L,M ∈ A-mod. Clearly, this
implies that Hom A(ΩA(Y ),N) = 0 if and only if Ext1A(Y,N) = 0, and that Hom A(N,Y ) 6= 0 if and only if
Ext1A(N,ΩA(Y )) 6= 0.

Recall that there always exists an exact sequence of A-modules:

0−→ΩA(Y )−→ P π−→ Y −→ 0

such that π is a projective cover of AY . Now, we take X := ΩA(Y ) in Theorem 3.6 and get Corollary 3.7
immediately from Theorem 3.6. �

Algebras of the form EndA(A⊕M) with A a self-injective algebra and M ∈ A-mod are called Morita
algebras in [15]. The above corollary shows that both Morita algebras and dominant dimensions are not
invariant under derived equivalences, though self-injective algebras are invariant under derived equivalences.

We observe the following characterization of Morita algebras, its proof follows directly from [15, Corol-
lary 1.4, Theorem 1.5].

Lemma 3.8. Let A be an algebra of dominant dimension at least 2. Then A is a Morita algebra if and only
if A -prinj = E (A).
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4 Tilting modules, dominant dimensions and Morita algebras

Tilting modules supply an important class of derived equivalences. In the following we consider when
derived equivalences given by tilting modules preserve dominant dimensions and Morita algebras. During
the course of our discussions, we also establish a lower bound for dominant dimensions of algebras under
tilting procedure.

4.1 Dominant dimensions for general tilting modules

Let us first recall the definition of tilting modules (see, for instance, [9] or any text book on the representation
theory of finite dimensional algebras).

An A-module T is called a tilting module if proj.dim(AT ) = n < ∞, Ext j
A(T,T ) = 0 for all j > 0, and there

is an exact sequence 0→ AA→ X0→ X1→ ·· · → Xn→ 0 in A-mod with all X j ∈ add(T ).
Clearly, by definition, indecomposable projective-injective modules are isomorphic to direct summands

of each tilting module.

From now on, we investigate behaviours of dominant dimensions of the endomorphism algebras of tilting
modules.

Let T be a tilting A-module of projective dimension n≥ 1, and let B := EndA(T ). We first fix a minimal
projective resolution of AT as follows:

0−→ Pn −→ Pn−1 −→ ·· · −→ P1 −→ P0 −→ T −→ 0.

Then A -proj = add(
⊕n

i=0 Pi), and any projective summand of T belongs to add(P0). Further, TB is a tilting
right B-module with proj.dim(TB) = n. It is well known that A and B are derived equivalent (see [10]).

For convenience, we introduce the following definition which seems to be useful in the rest of our dis-
cussions.

Definition 4.1. Let AT = P⊕T ′ such that P is projective and T ′ has no non-zero projective direct summands.
The heart of T is defined to be a basic A-module E(A,T ) such that

add
(
E(A,T )

)
= {X ∈ add(AP) | νA(X) ∈ add(AT )}.

Note that if T = AA, then νA(E(A,T )) is an additive generator for A-prinj . In general, the module
E(A,T ) may not be injective. Since νA(εA) ' εA ∈ A -prinj ⊆ add(AT ) by Lemma 3.4, we always have
E (A) ⊆ add(E(A,T )). Moreover, if AT ′ has no non-zero injective direct summands, then add(E(A,T )) =
{X ∈ add(AP) | νA(X) ∈ add(AP)}.

Throughout this section, we fix a tilting A-module T with the above projective resolution, and let P and
E(A,T ) be defined as above. If no confusion arises, we simply write E for E(A,T ).

The following homological fact will be used for later discussions.

Lemma 4.2. Let M and N be A-modules. Then we have the following:
(1) If N ∈ add(AA), then the functor HomA(−,T ) induces an isomorphism of abelian groups:

HomA(M,N)' HomBop (HomA(N,T ),HomA(M,T )).
(2) If M ∈ add(D(AA)), then the functor HomA(T,−) induces an isomorphism of abelian groups:

HomA(M,N)' HomB(HomA(T,M),HomA(T,N)).

Proof. To show (1), we use the fact that AA has an add(AT )-copresentation, that is, there is an exact
sequence 0→ A→ T0 → T1 of A-modules with T0,T1 ∈ add(AT ) such that the sequence HomA(T1,T )→
HomA(T0,T )→ HomA(A,T )→ 0 is still exact. Dually, to show (2), we use the fact that D(AA) has an
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add(AT )-presentation, that is, there is an exact sequence T ′1 → T ′0 → D(AA)→ 0 of A-modules with T ′0,T
′

1 ∈
add(AT ) such that the sequence HomA(T,T ′1)→ HomA(T,T ′0)→ HomA(T,D(A))→ 0 is still exact. �

The following result gives a characterization of projective-injective B-modules.

Lemma 4.3. The functor HomA(−,T ) : A-mod→ B
op

-mod restricts to the following two dualities between
additive categories:

add(E) '−→ B
op

-prinj and add(E (A)) '−→ add(E (B
op
))

which send εA to εBop . In particular, we have EndA(εA)' EndB(εB) as algebras.

Proof. For simplicity, we set F := HomA(−,T ). Clearly, for any X ∈ add(E), we have F(X) ∈ B
op

-proj
due to X ∈ add(P)⊆ add(AT ). Since X is projective and νA(X) ∈ add(AT ), we see that

DF(X) = DHomA(X ,T )' HomA(T,νA(X)) ∈ B -proj.

This forces F(X)∈ B
op

-inj, and therefore F(X)∈ B
op

-prinj . So, F induces a functor F1 : add(E)→ B
op

-prinj .
Since add(E)⊆ add(AA), the functor F1 is fully faithful by Lemma 4.2(1).

Now, we show that if Q is an indecomposable projective-injective B
op

-module, then there exists an A-
module Y ∈ add(E) such that Q' F(Y ). This will verify that F1 is dense, and therefore F1 is a duality.

In fact, from the surjective map P0→ T we obtain an injective homomorphism B→F(P0) of B
op

-modules.
It follows that Q is isomorphic to a direct summand of F(P0). Note that F induces a ring isomorphism
from EndA(P0)

op
to EndBop (F(P0)) by Lemma 4.2(1) due to P0 ∈ add(A). Consequently, there is a direct

summand Y of P0 such that QB ' F(Y ). It suffices to check that Y ∈ add(AT ) and νA(Y ) ∈ add(AT ) since
add(P) = add(P0)∩ add(T ).

On the one hand, since F(Y )B is projective, there exists a module T ′ ∈ add(AT ) such that F(Y )' F(T ′).
We claim that Y ' T ′. Actually, since T ′ ∈ add(AT ), we first have HomA(Y,T ′) ' HomBop (F(T ′),F(Y )).
Further, since Y ∈ add(P0), we then see from Lemma 4.2(1) that HomA(T ′,Y ) ' HomBop (F(Y ),F(T ′)).
Thus Y ' T ′ ∈ add(AT ).

On the other hand, since AY is projective and F(Y )B is injective, we have

DF(Y ) = DHomA(Y,T )' HomA(T,νA(Y )) ∈ B-proj.

There exists a module T ′′ ∈ add(AT ) such that G(νA(Y )) ' G(T ′′), where G is the functor HomA(T,−) :
A-mod→ B-mod. We claim that νA(Y ) ' T ′′. In fact, since T ′′ ∈ add(AT ), we have HomA(T ′′,νA(Y )) '
HomB

(
G(T ′′),G(νA(Y ))

)
. As νA(Y ) ∈ add(D(AA)), we see from Lemma 4.2(2) that HomA(νA(Y ),T ′′) '

HomB(G(νA(Y )),G(T ′′)). Therefore νA(Y )' T ′′ ∈ add(AT ). Thus we have shown that F1 is a duality.
Next, we show that F1 induces a duality F2 : add(E (A))→ add(E (B

op
)).

Recall that add(E (A)) = add(εA)⊆ A-prinj and add(E (B
op
)) = add(εBop )⊆ B

op
-prinj . Since νA(εA)' εA

by Lemma 3.4(1), we have add(E (A)) ⊆ add(E). Note that, for a projective A-module Z, the following
isomorphisms are true:

ν
−
Bop (F(Z)) = HomB(DF(Z),B)' HomB

(
G(νA(Z)),B

)
' F(νA(Z)).

It follows that ν
−
Bop (F(Z)) ' F(Z) if and only if F(νA(Z)) ' F(Z). In particular, if νA(Z) ' Z, then

ν
−
Bop (F(Z)) ' F(Z). Since εA ∈ add(AA) and νA(εA) ' εA, we have ν

−
Bop (F(εA)) ' F(εA). This implies

that F(εA) ∈ add(E (B
op
)) by Lemma 3.4(1), and therefore F(εA) is isomorphic to a direct summand of εBop .

So, the functor F1 restricts to a fully faithful functor F2 : add(E (A))→ add(E (B
op
)).

It remains to show that F2 is dense. Indeed, since F1 is a duality and since εBop ∈ B
op

-prinj is basic,
there exists a basic A-module E ′ ∈ add(E) such that F(E ′) ' εBop as B

op
-modules. As ν

−
Bop (εBop ) ' εBop

by Lemma 3.4(1), we have ν
−
Bop (F(E ′)) ' F(E ′). Thus F(νA(E ′)) ' F(E ′). We claim that νA(E ′) '
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E ′. Actually, since E ′ ∈ add(E), we have νA(E ′) ∈ add(AT ). This gives rise to HomA(E ′,νA(E ′)) '
HomBop (F(νA(E ′)),F(E ′)). Further, since E ′ ∈ add(E) ⊆ add(AA), we see from Lemma 4.2(1) that
HomA(νA(E ′),E ′) ' HomBop

(
F(E ′),F(νA(E ′))

)
. Thus νA(E ′) ' E ′. By Lemma 3.4(1), the module E ′ is

isomorphic to a direct summand of εA, and therefore εBop is isomorphic to a direct summand of F(εA).
Hence, F(εA)' εBop and F2 is a duality. �

The following corollary shows when the endomorphism algebra of a tilting module is a Morita algebra.

Corollary 4.4. If dom.dim(B)≥ 2, then B is a Morita algebra if and only if E (A) = add(E).

Proof. By Lemma 3.8, we see that B is a Morita algebra if and only if B -prinj = add(εB). This is also
equivalent to that B

op
-prinj = add(εBop ) by Lemma 3.4(1) and (3). Now, Corollary 4.4 follows from Lemma

4.3. �

As an consequence of Corollary 4.4, we get a class of tilting modules which transfer Morita algebras
again to Morita algebras.

Corollary 4.5. Suppose that A is a Morita algebra and dom.dim(B)≥ 2.
(1) If the non-projective part AT ′ of T has no injective direct summands, then B is a Morita algebra.
(2) If dom.dim(A) ≥ n+ 1, then B is a Morita algebra. In particular, if proj.dim(AT ) = 1, then B is a

Morita algebra.

Proof. (1) Clearly, we have E (A) ⊆ add(E). Suppose that AT ′ has no injective direct summands. Then
add(E) = {X ∈ add(AP) | νA(X) ∈ add(AP)}. In particular, we obtain νA(E) ∈ add(AP) ⊆ add(AA). Since
νA(E) is injective, we have νA(E) ∈ A-prinj . Note that A is a Morita algebra by assumption. It follows from
Lemma 3.8 that A -prinj = E (A). This implies νA(E) ∈ E (A), and therefore E ∈ E (A) by Lemma 3.4(1).
Thus add(E) = E (A). Now (1) is a consequence of Corollary 4.4.

(2) Suppose dom.dim(A) ≥ n+ 1. Since dom.dim(A) = dom.dim(A
op
), each projective A

op
-module U

has dominant dimension at least n+ 1. This implies that the injective dimension of U is either 0 or at least
n+ 1. Dually, the projective dimension of each injective A-module is either 0 or at least n+ 1. Moreover,
since AT = P⊕T ′ and proj.dim(AT )≤ n, the module AT ′ has no injective direct summands. Now, (2) follows
from (1). �

From now on, let ω be a basic A-module such that A -prinj = add(ω). Note that projective-injective
A-modules always appear in the projective summands of each tilting A-module. So ω ∈ add(AP).

Lemma 4.6. The following statements are true:
(1) νA(E)-dom.dim(A)≤ dom.dim(B)+n.
(2) HomA(ν

−
A (ω),T )-dom.dim(B

op
)≤ dom.dim(A)+n.

Proof. (1) Since E is projective, the A-module νA(E) is injective and νA(E)-dom.dim(A) makes sense.
Let s := νA(E)-dom.dim(A) and t := dom.dim(B). Clearly, if s≤ n or t = ∞, then (1) holds automatically. It
remains to show that if s≥ n+1 and t < ∞, then s≤ t +n.

Suppose that s≥ t +n+1. Then νA(E)-dom.dim(X)≥ s≥ t +n+1 for any projective A-module X . So,
for the minimal projective resolution of AT

0−→ Pn −→ Pn−1 −→ ·· · −→ P1 −→ P0 −→ T −→ 0,

we have νA(E)-dom.dim(Pi)≥ t +n+1 for all 0≤ i≤ n. It follows from Corollary 3.2(2) that

νA(E)-dom.dim(AT )≥min{νA(E)-dom.dim(Pi)+n− i−1 | 0≤ i≤ n}−n+1≥ t +1.

Thus there exists an exact sequence of A-modules:

0−→ AT −→ E0 −→ E1 −→ ·· · −→ Et−1 −→ Et
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such that E i ∈ add(νA(E)) for all 0 ≤ i ≤ t. Note that Ext j
A(T,T ) = 0 for each j ≥ 1 since AT is a tilting

module. Applying HomA(T,−) to the above exact sequence, we obtain the following exact sequence of
B-modules:

0−→ BB−→ HomA(T,E0)−→ HomA(T,E1)−→ ·· · −→ HomA(T,Et−1)−→ HomA(T,Et)

such that HomA(T,E i) ∈ add
(
HomA(T,νA(E))

)
for all 0≤ i≤ t.

Now, we point out that add
(
HomA(T,νA(E))

)
=B-prinj . In fact, by Lemma 4.3, the functor HomA(−,T )

induces an equivalence from add(E) to B
op

-prinj . Note that DHomA(E,T )'HomA(T,νA(E)) as B-modules
since AE is projective. Thus HomA(T,−) induces an equivalence from add(νA(E)) to B-prinj . From this, we
conclude that dom.dim(B)≥ t +1, which is a contradiction. Thus s≤ t +n and (1) holds.

(2) Since Aω is injective, we see that ν
−
A (ω) is projective. It follows that DHomA(ν

−
A (ω),T ) '

HomA(T,ω). Since ω ∈ add(P) ⊆ add(AT ), the B-module HomA(T,ω) is projective. So HomA(ν
−
A (ω),T )B

is injective and HomA(ν
−
A (ω),T )-dom.dim(B

op
) makes sense.

Since AT is an n-tilting module and B = EndA(T ), it is known that TB is also an n-tilting module and that
EndBop (T ) ' A

op
. Let E ′ := E(B

op
,T ) be the heart of TB. We claim that E ′ ' HomA(ω,T ) as B

op
-modules.

Actually, by Lemma 4.3, the functor HomBop (−,T ) induces an equivalence from add(E ′) to A-prinj . Since
A -prinj = add(ω) and Aω is basic, we have HomBop (E ′,T )' ω. It follows that HomA(HomBop (E ′,T ),T )'
HomA(ω,T ). Observe that E ′ ' HomA(HomBop (E ′,T ),T ) as B

op
-modules since E ′ is projective. Thus E ′ '

HomA(ω,T ). This verifies the claim. Since Aω is projective-injective, we have

νBop (E ′)' DHomB(T,ω)' HomA(ν
−
A (ω),T ).

Now, by (1), we see that HomA(ν
−
A (ω),T )-dom.dim(B

op
) ≤ dom.dim(A

op
) + n. Since dom.dim(A) =

dom.dim(A
op
), the statement (2) holds true. �

The following is our second main result which shows how the dominant dimensions of A and B are
related.

Theorem 4.7. (1) If ω ∈ add(νA(E)), then dom.dim(A)≤ dom.dim(B)+n.
(2) If νA(E) ∈ add(ω), then dom.dim(B)≤ dom.dim(A)+n.

Proof. Recall that A -prinj = add(ω). If ω ∈ add(νA(E)), then A -prinj ⊆ add(νA(E)) and therefore
dom.dim(A) = ω-dom.dim(A) ≤ νA(E)-dom.dim(A). By Lemma 4.6(1), we have νA(E)-dom.dim(A) ≤
dom.dim(B)+n. It follows that dom.dim(A)≤ dom.dim(B)+n. Thus (1) holds.

Note that B
op

-prinj = add(HomA(E,T )) by Lemma 4.3. If νA(E) ∈ add(ω), then E ∈ add(ν−A (ω))
and therefore dom.dim(B

op
) = HomA(E,T )-dom.dim(B

op
) ≤ HomA(ν

−
A (ω),T )-dom.dim(B

op
). Further, by

Lemma 4.6(2), we see that HomA(ν
−
A (ω),T )-dom.dim(B

op
) ≤ dom.dim(A) + n. Since dom.dim(B) =

dom.dim(B
op
), we obtain dom.dim(B)≤ dom.dim(A)+n. Thus (2) holds. �

From Theorem 4.7 we know that if add(ω) = add(νA(E)), then dom.dim(A) = ∞ if and only if
dom.dim(B) = ∞. As another consequence of Theorem 4.7, we have the following result.

Corollary 4.8. (1) If νA(ω)' ω, then dom.dim(A)≤ dom.dim(B)+n.
(2) If the non-projective part AT ′ of T has no injective direct summands, then dom.dim(B) ≤

dom.dim(A)+n.
(3) If add(ω) = add(νA(E)) (for example, ω' νA(E)), then |dom.dim(A)−dom.dim(B)| ≤ n.

Proof. If νA(ω) ' ω, then ω ∈ add(E) since ω ∈ add(P). In this case, we have ω ∈ add(νA(E)). Now,
the statement (1) follows from Theorem 4.7(1).

If AT ′ has no non-zero injective direct summands, then

add(E) = {X ∈ add(P) | νA(X) ∈ add(P)}= {X ∈ add(P) | νA(X) ∈ add(ω)}
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and therefore νA(E) ∈ add(ω). Thus (2) follows from Theorem 4.7(2). Clearly, the statement (3) is also due
to Theorem 4.7. �

Corollary 4.9. If A is a Morita algebra, then dom.dim(A)≤ dom.dim(B)+n. In particular, if both A and B
are Morita algebras, then |dom.dim(A)−dom.dim(B)| ≤ n.

Proof. Since A is a Morita algebra, we see from Lemma 3.8 that A -prinj = E (A). Note that A -prinj =
add(ω), E (A) = add(εA) and νA(εA) ' εA by Lemma 3.4(1). Hence νA(ω) ' ω. So the first statement of
Corollary 4.9 follows from Corollary 4.8(1).

In addition, if B is a Morita algebra, then we may use the tilting right B-module TB of proj.dim(TB) = n. In
this case, we have dom.dim(B

op
)≤ dom.dim(EndBop (TB))+n by the foregoing proof. Due to EndBop (TB)∼=

A
op

, we obtain dom.dim(B) = dom.dim(B
op
) ≤ dom.dim(A

op
)+n = dom.dim(A)+n. Thus |dom.dim(A)−

dom.dim(B)| ≤ n. �

Remarks. (1) If A is a Morita algebra with dom.dim(A) ≥ n+ 2, then B is a Morita algebra. Indeed,
it follows from Corollary 4.9 that n+ 2 ≤ dom.dim(A) ≤ dom.dim(B)+ n and therefore dom.dim(B) ≥ 2.
Now, by Corollary 4.5(2), B is a Morita algebra.

(2) If both A and B are assumed to be Morita algebras, then there is a general statement in [7]: For any
derived equivalence between A and B, there holds dom.dim(B)−n≤ dom.dim(A)≤ dom.dim(B)+n, where
n+1 is the number of non-zero terms of a tilting complex defining the derived equivalence between A and B.
Unfortunately, our example in Section 5 shows that B in Corollary 4.9 does not have to be a Morita algebra.

To give an optimal lower bound for the dominant dimension of B, we introduce the following definition
of T -gradients of projective modules.

Definition 4.10. For a projective A-module X, let

T •X : · · · −→ T−i
X −→ T−i+1

X −→ ·· · −→ T−2
X −→ T−1

X −→ νA(X)−→ 0

be a minimal right add(AT )-approximation sequence of νA(X), where T 0
X := νA(X).

(1) The T -gradient of X, denoted by ∂T (X), is defined as follows:

∂T (X) := inf
{

i≥ 0 | T−i−1
X /∈ add(νA(E))

}
.

(2) The T -gradient of the algebra A is the T -gradient of AA. Further, the global T -gradient of A is

∂(A,T ) := min{∂T (Pi)+ i | 0≤ i≤ n}.

(3) The tilting gradient of A is

∂(A) := sup
{

∂(A,T ) | T is a tilting A-module
}
.

Remark that the sequence T •X is always exact since an A-module N with ExtiA(T,N) = 0 for all i ≥ 1 is
a quotient module of some module in add(AT ). Thus one can define the T -gradients for all such modules
N. However, in this paper, we confine our discussions to injective modules. Clearly, if X ∈ add(E), then
∂T (X) = ∞. Moreover, if X ,Y ∈ add(AA), then ∂T (X ⊕Y ) = min{∂T (X),∂T (Y )}. Thus ∂T (A) ≤ ∂T (X) for
all X ∈ add(AA), and ∂T (A)≤ ∂(A,T )≤ ∂(A).

Note that dom.dim(A) = ∂T (A) = ∂(A,T ) for T = AA (see also Corollary 4.12) since dom.dim(A) =
dom.dim(A

op
) and νA(E(A,A)) is an additive generator for A-prinj . In this sense, the definition of gradients

generalizes the one of dominant dimensions of algebras.
Let us start with the following description of T -gradients.
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Lemma 4.11. For any X ∈ add(AA), let

E•X : · · · −→ E−i
X −→ E−i+1

X −→ ·· · −→ E−2
X −→ E−1

X −→ X −→ 0

be a minimal right add(AE)-approximation sequence of AX, where E0
X := X. Then

∂T (X) = dom.dim(HomA(X ,T )B) = inf{i≥ 0 | HomK (A)
(
E•X ,T [i]

)
6= 0}.

Proof. Recall that AE ∈ add(P) ⊆ add(AA)∩ add(AT ) and that B
op

-prinj = add(HomA(E,T )) due to
Lemma 4.3.

Let s := dom.dim(HomA(X ,T )B) and t := inf{i ≥ 0 | HomK (A)
(
E•X ,T [i]

)
6= 0}. Then, to show s = t, it

suffices to prove that, for any integer m≥ 1, we have s≥ m if and only if t ≥ m.
Suppose that s≥ m≥ 1. Then HomA(X ,T )B has a minimal injective resolution, starting with the follow-

ing exact sequence

(†) 0−→HomA(X ,T )−→HomA(E1,T )−→HomA(E2,T )−→·· ·−→HomA(Em−1,T )−→HomA(Em,T )

such that Ei ∈ add(AE) for 1 ≤ i ≤ m. Note that HomBop (HomA(U,T ),HomA(V,T )) ' HomA(V,U) for any
projective A-modules U and V by Lemma 4.2(1). So there exists a sequence

E• : Em
fm−→ Em−1

fm−1−→ ·· · −→ E2
f2−→ E1

f1−→ X
f0−→ 0

such that Hom•A(E
•,T ) is precisely the sequence (†). Since AT is a tilting module, we have an injection

A→ T0 for some T0 ∈ add(AT ). As both Ei and X belong to add(AA), the exactness of the sequence (†)
implies that fi+1 fi = 0. Moreover, since νA(E) ∈ add(AT ), the sequence Hom•A(E

•,νA(E)) is exact. Thus
it follows from Hom•A(E

•,νA(E)) ' DHom•A(E,E
•) that the sequence Hom•A(E,E

•) is also exact. In other
words, the homomorphism gi : Ei→Ker ( fi−1) induced from fi is a right add(E)-approximation of Ker ( fi−1).
Note that gi is minimal because the sequence (†) is a part of a minimal injective resolution of HomA(X ,T )B.
Hence, E• can be regarded as a starting part of the minimal right add(E)-approximation E•X of X . So we may
write the complex E•X as follows:

E•X : · · · −→ E−m−2
X −→ E−m−1

X −→ Em
fm−→ Em−1

fm−1−→ ·· · −→ E2
f2−→ E1

f1−→ X
f0−→ 0,

and get HomK (A)(E•X ,T [i])' H i
(
Hom•A(E

•
X ,T )

)
= 0 for 0≤ i≤ m−1. This implies t ≥ m

Conversely, if t ≥ m ≥ 1, then H i
(
Hom•A(E

•
X ,T )

)
' HomK (A)(E•X ,T [i]) = 0 for 0 ≤ i ≤ m− 1, and

therefore the following sequence

0→ HomA(X ,T )−→ HomA(E−1
X ,T )−→ HomA(E−2

X ,T )−→ ·· · −→ HomA(E1−m
X ,T )−→ HomA(E−m

X ,T )

induced from E•X is exact. Since E−i
X ∈ add(E) for 1 ≤ i ≤ m, we have dom.dim(HomA(X ,T )) ≥ m, that is,

s≥ m. Thus s = t.
To check ∂T (X) = s, we note from add(E)⊆ add(AA) that Hom•A(E

•
X ,T )' DHom•A(T,νA(E•X)) as com-

plexes. It then follows that

HomK (A)(E
•
X ,T [i])' H i(Hom•A(E

•
X ,T )

)
' H i(DHom•A(T,νA(E•X))

)
' DH−i(Hom•A(T,νA(E•X))

)
.

Hence HomK (A)(E•X ,T [i]) = 0 if and only if H−i
(
Hom•A(T,νA(E•X))

)
= 0, where the complex

νA(E•X) : · · · −→ νA(E−i
X )−→ νA(E−i+1

X )−→ ·· · −→ νA(E−2
X )−→ νA(E−1

X )−→ νA(X)−→ 0

has terms νA(X) ∈ A-inj and νA(E−i
X ) ∈ add(νA(E))⊆ add(AT ) for all i≥ 1.
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On the one hand, if s ≥ m ≥ 1, then H−i
(
Hom•A(T,νA(E•X))

)
= 0 for 0 ≤ i ≤ m− 1. In this case, the

following sequence

νA(E−m
X )−→ νA(E−m+1

X )−→ ·· · −→ νA(E−1
X )−→ νA(X)−→ 0

can be regarded as a starting part of a minimal right add(AT )-approximation sequence of νA(X). Hence, up
to isomorphism of complexes, we can write T •X in the following form

T •X : · · · −→ T−m−1
X −→ νA(E−m

X )−→ νA(E−m+1
X )−→ ·· · −→ νA(E−1

X )−→ νA(X)−→ 0.

This leads to ∂T (X)≥ m.
On the other hand, if ∂T (X) ≥ m ≥ 1, then T−i

X ∈ add(νA(E)) ⊆ A-inj for all 1 ≤ i ≤ m. Observe that,
for any I ∈ A-inj, we have DHomA(ν

−
A (I),−) ' HomA(−, I) on A-mod. Since the complex Hom•A(T,T

•
X ) is

exact, we apply ν
−
A to the complex T •X and obtain the following sequence

ν
−
A (T

−m
X )−→ ν

−
A (T

−m+1
X )−→ ·· · −→ ν

−
A (T

−1
X )−→ X −→ 0

which induces an exact sequence of Bop-modules:

0−→ HomA(X ,T )−→ HomA(ν
−
A (T

−1
X ),T )−→ ·· · −→ HomA(ν

−
A (T

−m+1
X ),T )−→ HomA(ν

−
A (T

−m
X ),T ).

Since ν
−
A (T

−i
X ) ∈ add(E) for each 1≤ i≤m, we see from Lemma 4.3 that dom.dim(HomA(X ,T )B)≥m, that

is, s≥ m. This finishes the proof of the first equality. �

Now, let us state a lower bound for the dominant dimension of B in terms of T -gradients of A.

Corollary 4.12. (1) dom.dim(B)≥ ∂(A,T )≥ ∂T (A).
(2) ∂T (A) = dom.dim(TB) = νA(E)-dom.dim(AT ).

Proof. (1) Since AT is a tilting module, we see that Ext j
A(T,T ) = 0 for any j ≥ 1. So the given projective

resolution of AT induces a long exact sequence of B
op

-modules:

0−→ BB −→ HomA(P0,T )−→ HomA(P1,T )−→ ·· · −→ HomA(Pn−1,T )−→ HomA(Pn,T )−→ 0.

Applying Corollary 3.2(1) to this sequence, we have

dom.dim(BB)≥min{dom.dim(HomA(Pi,T )B)+ i | 0≤ i≤ n}.

Thus dom.dim(B) = dom.dim(BB) ≥ min{∂T (Pi)+ i | 0 ≤ i ≤ n} = ∂(A,T ). Since ∂T (Pi) ≥ ∂T (A) for all
0≤ i≤ n, we clearly have ∂(A,T )≥ ∂T (A).

(2) If we take X = AA in Lemma 4.11, then ∂T (A) = dom.dim(TB). Since AE is projective, there is an
idempotent element e = e2 ∈ A such that add(E) = add(Ae). It follows from Lemma 4.11 and Lemma 3.3
that ∂T (A) = νA(E)-dom.dim(AT ). �

4.2 Dominant dimensions for special classes of tilting modules

In this subsection we consider two special classes of tilting modules and estimate the dominant dimensions
of their endomorphism algebras in terms of their projective dimensions. Here considerations are focused on
n-BB-tilting and canonical tilting modules. The two classes of tilting modules have a common feature that
all Pi but one in their projective resolutions of T belong to add(P). So we start with the following slightly
general case.
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Lemma 4.13. Suppose that Pi ∈ add(P) for all 0≤ i < n. Then
(1) dom.dim(B) = min

{
∂T (P), n+∂T (Pn)

}
.

(2) If dom.dim(B)≥ n+1, then dom.dim(B)≤ n+∂T (A). In this case, dom.dim(B) = n+∂T (A) if and
only if ∂T (P)≥ n+∂T (Pn).

Proof. As AT is a tilting module, we know that Ext j
A(T,T ) = 0 for any j≥ 1 and that the given projective

resolution of AT induces a long exact sequence of B
op

-modules:

(∗∗) 0−→ BB −→ HomA(P0,T )−→ ·· · −→ HomA(Pn−1,T )−→ HomA(Pn,T )−→ 0,

with HomA(Pi,T ) ∈ add(HomA(P,T )) for all 0≤ i < n by the assumption Pi ∈ add(P).
Let s := ∂T (P), s′ := ∂T (Pn) and t := dom.dim(B). Then, since both P and Pn are projective, it follows

from Lemma 4.11 that s = dom.dim(HomA(P,T )B) and s′ = dom.dim(HomA(Pn,T )B). Consequently, we
have dom.dim(HomA(Pi,T )) ≥ s and dom.dim(HomA(P0,T )) = s since add(P) = add(P0) by assumption.
Recall that

t = dom.dim(B
op
) = dom.dim(BB) = min{dom.dim(QB) | Q ∈ add(BB)}.

Since P ∈ add(AT ), we obtain HomA(P,T ) ∈ add(BB). Thus s≥ t.
To show Lemma 4.13, we shall apply Corollary 3.2 to the sequence (∗∗) by taking

Λ := B
op
, m := n, Y−1 := B and Yi := HomA(Pi,T ) for 0≤ i≤ n.

Observe that dom.dim(Yi)≥ s≥ t for each 0≤ i≤ n−1 and that dom.dim(Y0) = s. By Corollary 3.2(1),
we first have t ≥min{s,n+s′}. By Corollary 3.2(2), we then obtain s′≥ t−n, and therefore t ≤min{s,n+s′}.
Thus t = min{s,n+ s′}. This finishes the proof of (1).

(2) Suppose t ≥ n+ 1. By Corollary 4.12(2) and add(
⊕n

i=0 Pi) = add(P⊕Pn) = add(AA), we see that
∂T (A) = dom.dim(TB) = min{dom.dim(HomA(P,T )),dom.dim(HomA(Pn,T ))} = min{s,s′}. By (1), we
know that t = min{s,n+ s′} ≤ n+ s′. If s≥ s′, then ∂T (A) = s′ and t ≤ n+ s′. If s < s′, then t = s = ∂T (A).
Thus we always have t ≤ n+∂T (A), and the equality holds if and only if s≥ n+ s′. �

Lemma 4.13 can be applied to bound the dominant dimensions of the endomorphism algebras of a class
of tilting modules by their projective dimensions. First of all, we mention the following technical result.

Corollary 4.14. Suppose that Pi ∈ add(P) for 0≤ i < n.
(1) Let f : E ′ → Pn be a minimal right add(E)-approximation of Pn, where E ′ ∈ add(E). If

HomA(Coker ( f ),T ) 6= 0, then dom.dim(B)≤ n.
(2) Suppose that AE is injective. If ω 6� E or νA(E) 6� E, then dom.dim(B)≤ n.

Proof. (1) If HomA(Coker ( f ),T ) 6= 0, then ∂T (Pn) = 0 by Lemma 4.11. Now, (1) follows from Lemma
4.13(1).

(2) Suppose dom.dim(B) ≥ n + 1. By Lemma 4.13(2), we have ∂T (A) ≥ 1. Since ∂T (A) =
νA(E)-dom.dim(AT ) by Corollary 4.12(2), there is an injection T → I0 such that I0 ∈ add

(
νA(E)

)
. Since

add(ω) ⊆ add(AT ), we have add(ω) ⊆ add
(
νA(E)

)
. By assumption, AE is injective, and therefore E is

projective-injective. Thus add(E)⊆ add(ω)⊆ add
(
νA(E)

)
. However, both νA(E) and E are basic and have

the same number of indecomposable direct summands. This implies that add(E) = add(ω) = add
(
νA(E)

)
.

Therefore E ' ω' νA(E). This proves (2). �

Now, we apply our results to n-BB-tilting modules which can be constructed, for instance, from
Auslander-Reiten sequences (see [12]).

Let S be a simple, non-injective A-module. Following [12, Section 4], for an integer n ≥ 1, we say that
S defines an n-BB-tilting module if ExtiA(D(A),S) = 0 = Exti+1

A (S,S) for 0≤ i≤ n−1. In this case, we can
associate a tilting module with S in the following way:
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Let P(S) be the projective cover of S, and let Q be the direct sum of all non-isomorphic indecomposable
projective A-modules which are not isomorphic to P(S). In [12, Lemma 4.2], it is shown that the module
Q⊕τ−1Ω

−n+1
A (S) is a tilting A-module of projective dimension n, where τ−1 := TrD is the Auslander-Reiten

inverse translation. This tilting module is called the n-BB-tilting module defined by S. If, in addition, S is
projective, then this module will be called the n-APR-tilting module defined by S.

Corollary 4.15. Suppose that AT := Q⊕ τ−1Ω
−n+1
A (S) is an n-BB-tilting A-module.

(1) If HomA(S,T ) 6= 0, then dom.dim(EndA(T ))≤ n.
(2) Suppose that S is projective. Then dom.dim(EndA(T )) ≤ n. Moreover, if the injective envelope of S

is not projective, then dom.dim(A)≤ 2n.

Proof. (1) We first recall some properties of n-BB-tilting modules. Let

0−→ S−→ I(S)−→ I1 −→ I2 −→ ·· · −→ In−1 −→ In −→ In+1 −→ ·· ·

be a minimal injective resolution of S, where I(S) is the injective envelope of S. Then Ii ∈ add(νA(Q)) for
1 ≤ i ≤ n since ExtiA(S,S) = 0. Let T ′ := τ−1Ω

−n+1
A (S). Since the injective dimension of S is at least n, we

see that 0 6= T ′ does not contain projective direct summands. Applying ν
−
A to the above sequence, we obtain

a minimal projective resolution of the module T ′:

0−→ P(S)−→ ν
−
A (I1)−→ ν

−
A (I2)−→ ·· · −→ ν

−
A (In−1)−→ ν

−
A (In)−→ T ′ −→ 0

such that ν
−
A (Ii) ∈ add(Q) for 1≤ i≤ n. This is due to Ext j

A(D(A),S) = 0 for 0≤ j ≤ n−1.
For the module T , we recall that E denotes a basic A-module such that add(AE)= {X ∈ add(AQ) | νA(X)∈

add(AT )}. Further, let f : E ′ → P(S) be a minimal right add(E)-approximation of P(S) with E ′ ∈ add(E).
Then the map f cannot be surjective since P(S) /∈ add(Q). This implies that the top of Coker ( f ) is equal
to S. If HomA(S,T ) 6= 0, then HomA(Coker ( f ),T ) 6= 0, and therefore dom.dim(EndA(T ))≤ n by Corollary
4.14(1).

(2) Note that if S is projective, then S = P(S) and HomA(S,Q) 6= 0, because there exists an injec-
tion from P(S) to ν

−
A (I1). Since ν

−
A (I1) ∈ add(Q) ⊆ add(AT ), we have HomA(S,T ) 6= 0, and therefore

dom.dim(EndA(T )) ≤ n by (1). If the injective envelope I(S) of S is not projective, then νA(S) = I(S) is
not projective-injective. Consequently, S 6∈ add(ν−A (ω)) ⊆ add(Q). This means that ν

−
A (ω) ∈ add(E) and

therefore ω ∈ add(νA(E)). Thus dom.dim(A)≤ dom.dim(EndA(T ))+n≤ n+n = 2n by Theorem 4.7(1). �

Applying Corollary 4.15 to Auslander-Reiten sequences in module categories of Artin algebras, we obtain
the following result.

Corollary 4.16. Let 0→ X → M → Y → 0 be an Auslander-Reiten sequence in A-mod with A an Artin
algebra. If X � Y , then dom.dim

(
EndA(X⊕M⊕Y )

)
≤ 2.

Proof. Note that X is not in add(M). Since X � Y by assumption, we have X 6∈ add(M⊕Y ). Let
V := X ⊕M, U := X ⊕M⊕Y and Σ := EndA(U). Further, let SX be the top of the projective Σ

op
-module

HomA(X ,U). By the remark (2) following [12, Proposition 4.3], the Σ
op

-module W := HomA(V,U)⊕ SX is
a 2-BB-tilting module. Let ∆ := End

Σ
op (W )

op
. Then W is a 2-APR-tilting ∆-module defined by the simple

projective ∆-module Hom
Σ

op (SX ,W ). Moreover, End∆(W ) ' Σ as algebras. Now, it follows from Corollary
4.15(2) that dom.dim(Σ)≤ 2. �

Next, we utilize our previous results to the so-called canonical tilting modules defined as follows:
Let A be an algebra of dom.dim(A) = n≥ 1 and with a minimal injective resolution

0−→ AA d0−→ E0
d1−→ E1 −→ ·· ·

dn−1−→ En−1 −→ ·· · .
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Let Ti := E0⊕Coker (di−1) and Bi := EndA(Ti) for 1≤ i < n+1. It is not difficult to check that Ti is a tilting
A-module of projective dimension at most i (for i = 1, see also [6, Proposition 5]). So these Ti are called
canonical tilting modules.

Note that A -prinj = add(ω) = add(E0). For canonical tilting modules, we have the following proposition.

Proposition 4.17. With the above notation, we have the followings:
(1) If add(E0) 6= add

(
νA(E0)

)
, then dom.dim(Bi)≤ i for all 1≤ i < n+1.

(2) If add(E0) = add
(
νA(E0)

)
, or equivalently, add(soc(E0))' add(top(E0)), then dom.dim(Bi) = n for

all 1≤ i < n+1.
(3) If n is finite and νA(E0) ∈ add(Tn), then dom.dim(Bn) = n.

Proof. Note that if the algebra A is self-injective, then E0 = A and E j = 0 for any j ≥ 1. In this case,
all the statements in Proposition 4.17 are trivial. So, we now assume that A is not self-injective. Since
dom.dim(A) = n≥ 1, we always have add(ω) = add(E0).

(1) Working with a minimal injective resolution of AA, we see that Ω−i(A) contains no non-zero projective
direct summands. Let A = E ′0⊕Q, where E ′0 is injective and Q does not contain any non-zero injective direct
summands. Then, the module Ti has a minimal projective resolution of the form

0−→ AQ−→ E ′′0 −→ E1 −→ ·· · −→ Ei−2 −→ Ei−1⊕E0 −→ Ti −→ 0

where E ′0⊕E ′′0 ' E0. In particular, the module Ei−1⊕E0 is a projective cover of Ti. Let Wi := E(A,Ti) be
the heart of Ti (see Definition 4.1). Then add(Wi) = {X ∈ add(E0) | νA(X) ∈ add(ATi)} by definition. Note
that Wi is injective and that E j ∈ add(E0) for 0 ≤ j ≤ i− 1. By Corollary 4.14(2), if dom.dim(Bi) ≥ i+ 1,
then ω 'Wi ' νA(Wi). Since add(ω) = add(E0), we have add(E0) = add

(
νA(E0)

)
. This contradicts to the

assumption in (1). Hence dom.dim(Bi)≤ i.
(2) Suppose add(E0) = add

(
νA(E0)

)
. Since E0 ∈ add(ATi), we have add(Wi) = add(E0) = add

(
νA(Wi)

)
.

This implies ∂Ti(E0) = ∞. By Lemma 4.13(2), we have dom.dim(Bi) = i+∂Ti(Q). Note that

∂Ti(Q) = min
{

∂Ti(E0),∂Ti(Q)
}
= ∂Ti(A)

since add(E0⊕Q) = add(AA) and ∂Ti(E0) = ∞. Thus dom.dim(Bi) = i+ ∂Ti(A). By Corollary 4.12(2), we
have ∂Ti(A) = νA(Wi)-dom.dim(Ti). However, νA(Wi)-dom.dim(ATi) = dom.dim(ATi) since add

(
νA(Wi)

)
=

A-prinj . Hence,
dom.dim(Bi) = i+dom.dim(ATi) = i+dom.dim(Ω−i

A (A)) = n.

(3) Suppose νA(E0)∈ add(Tn). Then add(Wn) = add(E0) and therefore ∂Tn(E0) = ∞. By Lemma 4.13(2),
we have dom.dim(Bn) ≥ n. At the same time, it follows from (1) and (2) that dom.dim(Bn) ≤ n. Thus
dom.dim(Bn) = n. �

In the following, we give an explicit description of the dominant dimension of Bi for the case add(E0) 6=
add
(
νA(E0)

)
.

Corollary 4.18. Let A be an algebra of finite dominant dimension n ≥ 1 such that add(E0) 6= add
(
νA(E0)

)
.

Let X , Y and Z be the complete sets of isomorphism classes M of indecomposable, projective-injective
A-modules such that νA(M) has projective dimension 0, n and ≥ n+1, respectively. For each M ∈ Y ∪̇Z, let

· · · · · · −→ Q−n−1
M −→ Q−n

M −→ Q−n+1
M −→ ·· · −→ Q−1

M −→ Q0
M −→ νA(M)−→ 0

be a minimal projective resolution of νA(M), and let δM denote the projective dimension of νA(M).
Suppose that δM < ∞ and Q− j

M ∈ add(E0) for all M ∈ Z and for all n≤ j ≤ δM−1. Then

dom.dim(Bi) =

{
min

{
i, σ(M, i) |M ∈ Y ∪Z

}
if 1≤ i≤ n−1,

min
{

n, σ(M,n) |M ∈ Z
}

if i = n,
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where
σ(M, i) := max

0≤ j≤δM−i

{
j | Q−m

M ∈ add
(⊕

X∈X
νA(X)

)
for all 0≤ m≤ j−1

}
.

In particular, if Z = /0, then dom.dim(Bn) = n and dom.dim(Bi)≤min{i,n− i} for 1≤ i≤ n−1.

Proof. Recall that A -prinj = add(E0), due to dom.dim(A) = n ≥ 1. Since add(E0) 6= add
(
νA(E0)

)
, we

see from Proposition 4.17(1) that dom.dim(Bi)≤ i for 1≤ i≤ n. By Lemma 4.13, we have

dom.dim(Bi) = min{i, ∂Ti(E0)}.

Next, we shall describe ∂Ti(E0) explicitly.
Since dom.dim(A) = n = dom.dim(A

op
), each indecomposable injective, non-projective A-module V has

projective dimension at least n with a minimal projective resolution of the form

· · · −→ Q−n
V −→ Q−n+1

V −→ ·· · −→ Q−1
V −→ Q0

V −→V −→ 0

such that Q− j
V ∈ add(E0) for 0 ≤ j ≤ n− 1. In particular, if proj.dim(V ) = n, then Ωn

A(V ) ∈ add(AA), and
therefore V ' Ω

−n
A (Ωn

A(V )) ∈ add
(
Ω
−n
A (A)

)
= add

(
Coker (dn−1)

)
. This implies that if M ∈ Y , then we

automatically have Q− j
M ∈ add(E0) for all 0≤ j≤ δM−1 = n−1, and therefore νA(M) ∈ add(Coker (dn−1)).

Let W :=
⊕

X∈X X . Then W is a basic A-module such that

add(W ) = {X ∈ add(E0) | νA(X) ∈ add(E0)} and add(W ⊕
⊕

M∈Y ∪̇Z
M) = add(E0).

Moreover, the hearts of the canonical tilting A-modules Ti are given by

E(A,Ts) =W for 1≤ s≤ n−1 and E(A,Tn) =W ⊕
⊕
M∈Y

M.

This implies that ∂Ts(W ) = ∞ = ∂Tn

(
W ⊕

⊕
M∈Y M

)
with 1≤ s≤ n−1. Thus

∂Ts(E0) = ∂Ts(
⊕

M∈Y ∪̇Z
M) = min

M∈Y ∪̇Z
{∂Ts(M)} and ∂Tn(E0) = ∂Tn(

⊕
M∈Z

M) = min
M∈Z
{∂Tn(M)}.

To show Corollary 4.18, we only need to prove the following two statements:
(a) ∂Ts(M) = σ(M,s) for 1≤ s≤ n−1 and any M ∈ Y ∪̇Z;
(b) ∂Tn(M) = σ(M,n) for any M ∈ Z.

Indeed, for any M ∈ Y ∪̇Z, we have proj.dim(νA(M)) = δM < ∞ and Q− j
M ∈ add(E0) for 0≤ j≤ δM−1. This

implies that Q−δM
M ∈ add(AA) and Ω

−i
A (Q−δM

M ) ∈ add(Ω−i
A (A)) ⊆ add(Ti) for all 1 ≤ i ≤ n. So the following

sequence
0−→Ω

−i
A (Q−δM

M )−→ Q−(δM−i−1)
M −→ ·· · −→ Q−1

M −→ Q0
M −→ νA(M)−→ 0,

is a minimal right add(Ti)-approximation sequence of νA(M). Note that Ω
−i
A (Q−δM

M ) is injective if and only if
i = n and M ∈ Y . Thus (a) and (b) hold. This finishes the proof of Corollary 4.18. �

We observe that all Morita algebras satisfy the condition in Proposition 4.17(2).

Corollary 4.19. Let A be a Morita algebra with E0 the injective envelope of AA. Then EndA(E0⊕Ω− j(A)) is
again a Morita algebra and has dominant dimension equal to dom.dim(A) for all 1≤ j < dom.dim(A)+1.
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Proof. Since A is a Morita algebra, it follows from Lemma 3.8 that add(E0) = A -prinj = E (A). By Lem-
ma 3.4(1), we further have add(E0) = add

(
νA(E0)

)
. Thus dom.dim

(
EndA(E0⊕Ω− j(A))

)
= dom.dim(A)≥ 2

by Proposition 4.17(2). It follows from add(E0) = add
(
νA(E0)

)
that E (A) = add(E) where E is the herat of

Tj := E0⊕Ω− j(A). Thus, by Corollary 4.4, the algebra EndA(Tj) is a Morita algebra. �

Finally, we use an example in [7] to illustrate Corollary 4.18 and show that the equality “dom.dim(Bi) =
min{i,n− i}” really occurs for 1≤ i≤ n−1.

Let n≥ 3 and let A be the quotient of the path algebra over a field k of the following quiver

2n+1
β2n−→ 2n

β2n−1−→ ·· · −→ n+2
βn+1−→ n+1

βn−→ n
βn−1−→ n−1−→ ·· · β3−→ 3

β2−→ 2
β1−→ 1

with relations βi+1βi = 0 for 1≤ i≤ 2n−1 except i= n. Further, let P(i), I(i) and S(i) be the indecomposable
projective, injective and simple A-modules corresponding to the vertex i for 1≤ i≤ 2n+1, respectively.

Let W :=
⊕n

i=2(P(i)⊕P(n+ i)). Then

A -prinj = add(W ⊕P(2n+1)) and add(W ) = {X ∈ A -prinj | νA(X) ∈ A -prinj }.

In fact, we have νA(P( j)) ' P( j + 1) for 1 ≤ j ≤ n− 1 and n + 2 ≤ j ≤ 2n, νA(P(n)) = P(n + 2) and
νA(P(2n+1))' I(2n+1). Note that AA has a minimal injective resolution of the form:

0−→ AA−→ E0 −→ E1 −→ ·· · −→ En−1 −→ En −→ 0

where E0 := (W ⊕P(2n+ 1))⊕P(2)⊕P(n+ 2), Ei := P(i+ 2)⊕P(n+ i+ 2) for 1 ≤ i ≤ n− 2, En−1 :=
P(n+2)⊕P(2n) and En := I(n+1)⊕ I(2n+1). Thus dom.dim(A) = n.

Clearly, add(E0) � add(νA(E0)), X = {P( j),P(n+ j) | 2 ≤ j ≤ n}, Y = {P(2n+ 1)} and Z = /0 (see
Corollary 4.18). Since νA(P(2n+1))' I(2n+1) has a minimal projective resolution

0−→P(n+1)−→P(n+2)−→P(n+3)−→·· ·−→P(2n−1)−→P(2n)−→P(2n+1)−→ I(2n+1)−→ 0

and since νA(X ) = {P(s),P(t) | 3≤ s≤ n, n+2≤ t ≤ 2n+1}, we have σ(P(2n+1), i) = n− i for 1≤ i≤
n−1.

Now, let Ti := E0 ⊕Ω
−i
A (A) and Bi := EndA(Ti) for 1 ≤ i ≤ n, where Ω

−i
A (A) = S(i + 1)⊕ S(n + i +

1) for 1≤ i≤ n−1 and Ω
−n
A (A) = I(n+1)⊕ I(2n+1). It follows from Corollary 4.18 that dom.dim(Bi) =

min{i,n− i} for 1≤ i≤ n−1. Clearly, dom.dim(Bn) = n since Z = /0.
This example also shows that the condition “νA(E) ∈ add(ω)” does not imply “ω ∈ add(νA(E))”, where

ω is an additive generator for A-prinj . Indeed, for a fixed Ti with i 6= n, we can verify that νA(E) ∈ add(ω)
and ω 6∈ add(νA(E)). The last two conditions are equivalent to that “ω′ ∈ add(νBop

i
(E ′))” and “νBop

i
(E ′) 6∈

add(ω′)”, where ω′ stands for an additive generator for B
op

i -prinj (see the proof of Lemma 4.6).

5 Are generalized symmetric algebras invariant under derived equiva-
lences?

As is known, many important algebras (for example, Schur algebras and q-Schur algebras) are Morita e-
quivalent to algebras of the form EndA(A⊕X) with A a symmetric algebra (that is, AAA ∼= AD(A)A) and X
an A-module. Algebras of this form were called generalized symmetric algebras in [8]. Clearly, generalized
symmetric algebras are Morita algebras. It is known that symmetric algebras (or more generally, self-injective
algebras) are closed under derived equivalences (see [21]). So, when Ming Fang (with his coauthors) studies
generalized symmetric algebras and certain quasi-hereditary covers of some Hidden Hecke algebras as well
as the dominant dimensions of blocks of q-Schur algebras, he asks naturally the following question: Are
generalized symmetric algebras closed under taking derived equivalences? More precisely,
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Question. Let Λ and Γ be finite-dimensional k-algebras over a field k such that they are derived equiva-
lent. Suppose that Λ is of the form EndA(A⊕X) with A a symmetric k-algebra and X an A-module. Is there
a symmetric k-algebra B and a B-module Y such that Γ is isomorphic to EndB(B⊕Y )?

As mentioned, for a symmetric algebra A, if X = 0, then the above question gets positive answer (see
[21]). In this section, however, we shall apply our results in the previous sections to give a negative answer
to the above question for X 6= 0.

5.1 A negative answer

Our concrete counterexample to the above question is actually another consequence of Theorem 3.6.

Corollary 5.1. Suppose that k is a field with an element that is not a root of unity. Then there exist two
finite-dimensional k-algebras Λ and Γ satisfying the following conditions:

(1) Λ and Γ are derived equivalent with the same Cartan matrices. In particular, dimk(Λ) = dimk(Γ).
(2) There is a symmetric algebra A and a generator M over A such that Λ' EndA(M) as algebras.
(3) dom.dim(Λ) = 2 and dom.dim(Γ) = 1.

In Corollary 5.1, since dom.dim(Γ) = 1, the algebra Γ cannot be Morita equivalent to a generalized
symmetric algebra.

Our discussion in the sequel is partially based on some results in [4]. So, we first recall necessary
ingredients from [4].

From now on, we fix a non-zero element q in a fixed field k, and suppose that q is not a root of unity.
Let A be the Liu-Schulz k-algebra in [17], that is, A is an 8-dimensional unitary k-algebra with the

generators: x0,x1,x2, and the relations: x2
i = 0 and xi+1xi + qxixi+1 = 0 for i = 0,1,2, where the subscripts

are modulo 3. Note that A is a local, symmetric k-algebra.
For j ∈ Z , we set

u j := x2 +q jx1, I j := Au j and Λ j := EndA(A⊕ I0⊕ I j).

For the algebra A and the modules I j, we cite the following properties from [4, Section 6].

Lemma 5.2. Let i and j be integers. Then the following statements are true:
(1) As k-algebras, A/rad(A)' k ' EndA(Ii)/rad

(
EndA(Ii)

)
.

(2) If i 6= j, then Ii and I j are non-isomorphic as A-modules.
(3) There exists a short exact sequence 0→ Ii+1→ A→ Ii→ 0 of A-modules.

(4) dimkIi = 4 = dimkHomA(Ii,A) and dimkHomA(I j, Ii) =

{
3 if j = i or i−2,
2 otherwise.

(5) dimkExt1A(I j, Ii) =

{
1 if j ≤ i≤ j+3,
0 otherwise.

Note that, by [4, Proposition 6.9], all the algebras Λ j for j ≥ 3 are derived equivalent, but not stably
equivalent of Morita type. Now, let us look at their Cartan matrices. By Lemma 5.2(1) and (4), one can
easily calculate the Cartan matrix CΛ2 of Λ2 and the Cartan matrix CΛ3 of Λ3:

CΛ2 =

 8 4 4
4 3 3
4 2 3

 and CΛ3 =

 8 4 4
4 3 2
4 2 3

 .

Clearly, the former is not a symmetric matrix, but the latter is. Since the Cartan matrices of two derived
equivalent algebras are congruent over Z, derived equivalences preserve the symmetry of Cartan matrices.
Thus Λ2 is not derived equivalent to Λ3.
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In the following, however, we shall show that Λ2 has a subalgebra Γ which is derived equivalent to Λ3
such that CΓ =CΛ3 . This may illustrate an intrinsic connection between Λ2 and Λ3

Proof of Corollary 5.1. We define Λ := Λ3 = EndA(A⊕ I0⊕ I3) and

Γ :=

 EndA(A) HomA(A, I0) HomA(A, I2)
HomA(I0,A) EndA(I0) P(I0, I2)
HomA(I2,A) HomA(I2, I0) EndA(I2)

 .

Clearly, Γ is a subalgebra of Λ2 := EndA(A⊕ I0⊕ I2).
First, we prove that Λ and Γ have the same Cartan matrix.
In fact, it is sufficient to check dimkP(I0, I2) = 2. By Lemma 5.2(3), there is an exact sequence 0→

I3→ A→ I2→ 0 of A-modules. Applying HomA(I0,−) to this sequence, we get another exact sequence of
k-modules:

0−→ HomA(I0, I3)−→ HomA(I0,A)−→P(I0, I2)−→ 0.

Note that dimkHomA(I0, I3) = 2 and dimkHomA(I0,A) = 4 by Lemma 5.2(4). Thus dimkP(I0, I2) = 2. This
implies that Γ and Λ have the same Cartan matrices. Clearly, dimkΛ = dimkΓ = 34.

Second, we take N := I0 and Y := I2 in Corollary 3.7. It follows from Lemma 5.2(3) that I3 = ΩA(I2) ,
and form Lemma 5.2(5) that Ext1A(I2, I0) = 0 and Ext1A(I0, I3) 6= 0. Now, by Corollary 3.7, we know that Λ

and Γ are derived equivalent with dom.dim(Γ) = 1.
Since Ext1A(I0, I0) 6= 0 by Lemma 5.2(5), we have dom.dim(Λ) = 2 by [19, Lemma 3] (or the remarks

after the definition of dominant dimension).
Consequently, Λ and Γ satisfy all the properties mentioned in Corollary 5.1. �

Observe that the algebras Λ and Γ defined in the proof of Corollary 5.1 can be described by matrices.
Let V be a k-vector space. For yi ∈V with 1≤ i≤ n ∈ N, we denote by < y1, . . . ,yn > the k-subspace of

V spanned by all yi.
Define J j := u j A for j ∈ Z and

C :=< 1,x1,x2,x0x1,x1x2,x2x0,x0x1x2 >, T :=< x1,x2,x0x1,x1x2,x2x0,x0x1x2 >, S := T⊕< x0 >

It has been shown in [4, Proposition 6.9] that

Λ := Λ3 '

 A A/I1 A/I4
J0 C/I1 T/I4
J3 T/I1 C/I4

 and Λ2 '

 A A/I1 A/I3
J0 C/I1 S/I3
J2 T/I1 C/I3


as algebras. By the proof of Corollary 5.1, the algebra Γ is a subalgebra of Λ2, which, with help of [4, Lemma
6.3(4), Lemma 6.5], can be described as the following matrix algebra:

Γ'

 A A/I1 A/I3
J0 C/I1 T/I3
J2 T/I1 C/I3

 .

Recall that, in the last part of [4, Section 6], we have described the algebra Λm for any m ≥ 3 (up to
isomorphism) by a fixed quiver Q with relations ρm. Note that the definition of ρm depends on m and makes
sense for m = 2. Thus we can show that Γ is actually isomorphic to the algebra kQ/ < ρ2 >, where < ρ2 >
is the ideal of the path algebra kQ generated by the set of relations ρ2.
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5.2 Further questions

Finally, we mention the following conjectures suggested by the results in this paper.

(1) If two algebras A and B are derived equivalent (not necessarily given by a tilting module), then
dom.dim(A) = ∞ if and only if dom.dim(B) = ∞. Equivalently, if A and B are derived equivalent, then
dom.dim(A)< ∞ if and only if dom.dim(B)< ∞.

(2) If A is an algebra of dominant dimension n≥ 1 with a minimal injective resolution 0→ AA→ E0→
·· · → En−1→ ·· · , then dom.dim

(
EndA(E0⊕Ω−n(A))

)
= n.

(3) Suppose that two algebras A and B are derived equivalent. If A is a Morita algebra and dom.dim(B)≥
2, then B is a Morita algebra.

Acknowledgement. The authors thank Ming Fang for conveying the question to them and explaining
backgrounds of the question. The research work is partially supported by BNSF and NNSF.
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